Enter arguments
This command needs confirmation
Are you sure?
Dependency expected
  • The following file is expected by the provided command:
    Running command, please wait…
    0%
    Session expired
    • Session expired This session has expired either due to a timeout or a server restart
    Please wait…
    Preferences

    Shift-Enter submit

    Command records:
    No
    Markdown records:
    Yes

    Autocomplete behavior

    Import from Biocham file
    Do you want to clear the current model before importing?
    Models published in the literature
    Curated models: original Biomodels version and Biocham ODE curated version
    IDNamePublication IDLast ModifiedRaw fileApply curation
    No records found.
    Loading SBML…
    Models published in the literature
    Curated models: original Biomodels version and Biocham ODE curated version
    IDNamePublication IDLast ModifiedLoad SBMLODE curated SBML
    No records found.
    Loading SBML…
    Server examples
    Pinboard

    BIOCHAM 3.7.4

    Copyright (C) 2003-2024 INRIA, EPI Lifeware, Paris-Rocquencourt, France, license GNU GPL 2, http://lifeware.inria.fr/biocham/
    parameter(deg_prb,0.005). parameter(deg_e2f1,0.1). parameter(k_1,1). parameter(K_m1,0.5). parameter(J_11,0.5). parameter(k_p,0.05). parameter(k_2,1.6). parameter(a,0.04). parameter(K_m2,4). parameter(J_12,5).
    Warning: The compound e2f1 appears in the kinetics but is not a reactant prb_rateOfChange:k_1*([e2f1]/(K_m1+[e2f1]))*(J_11/(J_11+[prb])) for _=>prb
    Warning: The compound e2f1 appears in the kinetics but is not a reactant e2f1_rateOfChange:k_p+k_2*((a^2+[e2f1]^2)/(K_m2^2+[e2f1]^2))*(J_12/(J_12+[prb])) for _=>e2f1
    MA(deg_prb) for prb=>_
    MA(deg_e2f1) for e2f1=>_
    prb_rateOfChange:k_1*([e2f1]/(K_m1+[e2f1]))*(J_11/(J_11+[prb])) for _=>prb. e2f1_rateOfChange:k_p+k_2*((a^2+[e2f1]^2)/(K_m2^2+[e2f1]^2))*(J_12/(J_12+[prb])) for _=>e2f1. MA(deg_prb) for prb=>_. MA(deg_e2f1) for e2f1=>_.
    Simulation time: 0.04s
    deg_prb=0.0048351 violation 0 (0.00s) deg_prb=0.00555139 violation 0 (0.00s) deg_prb=0.0044091 violation 0 (0.00s) deg_prb=0.0051585 violation 0 (0.00s) deg_prb=0.0039649 violation 0 (0.00s) deg_prb=0.00500019 violation 0 (0.00s) deg_prb=0.00519001 violation 0 (0.00s) deg_prb=0.00521398 violation 0 (0.00s) deg_prb=0.00475936 violation 0 (0.00s) deg_prb=0.00421922 violation 0 (0.00s) deg_prb=0.00518385 violation 0 (0.00s) deg_prb=0.00422954 violation 0 (0.00s) deg_prb=0.00515898 violation 0 (0.00s) deg_prb=0.00522003 violation 0 (0.00s) deg_prb=0.00482929 violation 0 (0.00s) deg_prb=0.00503877 violation 0 (0.00s) deg_prb=0.00551049 violation 0 (0.00s) deg_prb=0.00457506 violation 0 (0.00s) deg_prb=0.00612488 violation 0 (0.00s) deg_prb=0.00565493 violation 0 (0.00s) deg_prb=0.0040854 violation 0 (0.00s) deg_prb=0.00546904 violation 0 (0.00s) deg_prb=0.00519261 violation 0 (0.00s) deg_prb=0.00491913 violation 0 (0.00s) deg_prb=0.00494907 violation 0 (0.00s) deg_prb=0.00474653 violation 0 (0.00s) deg_prb=0.00502204 violation 0 (0.00s) deg_prb=0.00426751 violation 0 (0.00s) deg_prb=0.00432182 violation 0 (0.00s) deg_prb=0.00422545 violation 0 (0.00s) deg_prb=0.00536392 violation 0 (0.00s) deg_prb=0.00415 violation 0 (0.00s) deg_prb=0.00442553 violation 0 (0.00s) deg_prb=0.00500188 violation 0 (0.00s) deg_prb=0.00435812 violation 0 (0.00s) deg_prb=0.00542958 violation 0 (0.00s) deg_prb=0.00536222 violation 0 (0.00s) deg_prb=0.00535623 violation 0 (0.00s) deg_prb=0.00425635 violation 0 (0.00s) deg_prb=0.00610622 violation 0 (0.00s) deg_prb=0.00441499 violation 0 (0.00s) deg_prb=0.00520467 violation 0 (0.00s) deg_prb=0.00521817 violation 0 (0.00s) deg_prb=0.00522501 violation 0 (0.00s) deg_prb=0.00599397 violation 0 (0.00s) deg_prb=0.00484737 violation 0 (0.00s) deg_prb=0.00445465 violation 0 (0.00s) deg_prb=0.00442904 violation 0 (0.00s) deg_prb=0.00507975 violation 0 (0.00s) deg_prb=0.00431928 violation 0 (0.00s) deg_prb=0.00498182 violation 0 (0.00s) deg_prb=0.0049497 violation 0 (0.00s) deg_prb=0.00534346 violation 0 (0.00s) deg_prb=0.00478074 violation 0 (0.00s) deg_prb=0.00421677 violation 0 (0.00s) deg_prb=0.00505448 violation 0 (0.00s) deg_prb=0.00460946 violation 0 (0.00s) deg_prb=0.00474125 violation 0 (0.00s) deg_prb=0.00384518 violation 0 (0.00s) deg_prb=0.00540352 violation 0 (0.00s) deg_prb=0.00584883 violation 0 (0.00s) deg_prb=0.00504189 violation 0 (0.00s) deg_prb=0.00559368 violation 0 (0.00s) deg_prb=0.00448499 violation 0 (0.00s) deg_prb=0.00414193 violation 0 (0.00s) deg_prb=0.00516385 violation 0 (0.00s) deg_prb=0.00458126 violation 0 (0.00s) deg_prb=0.00483125 violation 0 (0.00s) deg_prb=0.00498037 violation 0 (0.00s) deg_prb=0.00555052 violation 0 (0.00s) deg_prb=0.00535143 violation 0 (0.00s) deg_prb=0.00513166 violation 0 (0.00s) deg_prb=0.00504649 violation 0 (0.00s) deg_prb=0.00544158 violation 0 (0.00s) deg_prb=0.00569148 violation 0 (0.00s) deg_prb=0.00536179 violation 0 (0.00s) deg_prb=0.00537512 violation 0 (0.00s) deg_prb=0.00484237 violation 0 (0.00s) deg_prb=0.00577985 violation 0 (0.00s) deg_prb=0.00516566 violation 0 (0.00s) deg_prb=0.00506803 violation 0 (0.00s) deg_prb=0.00485007 violation 0 (0.00s) deg_prb=0.00598017 violation 0 (0.00s) deg_prb=0.00561502 violation 0 (0.00s) deg_prb=0.00500321 violation 0 (0.00s) deg_prb=0.00524664 violation 0 (0.00s) deg_prb=0.00564716 violation 0 (0.00s) deg_prb=0.00419827 violation 0 (0.00s) deg_prb=0.0046576 violation 0 (0.00s) deg_prb=0.00509646 violation 0 (0.00s) deg_prb=0.0058335 violation 0 (0.00s) deg_prb=0.00442655 violation 0 (0.00s) deg_prb=0.00542726 violation 0 (0.00s) deg_prb=0.0045818 violation 0 (0.00s) deg_prb=0.005139 violation 0 (0.00s) deg_prb=0.00517411 violation 0 (0.00s) deg_prb=0.00479647 violation 0 (0.00s) deg_prb=0.00548388 violation 0 (0.00s) deg_prb=0.0050279 violation 0 (0.00s) deg_prb=0.00437759 violation 0 (0.00s) deg_prb=0.00447519 violation 0 (0.00s) Satisfaction degree : 1 Robustness : 1 Relative Robustness : 1 Variance-based Sensitivity : 0
    Warning: The compound X_ appears in the kinetics but is not a reactant [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z
    Warning: The compound X_ appears in the kinetics but is not a reactant Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [P]*MM(1,5) for X_=[P]=>X
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [R]*MM(1,5) for X=[R]=>X_
    MA(0.01) for X=>_
    MA(0.1) for _=>X
    MA(0.01) for Y=>_
    MA(0.01) for Z=>_
    prb_rateOfChange:k_1*([e2f1]/(K_m1+[e2f1]))*(J_11/(J_11+[prb])) for _=>prb. e2f1_rateOfChange:k_p+k_2*((a^2+[e2f1]^2)/(K_m2^2+[e2f1]^2))*(J_12/(J_12+[prb])) for _=>e2f1. MA(deg_prb) for prb=>_. MA(deg_e2f1) for e2f1=>_. [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z. Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y. [P]*MM(1,5) for X_=[P]=>X. [R]*MM(1,5) for X=[R]=>X_. MA(0.01) for X=>_. MA(0.1) for _=>X. MA(0.01) for Y=>_. MA(0.01) for Z=>_.
    v =< 1040.31 Time elapsed : 4 ms
    (MA(k1),MA(k2)) for E+S<=>E-S
    MA(k3) for E-S=>E+P
    [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z
    [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z
    Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y
    Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [P]*MM(1,5) for X_=[P]=>X
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [P]*MM(1,5) for X_=[P]=>X
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [R]*MM(1,5) for X=[R]=>X_
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [R]*MM(1,5) for X=[R]=>X_
    MA(0.01) for X=>_
    MA(0.01) for X=>_
    MA(0.1) for _=>X
    MA(0.1) for _=>X
    MA(0.01) for Y=>_
    MA(0.01) for Y=>_
    MA(0.01) for Z=>_
    MA(0.01) for Z=>_
    prb_rateOfChange:k_1*([e2f1]/(K_m1+[e2f1]))*(J_11/(J_11+[prb])) for _=>prb. e2f1_rateOfChange:k_p+k_2*((a^2+[e2f1]^2)/(K_m2^2+[e2f1]^2))*(J_12/(J_12+[prb])) for _=>e2f1. MA(deg_prb) for prb=>_. MA(deg_e2f1) for e2f1=>_. [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z. Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y. [P]*MM(1,5) for X_=[P]=>X. [R]*MM(1,5) for X=[R]=>X_. MA(0.01) for X=>_. MA(0.1) for _=>X. MA(0.01) for Y=>_. MA(0.01) for Z=>_. (MA(k1),MA(k2)) for E+S<=>E-S. MA(k3) for E-S=>E+P.
    prb_rateOfChange:k_1*([e2f1]/(K_m1+[e2f1]))*(J_11/(J_11+[prb])) for _=>prb. e2f1_rateOfChange:k_p+k_2*((a^2+[e2f1]^2)/(K_m2^2+[e2f1]^2))*(J_12/(J_12+[prb])) for _=>e2f1. MA(deg_prb) for prb=>_. MA(deg_e2f1) for e2f1=>_. [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z. Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y. [P]*MM(1,5) for X_=[P]=>X. [R]*MM(1,5) for X=[R]=>X_. MA(0.01) for X=>_. MA(0.1) for _=>X. MA(0.01) for Y=>_. MA(0.01) for Z=>_. (MA(k1),MA(k2)) for E+S<=>E-S. MA(k3) for E-S=>E+P.
    Vmax_z=0.152496 violation 2.5 (0.03s) Vmax_z=0.0301168 violation 2.5 (0.02s) Vmax_z=0.125603 violation 2.5 (0.03s) Vmax_z=0.224018 violation 2.5 (0.02s) Vmax_z=0.170595 violation 2.5 (0.02s) Vmax_z=0.225549 violation 2.5 (0.03s) Vmax_z=0.295909 violation 2.5 (0.02s) Vmax_z=0.265446 violation 2.5 (0.03s) Vmax_z=0.33724 violation 2.5 (0.03s) Vmax_z=0.273088 violation 2.5 (0.03s) Vmax_z=0.157602 violation 2.5 (0.03s) negative Vmax_z=1e-10 violation 2.5 (0.03s) Vmax_z=0.168322 violation 2.5 (0.02s) Vmax_z=0.190733 violation 2.5 (0.03s) Vmax_z=0.107423 violation 2.5 (0.02s) Vmax_z=0.257986 violation 2.5 (0.03s) Vmax_z=0.168222 violation 2.5 (0.02s) Vmax_z=0.390655 violation 2.5 (0.02s) Vmax_z=0.141005 violation 2.5 (0.03s) Vmax_z=0.120843 violation 2.5 (0.03s) Vmax_z=0.179552 violation 2.5 (0.02s) Vmax_z=0.351987 violation 2.5 (0.02s) Vmax_z=0.205532 violation 2.5 (0.03s) Vmax_z=0.160762 violation 2.5 (0.02s) Vmax_z=0.313307 violation 2.5 (0.02s) Vmax_z=0.361907 violation 2.5 (0.03s) Vmax_z=0.265682 violation 2.5 (0.02s) Vmax_z=0.218151 violation 2.5 (0.02s) Vmax_z=0.233774 violation 2.5 (0.02s) Vmax_z=0.0879597 violation 2.5 (0.02s) Vmax_z=0.349742 violation 2.5 (0.02s) Vmax_z=0.216361 violation 2.5 (0.02s) Vmax_z=0.366588 violation 2.5 (0.02s) Vmax_z=0.251497 violation 2.5 (0.03s) Vmax_z=0.208223 violation 2.5 (0.03s) Vmax_z=0.144178 violation 2.5 (0.02s) Vmax_z=0.22556 violation 2.5 (0.02s) Vmax_z=0.238478 violation 2.5 (0.02s) Vmax_z=0.4392 violation 2.5 (0.02s) Vmax_z=0.240394 violation 2.5 (0.02s) Vmax_z=0.121951 violation 2.5 (0.02s) Vmax_z=0.281284 violation 2.5 (0.03s) Vmax_z=0.159443 violation 2.5 (0.02s) Vmax_z=0.253545 violation 2.5 (0.02s) Vmax_z=0.344193 violation 2.5 (0.02s) Vmax_z=0.177235 violation 2.5 (0.02s) Vmax_z=0.239116 violation 2.5 (0.03s) Vmax_z=0.102029 violation 2.5 (0.02s) Vmax_z=0.109125 violation 2.5 (0.03s) Vmax_z=0.229943 violation 2.5 (0.02s) Vmax_z=0.171072 violation 2.5 (0.03s) Satisfaction degree : 0.285714 Robustness : 0.285714 Relative Robustness : 1 Variance-based Sensitivity : 7.51365e-22
    MA(R0/N*1/Tinf) for P~{s}+P~{i}=>P~{e}+P~{i}
    MA(1/Tlat) for P~{e}=>P~{i}
    MA(1/Tinf) for P~{i}=>P~{r}
    prb_rateOfChange:k_1*([e2f1]/(K_m1+[e2f1]))*(J_11/(J_11+[prb])) for _=>prb. e2f1_rateOfChange:k_p+k_2*((a^2+[e2f1]^2)/(K_m2^2+[e2f1]^2))*(J_12/(J_12+[prb])) for _=>e2f1. MA(deg_prb) for prb=>_. MA(deg_e2f1) for e2f1=>_. [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z. Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y. [P]*MM(1,5) for X_=[P]=>X. [R]*MM(1,5) for X=[R]=>X_. MA(0.01) for X=>_. MA(0.1) for _=>X. MA(0.01) for Y=>_. MA(0.01) for Z=>_. (MA(k1),MA(k2)) for E+S<=>E-S. MA(k3) for E-S=>E+P. MA(R0/N*1/Tinf) for P~{s}+P~{i}=>P~{e}+P~{i}. MA(1/Tlat) for P~{e}=>P~{i}. MA(1/Tinf) for P~{i}=>P~{r}.
    present(prb,1). present(e2f1,1). present(P,1). present(R,1). present(E,100). present(S,500). present(P~{i},1). present(P~{s},N). absent(X). absent(Y). absent(Z). absent(X_). absent(P~{r}). absent(P~{e}).
    Value max of P~{i} is 2769985.58 at time 76.3072136
    MA(R0/N*1/Tinf) for P~{s}+P~{i}=>P~{e}+P~{i}
    MA(1/Tlat) for P~{e}=>P~{i}
    MA(1/Tinf) for P~{i}=>P~{r}
    prb_rateOfChange:k_1*([e2f1]/(K_m1+[e2f1]))*(J_11/(J_11+[prb])) for _=>prb. e2f1_rateOfChange:k_p+k_2*((a^2+[e2f1]^2)/(K_m2^2+[e2f1]^2))*(J_12/(J_12+[prb])) for _=>e2f1. MA(deg_prb) for prb=>_. MA(deg_e2f1) for e2f1=>_. [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z. Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y. [P]*MM(1,5) for X_=[P]=>X. [R]*MM(1,5) for X=[R]=>X_. MA(0.01) for X=>_. MA(0.1) for _=>X. MA(0.01) for Y=>_. MA(0.01) for Z=>_. (MA(k1),MA(k2)) for E+S<=>E-S. MA(k3) for E-S=>E+P. MA(R0/N*1/Tinf) for P~{s}+P~{i}=>P~{e}+P~{i}. MA(1/Tlat) for P~{e}=>P~{i}. MA(1/Tinf) for P~{i}=>P~{r}.
    present(prb,1). present(e2f1,1). present(P,1). present(R,1). present(E,100). present(S,500). present(P~{i},1). present(P~{s},N). absent(X). absent(Y). absent(Z). absent(X_). absent(P~{r}). absent(P~{e}).
    Value max of P~{i} is 2769985.58 at time 76.3072136
    (MA(k1),MA(k2)) for E+S<=>E-S
    MA(k3) for E-S=>E+P
    Numerical simulation method: stiff Rosenbrock's implicit method for stiff systemsInitial step size: time horizon/100 Maximum step error: 0.0001 Maximum step size: time horizon/20
    violation 89.2579 (0.02s) Satisfaction degree 0.0110794 Time elapsed 1.54 s
    k1=1.39855 violation 1.21876e-05 (0.03s) k1=0.86681 violation 1.33496e-05 (0.03s) k1=0.7045 violation 1.53322e-05 (0.02s) k1=1.71737 violation 1.11453e-05 (0.02s) k1=0.152499 violation 3.84045e-05 (0.02s) k1=0.73183 violation 1.42147e-05 (0.02s) k1=0.817251 violation 1.30273e-05 (0.02s) k1=0.709161 violation 1.49678e-05 (0.02s) k1=1.05257 violation 1.22698e-05 (0.02s) k1=0.70367 violation 1.48501e-05 (0.02s) k1=1.44392 violation 1.29776e-05 (0.02s) k1=1.37863 violation 1.16387e-05 (0.02s) k1=1.63862 violation 1.14704e-05 (0.03s) k1=0.115998 violation 5.24594e-05 (0.02s) k1=1.12013 violation 1.27316e-05 (0.02s) k1=0.544857 violation 1.62576e-05 (0.02s) k1=1.3059 violation 1.21864e-05 (0.02s) k1=1.50215 violation 1.25696e-05 (0.02s) k1=0.674435 violation 1.38632e-05 (0.02s) k1=0.749095 violation 1.46501e-05 (0.02s) k1=1.59057 violation 1.27028e-05 (0.02s) k1=1.21648 violation 1.32977e-05 (0.02s) k1=0.971346 violation 1.26684e-05 (0.03s) negative k1=1e-10 violation 500 (0.02s) k1=0.51631 violation 1.73105e-05 (0.02s) k1=1.63972 violation 1.13957e-05 (0.03s) k1=1.47049 violation 1.14631e-05 (0.03s) k1=1.63249 violation 1.14413e-05 (0.02s) k1=0.785899 violation 1.45681e-05 (0.02s) k1=1.19757 violation 1.19776e-05 (0.03s) k1=1.63531 violation 1.15335e-05 (0.02s) k1=0.427391 violation 1.59097e-05 (0.02s) k1=0.731273 violation 1.41626e-05 (0.02s) k1=1.18891 violation 1.15558e-05 (0.03s) k1=0.648235 violation 1.40953e-05 (0.02s) k1=0.704803 violation 1.53645e-05 (0.02s) k1=0.10806 violation 6.67304e-05 (0.02s)
    negative k1=1e-10 violation 500 (0.01s) k1=1.13152 violation 1.1804e-05 (0.02s) k1=0.638039 violation 1.39712e-05 (0.02s) k1=1.65961 violation 1.15945e-05 (0.03s) k1=0.588737 violation 1.44929e-05 (0.02s) k1=1.74232 violation 1.13853e-05 (0.02s) k1=0.616353 violation 1.38554e-05 (0.03s) k1=0.760683 violation 1.4917e-05 (0.02s) k1=1.40208 violation 1.14567e-05 (0.03s) k1=0.806701 violation 1.39129e-05 (0.02s) k1=0.144686 violation 4.10945e-05 (0.02s) k1=1.37215 violation 1.16412e-05 (0.02s) k1=1.12947 violation 1.17154e-05 (0.02s) k1=1.10881 violation 1.40692e-05 (0.02s) Satisfaction degree : 0.999986 Robustness : 0.960064 Relative Robustness : 0.960078 Variance-based Sensitivity : 0.0390261
    (MA(k1),MA(k2)) for E+S<=>E-S
    MA(k3) for E-S=>E+P
    Numerical simulation method: stiff Rosenbrock's implicit method for stiff systemsInitial step size: time horizon/100 Maximum step error: 0.0001 Maximum step size: time horizon/20
    k1=1.00546 violation 1.20764e-05 (0.02s) k1=1.68108 violation 1.16941e-05 (0.02s) k1=1.10365 violation 1.21936e-05 (0.02s) k1=1.82501 violation 1.27621e-05 (0.02s) k1=0.0370355 violation 0.000754137 (0.01s) k1=0.908591 violation 1.33599e-05 (0.02s) k1=1.25469 violation 1.18355e-05 (0.02s) k1=1.98864 violation 1.11459e-05 (0.03s) k1=0.39799 violation 1.73957e-05 (0.02s) k1=1.14205 violation 1.20896e-05 (0.02s) k1=1.21647 violation 1.33008e-05 (0.02s) k1=0.731644 violation 1.41965e-05 (0.02s) k1=1.70696 violation 1.20049e-05 (0.02s) k1=1.21173 violation 1.33808e-05 (0.02s) negative k1=1e-10 violation 500 (0.01s) k1=0.978252 violation 1.42339e-05 (0.02s) k1=0.882956 violation 1.35041e-05 (0.02s) k1=0.499644 violation 1.55456e-05 (0.02s) k1=0.392264 violation 1.94845e-05 (0.02s) k1=0.0739488 violation 0.0001273 (0.02s) k1=0.719197 violation 1.34846e-05 (0.02s) k1=1.60987 violation 1.29677e-05 (0.02s) k1=1.07242 violation 1.35245e-05 (0.02s) k1=1.3325 violation 1.14085e-05 (0.02s) k1=1.42312 violation 1.15977e-05 (0.03s) k1=1.25695 violation 1.1881e-05 (0.03s) k1=1.0061 violation 1.21059e-05 (0.02s) parameter(deg_e2f1,0.1). parameter(k_1,1). parameter(K_m1,0.5). parameter(J_11,0.5). parameter(k_p,0.05). parameter(k_2,1.6). parameter(a,0.04). parameter(K_m2,4). parameter(J_12,5). parameter(deg_prb,0.005). parameter(K_xz,5). parameter(K_yz,6.5). parameter(K_xy,3). parameter(Vmax_xy,0.1). parameter(k2,1). parameter(k3,0.1). parameter(Vmax_z,0.2). parameter(N,10000000). parameter(R0,3.6). parameter(Tlat,2). parameter(Tinf,6.7). parameter(k1,1).
    violation 89.2579 (0.02s) Satisfaction degree 0.0110794 Time elapsed 1.53 s
    k1=0.93743 violation 1.26896e-05 (0.02s) k1=1.38454 violation 1.32028e-05 (0.02s) k1=1.09015 violation 1.22913e-05 (0.02s) k1=1.49532 violation 1.12125e-05 (0.02s) k1=0.00447642 violation 4.4264 (0.01s) k1=0.795231 violation 1.45295e-05 (0.02s) k1=0.60831 violation 1.44506e-05 (0.02s) k1=0.591854 violation 1.57045e-05 (0.02s) k1=1.04044 violation 1.18512e-05 (0.02s) k1=0.836616 violation 1.26994e-05 (0.02s) k1=1.39978 violation 1.27025e-05 (0.03s) k1=0.934118 violation 1.4029e-05 (0.02s) k1=1.11751 violation 1.23666e-05 (0.03s) k1=2.2544 violation 1.083e-05 (0.02s) k1=0.686445 violation 1.38933e-05 (0.02s) k1=0.539882 violation 1.47122e-05 (0.02s) k1=1.07819 violation 1.2011e-05 (0.03s) k1=0.955126 violation 1.26043e-05 (0.02s) k1=1.72852 violation 1.14112e-05 (0.02s) k1=1.22865 violation 1.31467e-05 (0.02s) k1=0.874461 violation 1.24101e-05 (0.02s) k1=0.74849 violation 1.46256e-05 (0.02s) k1=1.68219 violation 1.17123e-05 (0.02s) k1=0.459244 violation 1.40692e-05 (0.02s) Satisfaction degree : 0.999986 Robustness : 0.963696 Relative Robustness : 0.96371 Variance-based Sensitivity : 0.0325613
    Warning: The compound X_ appears in the kinetics but is not a reactant [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z
    Warning: The compound X_ appears in the kinetics but is not a reactant Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [P]*MM(1,5) for X_=[P]=>X
    Warning: Michaelis-Menten kinetics shortcut used for a reaction with more than one reactant. [R]*MM(1,5) for X=[R]=>X_
    MA(0.01) for X=>_
    MA(0.1) for _=>X
    MA(0.01) for Y=>_
    MA(0.01) for Z=>_
    [X_]^2/(K_xz^2+[X_]^2)*(Vmax_z/(1+([Y]/K_yz)^2)) for _=>Z. Vmax_xy*[X_]^2/(K_xy^2+[X_]^2) for _=>Y. [P]*MM(1,5) for X_=[P]=>X. [R]*MM(1,5) for X=[R]=>X_. MA(0.01) for X=>_. MA(0.1) for _=>X. MA(0.01) for Y=>_. MA(0.01) for Z=>_.
    Simulation time: 0.108s