Article-Journal

MetaLo: metabolic analysis of Logical models extracted from molecular interaction maps

Molecular interaction maps (MIMs) are static graphical representations depicting complex biochemical networks that can be formalized using one of the Systems Biology Graphical Notation languages. Regardless of their extensive coverage of various biological processes, they are limited in terms of dynamic insights. However, MIMs can serve as templates for developing dynamic computational models […]

Thu, Feb 1, 2024

Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches

Introduction The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms […]

Thu, Feb 1, 2024

Trap spaces of Boolean networks are conflict-free siphons of their Petri net encoding

Boolean network modeling of gene regulation but also of post-transcriptomic systems has proven over the years that it can bring powerful analyses and corresponding insight to the many cases where precise biological data is not sufficiently available to build a detailed quantitative model. Besides simulation, the analysis of such models is mostly based on attractor computation, since those correspond roughly to observable biological phenotypes. The recent use of trap spaces made a real breakthrough in that field allowing to consider medium-sized models that used to be out of reach […]

Fri, Sep 1, 2023

Hybrid computational modeling highlights reverse warburg effect in breast cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) are amongst the key players of the tumor microenvironment (TME) and are involved in cancer initiation, progression, and resistance to therapy. They exhibit aggressive phenotypes affecting extracellular matrix remodeling, angiogenesis, immune system modulation, tumor growth, and proliferation. CAFs phenotypic changes appear to be associated with metabolic alterations, notably a reverse Warburg effect that may drive fibroblasts transformation […]

Tue, Aug 1, 2023

A large-scale Boolean model of the rheumatoid arthritis fibroblast-like synoviocytes predicts drug synergies in the arthritic joint

Abstract Rheumatoid arthritis (RA) is a complex autoimmune disease with an unknown aetiology. However, rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) play a significant role in initiating and perpetuating destructive joint inflammation by expressing immuno-modulating cytokines, adhesion molecules, and matrix remodelling enzymes. In addition, RA-FLS are primary drivers of inflammation, displaying high proliferative rates and an apoptosis-resistant phenotype […]

Sat, Jul 1, 2023

Metabolic Reprogramming in Rheumatoid Arthritis Synovial Fibroblasts: a Hybrid Modeling Approach

Rheumatoid Arthritis (RA) is an autoimmune disease characterized by a highly invasive pannus formation consisting mainly of Synovial Fibroblasts (RASFs). This pannus leads to cartilage, bone, and soft tissue destruction in the affected joint. RASFs’ activation is associated with metabolic alterations resulting from dysregulation of extracellular signals’ transduction and gene regulation […]

Thu, Dec 1, 2022

Addressing barriers in comprehensiveness, accessibility, reusability, interoperability and reproducibility of computational models in systems biology

Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement […]

Wed, Jun 1, 2022

Setting the basis of best practices and standards for curation and annotation of logical models in biology—highlights of the [BC]2 2019 CoLoMoTo/SysMod Workshop

The fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks […]

Wed, Dec 1, 2021

COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources […]

Fri, Oct 1, 2021

Model learning to identify systemic regulators of the peripheral circadian clock

Motivation: Personalized medicine aims at providing patient-tailored therapeutics based on multi-type data towards improved treatment outcomes. Chronotherapy that consists in adapting drug administration to the patient's circadian rhythms may be improved by such approach. Recent clinical studies demonstrated large variability in patients' circadian coordination and optimal drug timing […]

Thu, Jul 1, 2021

SBML Level 3: an extensible format for the exchange and reuse of biological models

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose […]

Sat, Aug 1, 2020

Automated inference of Boolean models from molecular interaction maps using CaSQ

Molecular interaction maps have emerged as a meaningful way of representing biological mechanisms in a comprehensive and systematic manner. However, their static nature provides limited insights to the emerging behavior of the described biological system under different conditions. Computational modelling provides the means to study dynamic properties through in silico simulations and perturbations […]

Fri, May 1, 2020

Influence Networks compared with Reaction Networks: Semantics, Expressivity and Attractors

Biochemical reaction networks are one of the most widely used formalism in systems biology to describe the molecular mechanisms of high-level cell processes. However modellers also reason with influence diagrams to represent the positive and negative influences between molecular species and may find an influence network useful in the process of building a reaction network. In this paper, we introduce a formalism of influence networks with forces, and equip it with a hierarchy of Boolean, Petri net, stochastic and differential semantics, similarly to reaction networks with rates […]

Sat, Dec 1, 2018

Graphical Requirements for Multistationarity in Reaction Networks and their Verification in BioModels

Thomas's necessary conditions for the existence of multiple steady states in gene networks have been proved by Soulé with high generality for dynamical systems defined by differential equations. When applied to (protein) reaction networks however, those conditions do not provide information since they are trivially satisfied as soon as there is a bimolecular or a reversible reaction. Refined graphical requirements have been proposed to deal with such cases […]

Sat, Dec 1, 2018

Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis

Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells […]

Tue, Nov 1, 2016

On Enumerating Minimal Siphons in Petri nets using CLP and SAT solvers: Theoretical and Practical Complexity

Fri, Apr 1, 2016

Inferring reaction systems from ordinary differential equations

In Mathematical Biology, many dynamical models of biochemical reaction systems are presented with Ordinary Differential Equations (ODE). Once kinetic parameter values are fixed, this simple mathematical formalism completely defines the dynamical behavior of a system of biochemical reactions and provides powerful tools for deterministic simulations, parameter sensitivity analysis, bifurcation analysis, etc. However, without requiring any in-formation on the reaction kinetics and parameter values, various qualitative analyses can be performed using the structure of the reactions, provided the reactants, products and mod-ifiers of each reaction are precisely defined […]

Tue, Sep 1, 2015

Hybrid Simulations of Heterogeneous Biochemical Models in SBML

Wed, Apr 1, 2015

A constraint solving approach to model reduction by tropical equilibration

Model reduction is a central topic in systems biology and dynamical systems theory, for reducing the complexity of detailed models, finding important parameters, and developing multi-scale models for instance. While singular perturbation theory is a standard mathematical tool to analyze the different time scales of a dynamical system and decompose the system accordingly, tropical methods provide a simple algebraic framework to perform these analyses systematically in polynomial systems. The crux of these methods is in the computation of tropical equilibrations […]

Mon, Dec 1, 2014

On the subgraph Epimorphism Problem

In this paper we study the problem of deciding the existence of a subgraph epimorphism between two graphs. Our interest in this variant of graph matching problem stems from the study of model reductions in systems biology, where large systems of biochemical reactions can be naturally represented by bipartite digraphs of species and reactions. In this setting, model reduction can be formalized as the existence of a sequence of vertex deletion and merge operations that transforms a first reaction graph into a second graph […]

Wed, Jan 1, 2014