
Constraint Logic Programming

Sylvain Soliman
Sylvain.Soliman@inria.fr

Project-Team LIFEWARE

MPRI 2.35.1 Course – September–November 2017

1

mailto:Sylvain.Soliman@inria.fr

Part I: CLP - Introduction and Logical
Background

1 The Constraint Programming paradigm

2 Examples and Applications

3 First Order Logic

4 Models

5 Logical Theories

2

Part II: Constraint Logic Programs

6 Constraint Languages

7 CLP(X)

8 CLP(H)

9 CLP(R,FD,B)

3

Part III: CLP - Operational and Fixpoint
Semantics

10 Operational Semantics

11 Fixpoint Semantics

12 Program Analysis

4

Part IV: Logical Semantics

13 Logical Semantics of CLP(X)

14 Automated Deduction

15 CLP(λ)

16 Negation as Failure

5

Part V: Constraint Solving

17 Solving by Rewriting

18 Solving by Domain Reduction

6

Part VI: Practical CLP Programming

19 CLP implementation, the WAM

20 Optimizing CLP

21 Symmetries

22 Symmetry Breaking During Search

23 Detecting Symmetries

7

Part VII: More Constraint Programming

24 Typing CLP

25 CHR

8

Part VIII: Programming Project

26 check_dice

27 dice

28 Optimizing

29 Theory

9

Part IX

Concurrent Constraint
Programming

10

Part IX: Concurrent Constraint Programming

30 Introduction

31 Operational Semantics

32 Examples

11

The Paradigm of Constraint Programming
memory of values

programming variables
memory of constraints
mathematical variables

V1

Vi

Vj

Vi ← Vj + 1

write

read

Xi ∈ [3, 15]∑
aiXi ≥ b

cardinality(1,
[X ≥ Y+ 5,Y ≥ X+ 3])

Xi = Xj + 2

Xi ≥ 5?

ad
d

test

12

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by
Saraswat [Saraswat93mit] as a merge of Constraint and
Concurrent Logic Programming.

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) |

∀x⃗(c→ A)

| A ∥ A | A+ A | ∃xA | p(x⃗)

CC agent CC agent

Constraint Store

tellask te
llas
k

+

++

13

Concurrent Constraint Programs

Class of programming languages CC(X) introduced by
Saraswat [Saraswat93mit] as a merge of Constraint and
Concurrent Logic Programming.

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) | ∀x⃗(c→ A) | A ∥ A | A+ A | ∃xA | p(x⃗)

CC agent CC agent

Constraint Store

tellask te
llas
k

+

++

13

Translating CLP(X) into CC(X) Declarations

CLP(X) program:

A← c | B,C
A← d | D,E
B← e

equivalent CC(X) declaration:

A = tell(c) ∥ B ∥ C+ tell(d) ∥ D ∥ E
B = tell(e)

This is just a process calculus syntax for CLP programs…

14

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† =

c
(A ∥ B)† = A†,B†

(A+ B)† = p(x⃗) where x⃗ = fv(A) ∪ fv(B) and
p(x⃗)← A†

p(x⃗)← B†

(∃x A)† = q(y⃗) where y⃗ = fv(A) \ {x} and
q(y⃗)← A†

(p(x⃗))† = p(x⃗)

The ask operation c→ A has no CLP equivalent.

It is a new synchronization primitive between agents.

15

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A ∥ B)† =

A†,B†

(A+ B)† = p(x⃗) where x⃗ = fv(A) ∪ fv(B) and
p(x⃗)← A†

p(x⃗)← B†

(∃x A)† = q(y⃗) where y⃗ = fv(A) \ {x} and
q(y⃗)← A†

(p(x⃗))† = p(x⃗)

The ask operation c→ A has no CLP equivalent.

It is a new synchronization primitive between agents.

15

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A ∥ B)† = A†,B†

(A+ B)† =

p(x⃗) where x⃗ = fv(A) ∪ fv(B) and
p(x⃗)← A†

p(x⃗)← B†

(∃x A)† = q(y⃗) where y⃗ = fv(A) \ {x} and
q(y⃗)← A†

(p(x⃗))† = p(x⃗)

The ask operation c→ A has no CLP equivalent.

It is a new synchronization primitive between agents.

15

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A ∥ B)† = A†,B†

(A+ B)† = p(x⃗) where x⃗ = fv(A) ∪ fv(B) and
p(x⃗)← A†

p(x⃗)← B†

(∃x A)† =

q(y⃗) where y⃗ = fv(A) \ {x} and
q(y⃗)← A†

(p(x⃗))† = p(x⃗)

The ask operation c→ A has no CLP equivalent.

It is a new synchronization primitive between agents.

15

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A ∥ B)† = A†,B†

(A+ B)† = p(x⃗) where x⃗ = fv(A) ∪ fv(B) and
p(x⃗)← A†

p(x⃗)← B†

(∃x A)† = q(y⃗) where y⃗ = fv(A) \ {x} and
q(y⃗)← A†

(p(x⃗))† =

p(x⃗)

The ask operation c→ A has no CLP equivalent.

It is a new synchronization primitive between agents.

15

Translating CC(X) without ask into CLP(X)

(CC agent)† = CLP goal

(tell(c))† = c
(A ∥ B)† = A†,B†

(A+ B)† = p(x⃗) where x⃗ = fv(A) ∪ fv(B) and
p(x⃗)← A†

p(x⃗)← B†

(∃x A)† = q(y⃗) where y⃗ = fv(A) \ {x} and
q(y⃗)← A†

(p(x⃗))† = p(x⃗)

The ask operation c→ A has no CLP equivalent.

It is a new synchronization primitive between agents.

15

CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e., variables, are transmissible by
agents (like in π-calculus, unlike CCS, CSP, Occam,…)

Communication is additive (a constraint will never be
removed), monotonic accumulation of information in the
store (as in CLP, as in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will
see a constraint posted on that variable.

Not a parallel implementation model.

16

CC(X) Configurations

Configuration (x⃗; c; Γ): store c of constraints, multiset Γ of
agents, modulo ≡ the smallest congruence s.t.:

X -equivalence c⊣⊢Xd
c ≡ d

α-Conversion
z ̸∈ fv(A)

∃yA ≡ ∃zA[z/y]

Parallel (x⃗; c;A ∥ B,Γ) ≡ (x⃗; c;A,B,Γ)

Hiding
y ̸∈ fv(c,Γ)

(x⃗; c;∃yA,Γ) ≡ (x⃗,y; c;A,Γ)
y ̸∈ fv(c,Γ)

(x⃗,y; c; Γ) ≡ (x⃗; c; Γ)

17

CC(X) Transitions

Interleaving semantics

Procedure call
(p(y⃗) = A) ∈ D

(x⃗; c;p(y⃗),Γ) −→ (x⃗; c;A,Γ)

Tell (x⃗; c; tell(d),Γ) −→ (x⃗; c ∧ d; Γ)

Ask

c ⊢X d[⃗t/y⃗]
(x⃗; c;∀y⃗(d→ A),Γ) −→ (x⃗; c;A[⃗t/y⃗],Γ)

Blind choice (x⃗; c;A+ B,Γ) −→ (x⃗; c;A,Γ)
(local/internal) (x⃗; c;A+ B,Γ) −→ (x⃗; c;B,Γ)

18

CC(X) Transitions

Interleaving semantics

Procedure call
(p(y⃗) = A) ∈ D

(x⃗; c;p(y⃗),Γ) −→ (x⃗; c;A,Γ)

Tell (x⃗; c; tell(d),Γ) −→ (x⃗; c ∧ d; Γ)

Ask
c ⊢X d[⃗t/y⃗]

(x⃗; c; ∀y⃗(d→ A),Γ) −→ (x⃗; c;A[⃗t/y⃗],Γ)

Blind choice (x⃗; c;A+ B,Γ) −→ (x⃗; c;A,Γ)
(local/internal) (x⃗; c;A+ B,Γ) −→ (x⃗; c;B,Γ)

18

CC(X) extra rules

Guarded choice
c ⊢X cj

(x⃗; c; Σici → Ai,Γ) −→ (x⃗; c;Aj,Γ)
(global/external)

AskNot
c ⊢X ¬d

(x⃗; c;∀y⃗(d→ A),Γ) −→ (x⃗; c; Γ)

Sequentiality
(x⃗; c; Γ) −→ (x⃗;d; Γ′)

(x⃗; c; (Γ;∆),Φ) −→ (x⃗;d; (Γ′;∆),Φ)

(x⃗; c; (∅; Γ),∆) −→ (x⃗;d; Γ,∆)

19

Properties of CC Transitions (1)

Theorem 1 (Monotonicity)
If (x⃗; c; Γ) −→ (y⃗;d;∆) then (x⃗; c ∧ e; Γ,Σ) −→ (y⃗;d ∧ e;∆,Σ) for
every constraint e and agents Σ.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary 2
Strong fairness and weak fairness are equivalent.

20

Properties of CC Transitions (1)

Theorem 1 (Monotonicity)
If (x⃗; c; Γ) −→ (y⃗;d;∆) then (x⃗; c ∧ e; Γ,Σ) −→ (y⃗;d ∧ e;∆,Σ) for
every constraint e and agents Σ.

Proof.
tell and ask are monotonic (monotonic conditions in guards).

Corollary 2
Strong fairness and weak fairness are equivalent.

20

Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem 3 (Confluence)
For any deterministic configuration κ with deterministic
declarations,
if κ −→ κ1 and κ −→ κ2 then κ1 −→ κ′ and κ2 −→ κ′ for some κ′.

Corollary 4
Independence of the scheduling of the execution of parallel
agents.

21

Properties of CC Transitions (3)

Theorem 5 (Extensivity)
If (x⃗; c; Γ) −→ (y⃗;d;∆) then ∃y⃗d ⊢X ∃x⃗c.

Proof.

For any constraint e, c ∧ e ⊢X c.

Theorem 6 (Restartability)
If (x⃗; c; Γ) −→∗ (y⃗;d;∆) then (x⃗; ∃y⃗d; Γ) −→∗ (y⃗;d;∆).

Proof.
By extensivity and monotonicity.

22

Properties of CC Transitions (3)

Theorem 5 (Extensivity)
If (x⃗; c; Γ) −→ (y⃗;d;∆) then ∃y⃗d ⊢X ∃x⃗c.

Proof.
For any constraint e, c ∧ e ⊢X c.

Theorem 6 (Restartability)
If (x⃗; c; Γ) −→∗ (y⃗;d;∆) then (x⃗; ∃y⃗d; Γ) −→∗ (y⃗;d;∆).

Proof.
By extensivity and monotonicity.

22

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ)}

observing the set of limit stores?

O∞(D.A; c0) = {⊔?{∃x⃗ici}i≥0|(∅; c0;A) −→ (x⃗1; c1; Γ1) −→ . . . }

23

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ)}

observing the set of limit stores?

O∞(D.A; c0) = {⊔?{∃x⃗ici}i≥0|(∅; c0;A) −→ (x⃗1; c1; Γ1) −→ . . . }

23

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}
observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ)}

observing the set of limit stores?

O∞(D.A; c0) = {⊔?{∃x⃗ici}i≥0|(∅; c0;A) −→ (x⃗1; c1; Γ1) −→ . . . }

23

CC(X) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}
observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ)}

observing the set of limit stores?

O∞(D.A; c0) = {⊔?{∃x⃗ici}i≥0|(∅; c0;A) −→ (x⃗1; c1; Γ1) −→ . . . }

23

CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = []) ∥ tell(C = B)
+ tell(A = [X|L]) ∥ tell(C = [X|R]) ∥ append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
∥ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

24

CC(H) ’append’ Program(s)

Undirectional CLP style
append(A,B,C) = tell(A = []) ∥ tell(C = B)

+ tell(A = [X|L]) ∥ tell(C = [X|R]) ∥ append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
∥ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

24

CC(H) ’append’ Program(s)

Undirectional CLP style
append(A,B,C) = tell(A = []) ∥ tell(C = B)

+ tell(A = [X|L]) ∥ tell(C = [X|R]) ∥ append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
∥ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

24

CC(H) ’append’ Program(s)

Undirectional CLP style
append(A,B,C) = tell(A = []) ∥ tell(C = B)

+ tell(A = [X|L]) ∥ tell(C = [X|R]) ∥ append(L,B,R)

Directional CC success store style
append(A,B,C) = (A = []→ tell(C = B))

+ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
∥ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

24

CC(H) ’append’ Program(s)

Undirectional CLP style
append(A,B,C) = tell(A = []) ∥ tell(C = B)

+ tell(A = [X|L]) ∥ tell(C = [X|R]) ∥ append(L,B,R)

Directional CC success store style
append(A,B,C) = (A = []→ tell(C = B))

+ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
∥ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

24

CC(H) ’append’ Program(s)

Undirectional CLP style
append(A,B,C) = tell(A = []) ∥ tell(C = B)

+ tell(A = [X|L]) ∥ tell(C = [X|R]) ∥ append(L,B,R)

Directional CC success store style
append(A,B,C) = (A = []→ tell(C = B))

+ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

Directional CC terminal store style
append(A,B,C) = A = []→ tell(C = B)

∥ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

24

CC(H) ’merge’ Program

Merging streams
merge(A,B,C) = (A = []→ tell(C = B))

+ (B = []→ tell(C = A))
+ ∀X,L(A = [X|L]→ tell(C = [X|R]) ∥merge(L,B,R))
+ ∀X,L(B = [X|L]→ tell(C = [X|R]) ∥merge(A,L,R))

Good for the

Oss

observable(s?)

can we get Ots?

Many-to-one communication:
client(C1, . . .)
…
client(Cn, . . .)
server([C1, . . . ,Cn], . . .) =∑n

i=1 ∀X,L(Ci = [X|L]→ · · · ∥ server([C1, . . . , L, . . . ,Cn], . . .)

25

CC(H) ’merge’ Program

Merging streams
merge(A,B,C) = (A = []→ tell(C = B))

+ (B = []→ tell(C = A))
+ ∀X,L(A = [X|L]→ tell(C = [X|R]) ∥merge(L,B,R))
+ ∀X,L(B = [X|L]→ tell(C = [X|R]) ∥merge(A,L,R))

Good for the Oss observable

(s?) can we get Ots?

Many-to-one communication:
client(C1, . . .)
…
client(Cn, . . .)
server([C1, . . . ,Cn], . . .) =∑n

i=1 ∀X,L(Ci = [X|L]→ · · · ∥ server([C1, . . . , L, . . . ,Cn], . . .)

25

CC(H) ’merge’ Program

Merging streams
merge(A,B,C) = (A = []→ tell(C = B))

+ (B = []→ tell(C = A))
+ ∀X,L(A = [X|L]→ tell(C = [X|R]) ∥merge(L,B,R))
+ ∀X,L(B = [X|L]→ tell(C = [X|R]) ∥merge(A,L,R))

Good for the Oss observable

(s?)

can we get Ots?

Many-to-one communication:
client(C1, . . .)
…
client(Cn, . . .)
server([C1, . . . ,Cn], . . .) =∑n

i=1 ∀X,L(Ci = [X|L]→ · · · ∥ server([C1, . . . , L, . . . ,Cn], . . .)

25

CC(FD) Finite Domain Constraints with
indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if

FD |= cσ for every valuation σ of the variables in c by values
of their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y+ k) ∼= min(X) ≥max(Y) + k

asknot(X ≥ Y+ k) ∼= max(X) < min(Y) + k

ask(X ̸= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

26

CC(FD) Finite Domain Constraints with
indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values
of their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y+ k)

∼= min(X) ≥max(Y) + k

asknot(X ≥ Y+ k) ∼= max(X) < min(Y) + k

ask(X ̸= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

26

CC(FD) Finite Domain Constraints with
indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values
of their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y+ k) ∼= min(X) ≥max(Y) + k

asknot(X ≥ Y+ k)

∼= max(X) < min(Y) + k

ask(X ̸= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

26

CC(FD) Finite Domain Constraints with
indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values
of their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y+ k) ∼= min(X) ≥max(Y) + k

asknot(X ≥ Y+ k) ∼= max(X) < min(Y) + k

ask(X ̸= Y)

∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

26

CC(FD) Finite Domain Constraints with
indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values
of their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y+ k) ∼= min(X) ≥max(Y) + k

asknot(X ≥ Y+ k) ∼= max(X) < min(Y) + k

ask(X ̸= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:

∼= (dom(X) ∩ dom(Y) = ∅)

26

CC(FD) Finite Domain Constraints with
indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if FD |= cσ for every valuation σ of the variables in c by values
of their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y+ k) ∼= min(X) ≥max(Y) + k

asknot(X ≥ Y+ k) ∼= max(X) < min(Y) + k

ask(X ̸= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

26

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y+ k) =

X in min(Y) + k .. ∞ ∥ Y in 0 .. max(X)− k

Reified constraints
(B⇔ X = A) = B in 0..1 ∥

X = A→ B = 1 ∥ X ̸= A→ B = 0 ∥
B = 1→ X = A ∥ B = 0→ X ̸= A

Higher-order constraints
card(N,L) = L = []→ N = 0 ∥

L = [C|S]→
∃B,M (B⇔ C ∥ N = B+M ∥ card(M,S))

27

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y+ k) = X in min(Y) + k .. ∞ ∥ Y in 0 .. max(X)− k

Reified constraints
(B⇔ X = A) =

B in 0..1 ∥
X = A→ B = 1 ∥ X ̸= A→ B = 0 ∥
B = 1→ X = A ∥ B = 0→ X ̸= A

Higher-order constraints
card(N,L) = L = []→ N = 0 ∥

L = [C|S]→
∃B,M (B⇔ C ∥ N = B+M ∥ card(M,S))

27

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y+ k) = X in min(Y) + k .. ∞ ∥ Y in 0 .. max(X)− k

Reified constraints
(B⇔ X = A) = B in 0..1 ∥

X = A→ B = 1 ∥ X ̸= A→ B = 0 ∥
B = 1→ X = A ∥ B = 0→ X ̸= A

Higher-order constraints
card(N,L) = L = []→ N = 0 ∥

L = [C|S]→
∃B,M (B⇔ C ∥ N = B+M ∥ card(M,S))

27

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y+ k) = X in min(Y) + k .. ∞ ∥ Y in 0 .. max(X)− k

Reified constraints
(B⇔ X = A) = B in 0..1 ∥

X = A→ B = 1 ∥ X ̸= A→ B = 0 ∥
B = 1→ X = A ∥ B = 0→ X ̸= A

Higher-order constraints
card(N,L) =

L = []→ N = 0 ∥
L = [C|S]→
∃B,M (B⇔ C ∥ N = B+M ∥ card(M,S))

27

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y+ k) = X in min(Y) + k .. ∞ ∥ Y in 0 .. max(X)− k

Reified constraints
(B⇔ X = A) = B in 0..1 ∥

X = A→ B = 1 ∥ X ̸= A→ B = 0 ∥
B = 1→ X = A ∥ B = 0→ X ̸= A

Higher-order constraints
card(N,L) = L = []→ N = 0 ∥

L = [C|S]→
∃B,M (B⇔ C ∥ N = B+M ∥ card(M,S))

27

CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y+ k) = X in min(Y) + k .. ∞ ∥ Y in 0 .. max(X)− k

Reified constraints
(B⇔ X = A) = B in 0..1 ∥

X = A→ B = 1 ∥ X ̸= A→ B = 0 ∥
B = 1→ X = A ∥ B = 0→ X ̸= A

Higher-order constraints
card(N,L) = L = []→ N = 0 ∥

L = [C|S]→
∃B,M (B⇔ C ∥ N = B+M ∥ card(M,S))

27

Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for
which one of the alternatives is dis-entailed:

card(1, [x ≥ y+ dy, y ≥ x+ dx])

before creating choice points:

(x ≥ y+ dy) + (y ≥ x+ dx)

28

Constructive Disjunction in CC(FD) (1)

∨L c ⊢X e d ⊢X e
c ∨ d ⊢X e

Intuitionistic logic tells us we can infer the common
information to both branches of a disjunction without creating
choice points!

max(X,Y,Z) = (X > Y ∥ Z = X) + (X <= Y ∥ Z = Y)
or
max(X,Y,Z) = X > Y→ Z = X+ X <= Y→ Z = Y.
or
max(X,Y,Z) = X > Y→ Z = X ∥ X <= Y→ Z = Y.
better? (with indexicals)

max(X,Y,Z) = Z in min(X)..∞ ∥ Z in min(Y)..∞
∥ Z in dom(X) ∪ dom(Y) ∥ · · ·

29

Constructive Disjunction in CC(FD) (1)

∨L c ⊢X e d ⊢X e
c ∨ d ⊢X e

Intuitionistic logic tells us we can infer the common
information to both branches of a disjunction without creating
choice points!

max(X,Y,Z) = (X > Y ∥ Z = X) + (X <= Y ∥ Z = Y)
or
max(X,Y,Z) = X > Y→ Z = X+ X <= Y→ Z = Y.
or
max(X,Y,Z) = X > Y→ Z = X ∥ X <= Y→ Z = Y.
better? (with indexicals)
max(X,Y,Z) = Z in min(X)..∞ ∥ Z in min(Y)..∞

∥ Z in dom(X) ∪ dom(Y) ∥ · · ·

29

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints
disjunctive(T1,D1,T2,D2) =

(T1 >= T2 +D2) + (T2 >= T1 +D1)

Using constructive disjunction

disjunctive(T1,D1,T2,D2) =
T1 in (0..max(T2)−D1) ∪ (min(T2) +D2..∞) ∥
T2 in (0..max(T1)−D2) ∪ (min(T1) +D1..∞)

30

Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints
disjunctive(T1,D1,T2,D2) =

(T1 >= T2 +D2) + (T2 >= T1 +D1)

Using constructive disjunction
disjunctive(T1,D1,T2,D2) =

T1 in (0..max(T2)−D1) ∪ (min(T2) +D2..∞) ∥
T2 in (0..max(T1)−D2) ∪ (min(T1) +D1..∞)

30

Part X

CC - Denotational Semantics

31

Part X: CC - Denotational Semantics

33 Deterministic Case

34 Constraint Propagation

35 Non-deterministic Case

36 Sequentiality

32

Deterministic CC

Agents:
A ::= tell(c) | c→ A | A ∥ A | ∃xA | p(x⃗)

No choice operator
Deterministic ask.

Replace non-deterministic pattern matching

∀x⃗(c→ A)

by deterministic ask and tell:

(∃x⃗c)→ ∃x⃗(tell(c) ∥ A)

33

Deterministic CC

Agents:
A ::= tell(c) | c→ A | A ∥ A | ∃xA | p(x⃗)

No choice operator
Deterministic ask.

Replace non-deterministic pattern matching

∀x⃗(c→ A)

by deterministic ask and tell:

(∃x⃗c)→ ∃x⃗(tell(c) ∥ A)

33

Denotational semantics: input/output function

Input: initial store c0
Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information
ordering:
∀c,d ∈ C c ≤ d iff d ⊢X c iff ↑ d ⊂↑ c where ↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is
1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c,d c ≤ d⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)
i.e., JD.AK is a

closure operator

over (C,≤).

34

Denotational semantics: input/output function

Input: initial store c0
Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information
ordering:
∀c,d ∈ C c ≤ d iff d ⊢X c iff ↑ d ⊂↑ c where ↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is
1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c,d c ≤ d⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)
i.e., JD.AK is a closure operator over (C,≤).

34

Closure Operators

Proposition 7
A closure operator f is characterized by the set of its fixpoints
Fix(f)

Proof.

We show that f = λx.min(Fix(f)∩ ↑ x).
Let y = f(x). By idempotence and extensivity, y ∈ Fix(f)∩ ↑ x
By monotonicity y = f(x) ≤ f(y′) for any y′ ∈↑ x
Hence, if y′ ∈ Fix(f)∩ ↑ x then y ≤ y′

35

Closure Operators

Proposition 7
A closure operator f is characterized by the set of its fixpoints
Fix(f)

Proof.
We show that f = λx.min(Fix(f)∩ ↑ x).

Let y = f(x). By idempotence and extensivity, y ∈ Fix(f)∩ ↑ x
By monotonicity y = f(x) ≤ f(y′) for any y′ ∈↑ x
Hence, if y′ ∈ Fix(f)∩ ↑ x then y ≤ y′

35

Closure Operators

Proposition 7
A closure operator f is characterized by the set of its fixpoints
Fix(f)

Proof.
We show that f = λx.min(Fix(f)∩ ↑ x).
Let y = f(x). By idempotence and extensivity, y ∈ Fix(f)∩ ↑ x
By monotonicity y = f(x) ≤ f(y′) for any y′ ∈↑ x
Hence, if y′ ∈ Fix(f)∩ ↑ x then y ≤ y′

35

Semantic Equations
Let JK : D × A→ P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K

=↑ c (≃ λs.s ∧ c)

JD.c→ AK

= (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)

JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 8 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{
{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

36

Semantic Equations
Let JK : D × A→ P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c→ AK

= (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)

JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 8 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{
{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

36

Semantic Equations
Let JK : D × A→ P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c→ AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 8 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{
{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

36

Semantic Equations
Let JK : D × A→ P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c→ AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK = JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 8 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{
{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

36

Semantic Equations
Let JK : D × A→ P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c→ AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK = JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))JD.∃xAK = {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 8 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{
{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

36

Semantic Equations
Let JK : D × A→ P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K =↑ c (≃ λs.s ∧ c)JD.c→ AK = (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)JD.A ∥ BK = JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))JD.∃xAK = {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)JD.p(x⃗)K = JD.A[x⃗/y⃗]K if p(y⃗) = A ∈ D (≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 8 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{
{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise

36

Constraint Propagation and Closure Operators

An environment E : V → 2D associates a domain of possible
values to each variable.

Consider the lattice of environments (E ,⊏), for the information
ordering defined by E ⊏ E′ if and only if ∀x ∈ V, E(x) ⊇ E′(x).

The semantics of a constraint propagator c can be defined as
a closure operator over E, noted c, i.e., a mapping E → E
satisfying
1 (extensivity) E ⊏ c(E),
2 (monotonicity) if E ⊏ E′ then c(E) ⊏ c(E′)

3 (idempotence) c(c(E)) = c(E).

37

Example in CC(FD)

Let b = (x > y) and c = (y > x).

Let E(x) = [1, 10], E(y) = [1, 10] be the initial environment

we have

bE(x) = [2, 10]

cE(x) = [1, 9]

(b ⊔ c)E(x) = [2, 9]

The closure operator b, c associated to the conjunction of
constraints b ∧ c gives the intended semantics:

b, cE(x) = Y(λs.b(c(s)))E(x) = ∅

38

Chaotic Iteration of Monotone Operators

Let L(⊏,⊥,⊤,⊔,⊓) be a complete lattice, and F : Ln → Ln a
monotone operator over Ln with n > 0.

The chaotic iteration of F from D ∈ Ln for a fair transfinite
choice sequence < Jδ : δ ∈ Ord > is the sequence < Xδ >:

X0 = D,
Xi

δ+1 = Fi(Xδ) if i ∈ Jδ, Xi
δ+1 = Xi

δ otherwise,
Xi

δ =
⊔

α<δXi
α for any limit ordinal δ.

Theorem 9 ([CC77popl])
Let D ∈ Ln be a pre fixpoint of F (i.e., D ⊏ F(D)). Any chaotic
iteration of F starting from D is increasing and has for limit
the least fixpoint of F above D.

39

Constraint Propagation as Chaotic Iteration

Corollary 10 (Correctness of constraint propagation)
Let c = a1 ∧ · · · ∧ an, and E be an environment. Then c(E) is the
limit of any fair iteration of closure operators a1, . . . ,an from E.

Let F : Ln+1 → Ln+1 be defined by its projections Fi’s:
E1 = a1(E) = F1(E1, . . . ,En,E)
E2 = a2(E) = F2(E1, . . . ,En,E)
. . .
En = an(E) = Fn(E1, . . . ,En,E)
E = E1 ∩ · · · ∩ En = Fn+1(E1, . . . ,En,E)

The functions Fi’s are obviously monotonic, any fair iteration
of a1, . . . ,an is thus a chaotic iteration of F1, . . . ,Fn+1 therefore
its limit is equal to the least fixpoint greater than E, i.e., c(E).

40

Denotational Semantics, Non-deterministic CC
Problem: the set of terminal stores of a CC process with one
step guarded choice (i.e., global choice) is not compositional:

A = ask(x = a)→ tell(y = a)
+ ask(true)→ tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA…

41

Denotational Semantics, Non-deterministic CC
Problem: the set of terminal stores of a CC process with one
step guarded choice (i.e., global choice) is not compositional:

A = ask(x = a)→ tell(y = a)
+ ask(true)→ tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA…

41

Denotational Semantics, Non-deterministic CC
Problem: the set of terminal stores of a CC process with one
step guarded choice (i.e., global choice) is not compositional:

A = ask(x = a)→ tell(y = a)
+ ask(true)→ tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA…

41

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice
can be characterized easily by adding the semantic equation:JD.A+ BK = JD.AK ∪ JD.BK
Theorem 11 ([BGP96sas])JD.AK = ∪

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:Jtell(true)K =

C

Jtell(true) + tell(c)K =

C

Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A→ P(P(C)) to distinguish between
branches.

42

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice
can be characterized easily by adding the semantic equation:JD.A+ BK = JD.AK ∪ JD.BK
Theorem 11 ([BGP96sas])JD.AK = ∪

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:Jtell(true)K = CJtell(true) + tell(c)K =

C

Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A→ P(P(C)) to distinguish between
branches.

42

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice
can be characterized easily by adding the semantic equation:JD.A+ BK = JD.AK ∪ JD.BK
Theorem 11 ([BGP96sas])JD.AK = ∪

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:Jtell(true)K = CJtell(true) + tell(c)K = C
Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A→ P(P(C)) to distinguish between
branches.

42

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice
can be characterized easily by adding the semantic equation:JD.A+ BK = JD.AK ∪ JD.BK
Theorem 11 ([BGP96sas])JD.AK = ∪

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:Jtell(true)K = CJtell(true) + tell(c)K = C
Ots(tell(true); true) = {true}
Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A→ P(P(C)) to distinguish between
branches.

42

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice
can be characterized easily by adding the semantic equation:JD.A+ BK = JD.AK ∪ JD.BK
Theorem 11 ([BGP96sas])JD.AK = ∪

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:Jtell(true)K = CJtell(true) + tell(c)K = C
Ots(tell(true); true) = {true}
Ots(tell(true) + tell(c); true) = {true, c}

Idea:

define JK : D × A→ P(P(C)) to distinguish between
branches.

42

Non-deterministic CC(X) with Local Choice (1)

The set of terminal stores of a CC process with blind choice
can be characterized easily by adding the semantic equation:JD.A+ BK = JD.AK ∪ JD.BK
Theorem 11 ([BGP96sas])JD.AK = ∪

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:Jtell(true)K = CJtell(true) + tell(c)K = C
Ots(tell(true); true) = {true}
Ots(tell(true) + tell(c); true) = {true, c}

Idea: define JK : D × A→ P(P(C)) to distinguish between
branches.

42

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK =

{↑ c}JD.c→ AK = {C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

43

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c→ AK =

{C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

43

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c→ AK = {C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK =

{X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

43

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c→ AK = {C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK =

JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

43

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c→ AK = {C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK =

{{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

43

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c→ AK = {C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K =

JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

43

Non-deterministic CC(X) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK = {↑ c}JD.c→ AK = {C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.

43

’merge’ Example Revisited

Merging streams
merge(A,B,C) =

(A = []→ tell(C = B)) ∥
(B = []→ tell(C = A)) ∥

(∀X,L(A = [X|L]→ tell(C = [X|R]) ∥merge(L,B,R)) +
∀X,L(B = [X|L]→ tell(C = [X|R]) ∥merge(A,L,R)))

Do we have the expected terminal stores?

No!

for merge(X, [1|Y],Z) we don’t necessarily get 1 in Z, the
merging is not greedy…

44

’merge’ Example Revisited

Merging streams
merge(A,B,C) =

(A = []→ tell(C = B)) ∥
(B = []→ tell(C = A)) ∥

(∀X,L(A = [X|L]→ tell(C = [X|R]) ∥merge(L,B,R)) +
∀X,L(B = [X|L]→ tell(C = [X|R]) ∥merge(A,L,R)))

Do we have the expected terminal stores?
No!

for merge(X, [1|Y],Z) we don’t necessarily get 1 in Z, the
merging is not greedy…

44

Sequentiality

Let us define a new operator, •, as follows:

(X; c;A) −→ (Y;d;B)
(X; c;A • C,Γ) −→ (Y;d;B • C,Γ)

(X; c; ∅ • A) −→ (X; c;A)

We can characterize completely the observables of any CCseq
program, D.A, by those of a new CC (without •) program,
D•.A•, in a new constraint system, C•.

45

Idea
Let ok be a new relation symbol of arity one. C• is the
constraint system C to which ok is added, without any
non-logical axiom. The program D•.A• is defined inductively
as follows:

(p(y⃗) = A)• = p•(x, y⃗) = A•
x

A• = ∃xA•
x

tell(c)•x = tell(c ∧ ok(x))
p(y⃗)•x = p•(x, y⃗)

(A ∥ B)•x = ∃y, z(A•
y ∥ B•

z ∥ (ok(y) ∧ ok(z))→ ok(x))
(A+ B)•x = A•

x + B•
x

(∀y⃗(c→ A))•x = ∀z⃗(c[⃗z/y⃗]→ A[⃗z/y⃗]•x) with x ̸∈ z⃗
(∃yA)•x = ∃zA[z/y]•x with z ̸= x
(A • B)•x =

∃y(A•
y ∥ ok(y)→ B•

x)

46

Idea
Let ok be a new relation symbol of arity one. C• is the
constraint system C to which ok is added, without any
non-logical axiom. The program D•.A• is defined inductively
as follows:

(p(y⃗) = A)• = p•(x, y⃗) = A•
x

A• = ∃xA•
x

tell(c)•x = tell(c ∧ ok(x))
p(y⃗)•x = p•(x, y⃗)

(A ∥ B)•x = ∃y, z(A•
y ∥ B•

z ∥ (ok(y) ∧ ok(z))→ ok(x))
(A+ B)•x = A•

x + B•
x

(∀y⃗(c→ A))•x = ∀z⃗(c[⃗z/y⃗]→ A[⃗z/y⃗]•x) with x ̸∈ z⃗
(∃yA)•x = ∃zA[z/y]•x with z ̸= x
(A • B)•x = ∃y(A•

y ∥ ok(y)→ B•
x)

46

	CLP - Introduction and Logical Background
	The Constraint Programming paradigm
	Examples and Applications
	First Order Logic
	Models
	Logical Theories
	Constraint Languages
	CLP(X)
	CLP(H)
	CLP(R,FD,B)
	Operational Semantics
	Fixpoint Semantics
	Program Analysis
	Logical Semantics of CLP(X)
	Automated Deduction
	CLP()
	Negation as Failure
	Solving by Rewriting
	Solving by Domain Reduction
	CLP implementation, the WAM
	Optimizing CLP
	Symmetries
	Symmetry Breaking During Search
	Detecting Symmetries

	More Constraint Programming
	Typing CLP
	CHR

	Programming Project
	check_dice
	dice
	Optimizing
	Theory

	Concurrent Constraint Programming
	Introduction
	Operational Semantics
	Examples
	Deterministic Case
	Constraint Propagation
	Non-deterministic Case
	Sequentiality

