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The Paradigm of Constraint Programming
memory of values

programming variables
memory of constraints
mathematical variables

V1

Vi

Vj

Vi ← Vj + 1

write

read

Xi ∈ [3, 15]∑
aiXi ≥ b

cardinality(1,
[X ≥ Y+ 5,Y ≥ X+ 3])

Xi = Xj + 2

Xi ≥ 5?

ad
d

test
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Concurrent Constraint Programs

Class of programming languages CC(X ) introduced by
Saraswat [Saraswat93mit] as a merge of Constraint and
Concurrent Logic Programming.

Processes P ::= D.A
Declarations D ::= p(x⃗) = A,D | ϵ
Agents A ::= tell(c) |

∀x⃗(c→ A)

| A ∥ A | A+ A | ∃xA | p(x⃗)

CC agent CC agent

Constraint Store

tellask te
llas
k

+

++
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Translating CLP(X ) into CC(X ) Declarations

CLP(X ) program:

A← c | B,C
A← d | D,E
B← e

equivalent CC(X ) declaration:

A = tell(c) ∥ B ∥ C+ tell(d) ∥ D ∥ E
B = tell(e)

This is just a process calculus syntax for CLP programs…
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Translating CC(X ) without ask into CLP(X )

(CC agent)† = CLP goal

(tell(c))† =

c
(A ∥ B)† = A†,B†

(A+ B)† = p(x⃗) where x⃗ = fv(A) ∪ fv(B) and
p(x⃗)← A†

p(x⃗)← B†

(∃x A)† = q(y⃗) where y⃗ = fv(A) \ {x} and
q(y⃗)← A†

(p(x⃗))† = p(x⃗)

The ask operation c→ A has no CLP equivalent.

It is a new synchronization primitive between agents.
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CC Computations

Concurrency = communication (shared variables)
+ synchronization (ask)

Communication channels, i.e., variables, are transmissible by
agents (like in π-calculus, unlike CCS, CSP, Occam,…)

Communication is additive (a constraint will never be
removed), monotonic accumulation of information in the
store (as in CLP, as in Scott’s information systems)

Synchronization makes computation both data-driven and
goal-directed.

No private communication, all agents sharing a variable will
see a constraint posted on that variable.

Not a parallel implementation model.
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CC(X ) Configurations

Configuration (x⃗; c; Γ): store c of constraints, multiset Γ of
agents, modulo ≡ the smallest congruence s.t.:

X -equivalence c⊣⊢Xd
c ≡ d

α-Conversion
z ̸∈ fv(A)

∃yA ≡ ∃zA[z/y]

Parallel (x⃗; c;A ∥ B,Γ) ≡ (x⃗; c;A,B,Γ)

Hiding
y ̸∈ fv(c,Γ)

(x⃗; c;∃yA,Γ) ≡ (x⃗,y; c;A,Γ)
y ̸∈ fv(c,Γ)

(x⃗,y; c; Γ) ≡ (x⃗; c; Γ)
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CC(X ) Transitions

Interleaving semantics

Procedure call
(p(y⃗) = A) ∈ D

(x⃗; c;p(y⃗),Γ) −→ (x⃗; c;A,Γ)

Tell (x⃗; c; tell(d),Γ) −→ (x⃗; c ∧ d; Γ)

Ask

c ⊢X d[⃗t/y⃗]
(x⃗; c;∀y⃗(d→ A),Γ) −→ (x⃗; c;A[⃗t/y⃗],Γ)

Blind choice (x⃗; c;A+ B,Γ) −→ (x⃗; c;A,Γ)
(local/internal) (x⃗; c;A+ B,Γ) −→ (x⃗; c;B,Γ)
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CC(X ) extra rules

Guarded choice
c ⊢X cj

(x⃗; c; Σici → Ai,Γ) −→ (x⃗; c;Aj,Γ)
(global/external)

AskNot
c ⊢X ¬d

(x⃗; c;∀y⃗(d→ A),Γ) −→ (x⃗; c; Γ)

Sequentiality
(x⃗; c; Γ) −→ (x⃗;d; Γ′)

(x⃗; c; (Γ;∆),Φ) −→ (x⃗;d; (Γ′;∆),Φ)

(x⃗; c; (∅; Γ),∆) −→ (x⃗;d; Γ,∆)

19



Properties of CC Transitions (1)

Theorem 1 (Monotonicity)
If (x⃗; c; Γ) −→ (y⃗;d;∆) then (x⃗; c ∧ e; Γ,Σ) −→ (y⃗;d ∧ e;∆,Σ) for
every constraint e and agents Σ.

Proof.

tell and ask are monotonic (monotonic conditions in guards).

Corollary 2
Strong fairness and weak fairness are equivalent.

20
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Properties of CC Transitions (2)

A configuration without + is called deterministic.

Theorem 3 (Confluence)
For any deterministic configuration κ with deterministic
declarations,
if κ −→ κ1 and κ −→ κ2 then κ1 −→ κ′ and κ2 −→ κ′ for some κ′.

Corollary 4
Independence of the scheduling of the execution of parallel
agents.
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Properties of CC Transitions (3)

Theorem 5 (Extensivity)
If (x⃗; c; Γ) −→ (y⃗;d;∆) then ∃y⃗d ⊢X ∃x⃗c.

Proof.

For any constraint e, c ∧ e ⊢X c.

Theorem 6 (Restartability)
If (x⃗; c; Γ) −→∗ (y⃗;d;∆) then (x⃗; ∃y⃗d; Γ) −→∗ (y⃗;d;∆).

Proof.
By extensivity and monotonicity.
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CC(X ) Operational Semanticssss

observing the set of success stores,

Oss(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; ϵ)}

observing the set of terminal stores (successes and
suspensions),

Ots(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ) Y−→}

observing the set of accessible stores,

Oas(D.A; c) = {∃x⃗d ∈ X |(∅; c;A) −→∗ (x⃗;d; Γ)}

observing the set of limit stores?

O∞(D.A; c0) = {⊔?{∃x⃗ici}i≥0|(∅; c0;A) −→ (x⃗1; c1; Γ1) −→ . . . }
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CC(H) ’append’ Program(s)

Undirectional CLP style

append(A,B,C) = tell(A = []) ∥ tell(C = B)
+ tell(A = [X|L]) ∥ tell(C = [X|R]) ∥ append(L,B,R)

Directional CC success store style

append(A,B,C) = (A = []→ tell(C = B))
+ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))

Directional CC terminal store style

append(A,B,C) = A = []→ tell(C = B)
∥ ∀X,L (A = [X|L]→ tell(C = [X|R]) ∥ append(L,B,R))
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CC(H) ’merge’ Program

Merging streams
merge(A,B,C) = (A = []→ tell(C = B))

+ (B = []→ tell(C = A))
+ ∀X,L(A = [X|L]→ tell(C = [X|R]) ∥merge(L,B,R))
+ ∀X,L(B = [X|L]→ tell(C = [X|R]) ∥merge(A,L,R))

Good for the

Oss

observable(s?)

can we get Ots?

Many-to-one communication:
client(C1, . . . )
…
client(Cn, . . . )
server([C1, . . . ,Cn], . . . ) =∑n

i=1 ∀X,L(Ci = [X|L]→ · · · ∥ server([C1, . . . , L, . . . ,Cn], . . . )
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CC(FD) Finite Domain Constraints with
indexicals

Approximating ask condition with the Elimination condition

EL: c ∧ Γ −→ Γ
if

FD |= cσ for every valuation σ of the variables in c by values
of their domain.

Suppose access to min and max indexicals:
ask(X ≥ Y+ k) ∼= min(X) ≥max(Y) + k

asknot(X ≥ Y+ k) ∼= max(X) < min(Y) + k

ask(X ̸= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)

26
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asknot(X ≥ Y+ k) ∼= max(X) < min(Y) + k

ask(X ̸= Y) ∼= max(X) < min(Y) ∨min(X) > max(Y)
a better approximation with dom:
∼= (dom(X) ∩ dom(Y) = ∅)
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CC(FD) Constraints as “in..”

Basic constraints
(X ≥ Y+ k) =

X in min(Y) + k .. ∞ ∥ Y in 0 .. max(X)− k

Reified constraints
(B⇔ X = A) = B in 0..1 ∥

X = A→ B = 1 ∥ X ̸= A→ B = 0 ∥
B = 1→ X = A ∥ B = 0→ X ̸= A

Higher-order constraints
card(N,L) = L = []→ N = 0 ∥

L = [C|S]→
∃B,M (B⇔ C ∥ N = B+M ∥ card(M,S))
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Andora Principle

“Always execute deterministic computation first”.

Disjunctive scheduling:

deterministic propagation of the disjunctive constraints for
which one of the alternatives is dis-entailed:

card(1, [x ≥ y+ dy, y ≥ x+ dx])

before creating choice points:

(x ≥ y+ dy) + (y ≥ x+ dx)

28



Constructive Disjunction in CC(FD) (1)

∨L c ⊢X e d ⊢X e
c ∨ d ⊢X e

Intuitionistic logic tells us we can infer the common
information to both branches of a disjunction without creating
choice points!

max(X,Y,Z) = (X > Y ∥ Z = X) + (X <= Y ∥ Z = Y)
or
max(X,Y,Z) = X > Y→ Z = X+ X <= Y→ Z = Y.
or
max(X,Y,Z) = X > Y→ Z = X ∥ X <= Y→ Z = Y.
better? (with indexicals)

max(X,Y,Z) = Z in min(X)..∞ ∥ Z in min(Y)..∞
∥ Z in dom(X) ∪ dom(Y) ∥ · · ·
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Constructive Disjunction in CC(FD) (2)

Disjunctive precedence constraints
disjunctive(T1,D1,T2,D2) =

(T1 >= T2 +D2) + (T2 >= T1 +D1)

Using constructive disjunction

disjunctive(T1,D1,T2,D2) =
T1 in (0..max(T2)−D1) ∪ (min(T2) +D2..∞) ∥
T2 in (0..max(T1)−D2) ∪ (min(T1) +D1..∞)
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Part X

CC - Denotational Semantics
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Part X: CC - Denotational Semantics

33 Deterministic Case

34 Constraint Propagation

35 Non-deterministic Case

36 Sequentiality
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Deterministic CC

Agents:
A ::= tell(c) | c→ A | A ∥ A | ∃xA | p(x⃗)

No choice operator
Deterministic ask.

Replace non-deterministic pattern matching

∀x⃗(c→ A)

by deterministic ask and tell:

(∃x⃗c)→ ∃x⃗(tell(c) ∥ A)
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Denotational semantics: input/output function

Input: initial store c0
Output: terminal store c or false for infinite computations

Order the lattice of constraints (C,≤) by the information
ordering:
∀c,d ∈ C c ≤ d iff d ⊢X c iff ↑ d ⊂↑ c where ↑ c = {d ∈ C | c ≤ d}.

JD.AK : C → C is
1 Extensive: ∀c c ≤ JD.AKc
2 Monotone: ∀c,d c ≤ d⇒ JD.AKc ≤ JD.AKd
3 Idempotent: ∀c JD.AKc = JD.AK(JD.AKc)
i.e., JD.AK is a

closure operator

over (C,≤).
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Closure Operators

Proposition 7
A closure operator f is characterized by the set of its fixpoints
Fix(f)

Proof.

We show that f = λx.min(Fix(f)∩ ↑ x).
Let y = f(x). By idempotence and extensivity, y ∈ Fix(f)∩ ↑ x
By monotonicity y = f(x) ≤ f(y′) for any y′ ∈↑ x
Hence, if y′ ∈ Fix(f)∩ ↑ x then y ≤ y′
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Semantic Equations
Let JK : D × A→ P(C) be a closure operator presented by the
set of its fixpoints, and defined as the least fixpoint set of:

JD.tell(c)K

=↑ c (≃ λs.s ∧ c)

JD.c→ AK

= (C\ ↑ c) ∪ (↑ c ∩ JD.AK)
(≃ λs. if s ⊢C c then JD.AKs else s)

JD.A ∥ BK

= JD.AK ∩ JD.BK (≃ Y(λs.JD.AKJD.BKs))

JD.∃xAK

= {d | c ∈ JD.AK, ∃xc = ∃xd} (≃ λs.∃xJD.AK∃xs)

JD.p(x⃗)K

= JD.A[x⃗/y⃗]K

if p(y⃗) = A ∈ D

(≃ λs.JD.A[⃗x/⃗y]Ks)

Theorem 8 ([SRP91popl])
For any deterministic process D.A

Ots(D.A; c) =
{
{min(JD.AK∩ ↑ c)} if JD.AK ̸= ∅
∅ otherwise
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Constraint Propagation and Closure Operators

An environment E : V → 2D associates a domain of possible
values to each variable.

Consider the lattice of environments (E ,⊏), for the information
ordering defined by E ⊏ E′ if and only if ∀x ∈ V, E(x) ⊇ E′(x).

The semantics of a constraint propagator c can be defined as
a closure operator over E, noted c, i.e., a mapping E → E
satisfying
1 (extensivity) E ⊏ c(E),
2 (monotonicity) if E ⊏ E′ then c(E) ⊏ c(E′)

3 (idempotence) c(c(E)) = c(E).
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Example in CC(FD)

Let b = (x > y) and c = (y > x).

Let E(x) = [1, 10], E(y) = [1, 10] be the initial environment

we have

bE(x) = [2, 10]

cE(x) = [1, 9]

(b ⊔ c)E(x) = [2, 9]

The closure operator b, c associated to the conjunction of
constraints b ∧ c gives the intended semantics:

b, cE(x) = Y(λs.b(c(s)))E(x) = ∅
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Chaotic Iteration of Monotone Operators

Let L(⊏,⊥,⊤,⊔,⊓) be a complete lattice, and F : Ln → Ln a
monotone operator over Ln with n > 0.

The chaotic iteration of F from D ∈ Ln for a fair transfinite
choice sequence < Jδ : δ ∈ Ord > is the sequence < Xδ >:

X0 = D,
Xi

δ+1 = Fi(Xδ) if i ∈ Jδ, Xi
δ+1 = Xi

δ otherwise,
Xi

δ =
⊔

α<δXi
α for any limit ordinal δ.

Theorem 9 ([CC77popl])
Let D ∈ Ln be a pre fixpoint of F (i.e., D ⊏ F(D)). Any chaotic
iteration of F starting from D is increasing and has for limit
the least fixpoint of F above D.
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Constraint Propagation as Chaotic Iteration

Corollary 10 (Correctness of constraint propagation)
Let c = a1 ∧ · · · ∧ an, and E be an environment. Then c(E) is the
limit of any fair iteration of closure operators a1, . . . ,an from E.

Let F : Ln+1 → Ln+1 be defined by its projections Fi’s:
E1 = a1(E) = F1(E1, . . . ,En,E)
E2 = a2(E) = F2(E1, . . . ,En,E)
. . .
En = an(E) = Fn(E1, . . . ,En,E)
E = E1 ∩ · · · ∩ En = Fn+1(E1, . . . ,En,E)

The functions Fi’s are obviously monotonic, any fair iteration
of a1, . . . ,an is thus a chaotic iteration of F1, . . . ,Fn+1 therefore
its limit is equal to the least fixpoint greater than E, i.e., c(E).
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Denotational Semantics, Non-deterministic CC
Problem: the set of terminal stores of a CC process with one
step guarded choice (i.e., global choice) is not compositional:

A = ask(x = a)→ tell(y = a)
+ ask(true)→ tell(false)

B = tell(x = a ∧ y = a)

A and B have the same set of terminal stores

↑ {x = a ∧ y = a}

(with global choice C\ ↑ (x = a) is not a terminal store for A)

but that is not the case for ∃xB and ∃xA

y = a is a terminal store for ∃xB and not for ∃xA…
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Non-deterministic CC(X ) with Local Choice (1)

The set of terminal stores of a CC process with blind choice
can be characterized easily by adding the semantic equation:JD.A+ BK = JD.AK ∪ JD.BK
Theorem 11 ([BGP96sas])JD.AK = ∪

c∈C Ots(D.A; c)

but the input-output relation cannot be recovered from JD.AK:Jtell(true)K =

C

Jtell(true) + tell(c)K =

C

Ots(tell(true); true) =

{true}

Ots(tell(true) + tell(c); true) =

{true, c}

Idea:

define JK : D × A→ P(P(C)) to distinguish between
branches.
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Non-deterministic CC(X ) with Local Choice (2)

Let JK : D × A→ P(P(C)) be the least fixpoint (for ⊂) of

JD.cK =

{↑ c}JD.c→ AK = {C\ ↑ c} ∪ {↑ c ∩ X|X ∈ JD.AK}JD.A ∥ BK = {X ∩ Y | X ∈ JD.AK, Y ∈ JD.BK}JD.A+ BK = JD.AK ∪ JD.BKJD.∃xAK = {{d | ∃xc = ∃xd, c ∈ X}|X ∈ JD.AK}JD.p(x⃗)K = JD.A[x⃗/y⃗]K
Theorem 12 ([FGMP97tcs])
For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.
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For any process D.A,
Ots(D.A; c) = {d| there exists X ∈ JD.AK s.t. d = min(↑ c ∩ X)}.
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’merge’ Example Revisited

Merging streams
merge(A,B,C) =

(A = []→ tell(C = B)) ∥
(B = []→ tell(C = A)) ∥

(∀X,L(A = [X|L]→ tell(C = [X|R]) ∥merge(L,B,R)) +
∀X,L(B = [X|L]→ tell(C = [X|R]) ∥merge(A,L,R)))

Do we have the expected terminal stores?

No!

for merge(X, [1|Y],Z) we don’t necessarily get 1 in Z, the
merging is not greedy…
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Sequentiality

Let us define a new operator, •, as follows:

(X; c;A) −→ (Y;d;B)
(X; c;A • C,Γ) −→ (Y;d;B • C,Γ)

(X; c; ∅ • A) −→ (X; c;A)

We can characterize completely the observables of any CCseq
program, D.A, by those of a new CC (without •) program,
D•.A•, in a new constraint system, C•.
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Idea
Let ok be a new relation symbol of arity one. C• is the
constraint system C to which ok is added, without any
non-logical axiom. The program D•.A• is defined inductively
as follows:

(p(y⃗) = A)• = p•(x, y⃗) = A•
x

A• = ∃xA•
x

tell(c)•x = tell(c ∧ ok(x))
p(y⃗)•x = p•(x, y⃗)

(A ∥ B)•x = ∃y, z(A•
y ∥ B•

z ∥ (ok(y) ∧ ok(z))→ ok(x))
(A+ B)•x = A•

x + B•
x

(∀y⃗(c→ A))•x = ∀z⃗(c[⃗z/y⃗]→ A[⃗z/y⃗]•x) with x ̸∈ z⃗
(∃yA)•x = ∃zA[z/y]•x with z ̸= x
(A • B)•x =

∃y(A•
y ∥ ok(y)→ B•

x)
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