
Docker setup

You can start
docker pull \
registry.gitlab.inria.fr/soliman/inf555/td6
now

1

Global Constraints

Sylvain Soliman

October 24th, 2018
Thanks to J.-C. Régin, P. van Hentenryck and C. Bessiere for inspiration

and to C. Berge for genius

2

What’s a global constraint?

Constraints that can involve any number 𝑛 of variables
(i.e., not only binary)

Complex relations between variables, useful in
applications (e.g.

alldifferent

)

With better/more powerful propagation than binary
constraints (solved open problems about sport
scheduling)

Which require ad-hoc AC algorithms (otherwise |𝐷|𝑛)

4

What’s a global constraint?

Constraints that can involve any number 𝑛 of variables
(i.e., not only binary)

Complex relations between variables, useful in
applications (e.g. alldifferent)

With better/more powerful propagation than binary
constraints (solved open problems about sport
scheduling)

Which require ad-hoc AC algorithms (otherwise |𝐷|𝑛)

4

Arc-consistency (Domain-consistency)

Obviously

𝑥଒ ≠ 𝑥ଓ ∧ 𝑥ଓ ≠ 𝑥ଔ ∧ 𝑥ଔ ≠ 𝑥଒
is arc-consistent on the domains {0, 1}

whereas

alldifferent(𝑥଒, 𝑥ଓ, 𝑥ଔ)
is not

5

Demo

Knapsack?

The knapsack problem

Wikipedia:
The knapsack problem has been studied for
more than a century, with early works dating
as far back as 1897. The name knapsack prob-
lem dates back to the early works of math-
ematician Tobias Dantzig (1884–1956), and
refers to the commonplace problem of pack-
ing themost valuable or useful itemswithout
overloading the luggage.

8

A knapsack global constraint

Original optimization problem: Given 𝑛 items of
weights 𝑤𝑖 and value 𝑣𝑖 fit as much value as
possible in a knapsack of capacity 𝑆.

Derived decision problem: Given 𝑛 items of
weights 𝑤𝑖 can we chose some of them (𝑥𝑖) such
that they fit in a knapsack with bounded capacity.

𝑙 ≤
𝑛
೎
𝑖=଒
𝑤𝑖𝑥𝑖 ≤ 𝑈

Global constraint on the variables

𝑥𝑖 ∈ {0, 1}

9

A knapsack global constraint

Original optimization problem: Given 𝑛 items of
weights 𝑤𝑖 and value 𝑣𝑖 fit as much value as
possible in a knapsack of capacity 𝑆.

Derived decision problem: Given 𝑛 items of
weights 𝑤𝑖 can we chose some of them (𝑥𝑖) such
that they fit in a knapsack with bounded capacity.

𝑙 ≤
𝑛
೎
𝑖=଒
𝑤𝑖𝑥𝑖 ≤ 𝑈

Global constraint on the variables 𝑥𝑖 ∈ {0, 1}

9

How can we filter?

Brute force enumeration is not great: decision is
NP-complete

Take inspiration from the optimization problem

Pseudo-polynomial dynamic algorithm in𝑂(𝑛𝑈):
build a graph (forward phase) and find a shortest path
in it

We keep a (simplified) forward phase, but add a
backward phase to remove paths incompatible with
the [𝑙, 𝑈] constraint.
Then prune impossible values from the domain.

10

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Example: 10 ≤ 2𝑥଒ + 3𝑥ଓ + 4𝑥ଔ + 5𝑥କ ≤ 12
଑

଑ ଓ

଑ ଓ ଔ ଖ

଑ ଓ ଔ କ ଖ ଗ ଘ ଚ

଑ ଓ ଔ କ ଖ ଗ ଘ ଙ ଚ ଒଑ ଒଒ ଒ଓ

𝑥଒

𝑥ଓ

𝑥ଔ

𝑥କ

11

Satisfiability⇒ filtering

In the previous example we obtain 𝑥କ = 1 in all
feasible solutions

this can be propagated and maintained incrementally:

squash one level of the graph, and if necessary shiM
right the levels above

We deduce an AC algorithm from one that computes
efficiently (and if possible incrementally), not one, but
all feasible solutions

12

Alldifferent

Global Constraint Catalog:
Denotes the fact that we have one or several
cliques of disequalities.

Example:

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

13

MaximumMatching
Wikipedia:

Given a graph 𝐺 = (𝑉, 𝐸), amatching𝑀 in 𝐺
is a set of pairwise non-adjacent edges
[…]
Amaximummatching is amatching that con-
tains the largest possible number of edges

Now associate a vertex to each variable, one to each
value and an edge between 𝑥 and 𝑣 if 𝑣 ∈ 𝐷(𝑥)
If the size of the matching is equal to the number of
variables, it represents a solution to the
alldifferent constraint

14

Graph constraint for Alldifferent

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

15

Graph constraint for Alldifferent

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

15

General GC filtering strategy

Find an efficient algorithm for checking satisfiability

make it efficient for all solutions

obtain arc-consistency/domain-consistency

16

General GC filtering strategy

Find an efficient algorithm for checking satisfiability

make it efficient for all solutions

obtain arc-consistency/domain-consistency

16

General GC filtering strategy

Find an efficient algorithm for checking satisfiability

make it efficient for all solutions

obtain arc-consistency/domain-consistency

16

General GC filtering strategy

Find an efficient algorithm for checking satisfiability

make it efficient for all solutions

obtain arc-consistency/domain-consistency

16

How to find a maximummatching?

Iteratively improve a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ

17

How to find a maximummatching?

Iteratively improve a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ

17

How to find a maximummatching?

Iteratively improve a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ

17

Improving a matching

1 find a free vertex 𝑥

2 if ∃(𝑥, 𝑣) ∈ 𝐺 s. t. 𝑣 is not matched, add it to𝑀

3 otherwise
1 take (𝑥, 𝑣) such that (𝑦, 𝑣) ∈ 𝑀
2 restart at 1 but using 𝑦 instead of 𝑥

18

Improving a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥କ

4

19

Improving a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥କ

4

19

Improving a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥କ

4

19

Improving a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥କ

4

19

Improving a matching

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ 𝑥କ

4

19

Does it always work?

No! It can loop…

It works if we can find an odd-length alternating path
(one edge in𝑀 one not in𝑀), starting and ending in a
free vertex

Enforce alternation by orienting 𝐺 as follows:
(𝑥, 𝑣) ∈ 𝑀, orient it as 𝑣 → 𝑥
(𝑥, 𝑣) ∉ 𝑀, orient it as 𝑥 → 𝑣

20

Does it always work?

No! It can

loop…

It works if we can find an odd-length alternating path
(one edge in𝑀 one not in𝑀), starting and ending in a
free vertex

Enforce alternation by orienting 𝐺 as follows:
(𝑥, 𝑣) ∈ 𝑀, orient it as 𝑣 → 𝑥
(𝑥, 𝑣) ∉ 𝑀, orient it as 𝑥 → 𝑣

20

Does it always work?

No! It can loop…

It works if we can find an odd-length alternating path
(one edge in𝑀 one not in𝑀), starting and ending in a
free vertex

Enforce alternation by orienting 𝐺 as follows:
(𝑥, 𝑣) ∈ 𝑀, orient it as 𝑣 → 𝑥
(𝑥, 𝑣) ∉ 𝑀, orient it as 𝑥 → 𝑣

20

Does it always work?

No! It can loop…

It works if we can find an odd-length alternating path
(one edge in𝑀 one not in𝑀), starting and ending in a
free vertex

Enforce alternation by orienting 𝐺 as follows:
(𝑥, 𝑣) ∈ 𝑀, orient it as 𝑣 → 𝑥
(𝑥, 𝑣) ∉ 𝑀, orient it as 𝑥 → 𝑣

20

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?

DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)

Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate

No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Alternating path
𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 7

𝑥ଓ

4

How do we find such a path?
DFS (or any other similar algorithm),𝑂(|𝑉| + |𝐸|)
Update arrows and iterate
No path starting from free variable 𝑥𝑖means that 𝑥𝑖
not in the maximummatching

21

Summary

To check for satisfiability of the alldifferent
constraint

build a graph 𝐺 with 𝑉 = {𝑥𝑖} ∪ {𝑣𝑖} and
𝐸 = {(𝑥, 𝑣) ∣ 𝑣 ∈ 𝐷(𝑥)}

look for amaximummatching by iterative
improvement using DFS for alternating paths in a
directed version of 𝐺

if |𝑀| = |𝑋| we have satisfiability

and now?

22

Summary

To check for satisfiability of the alldifferent
constraint

build a graph 𝐺 with 𝑉 = {𝑥𝑖} ∪ {𝑣𝑖} and
𝐸 = {(𝑥, 𝑣) ∣ 𝑣 ∈ 𝐷(𝑥)}

look for amaximummatching by iterative
improvement using DFS for alternating paths in a
directed version of 𝐺

if |𝑀| = |𝑋| we have satisfiability

and now?

22

Summary

To check for satisfiability of the alldifferent
constraint

build a graph 𝐺 with 𝑉 = {𝑥𝑖} ∪ {𝑣𝑖} and
𝐸 = {(𝑥, 𝑣) ∣ 𝑣 ∈ 𝐷(𝑥)}

look for amaximummatching by iterative
improvement using DFS for alternating paths in a
directed version of 𝐺

if |𝑀| = |𝑋| we have satisfiability

and now?

22

Summary

To check for satisfiability of the alldifferent
constraint

build a graph 𝐺 with 𝑉 = {𝑥𝑖} ∪ {𝑣𝑖} and
𝐸 = {(𝑥, 𝑣) ∣ 𝑣 ∈ 𝐷(𝑥)}

look for amaximummatching by iterative
improvement using DFS for alternating paths in a
directed version of 𝐺

if |𝑀| = |𝑋| we have satisfiability

and now?

22

Claude
Berge

1926–2002

Claude
Berge

1926–2002

Claude Berge

One of the co-founders of French literary group Oulipo

Great-grandson of French President Félix Faure

Two conjectures in the 60s on perfect graphs proven
much later

Notions of acyclicity for hypergraphs (e.g. constraint
hypergraphs!)

Berge’s lemma about maximummatchings

24

Berge’s lemma

An edge is considered free if it belongs to a maximum
matching but does not belong to all maximum
matchings.

An edge 𝑒 is free if and only if, in an arbitrary
maximummatching𝑀, the edge 𝑒 belongs to an even
alternating path starting at an unmatched vertex or
to an alternating cycle.

25

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching (i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges not in𝑀, nor in 𝜋 nor in an SCC

26

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching (i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges not in𝑀, nor in 𝜋 nor in an SCC

26

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching (i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges not in𝑀, nor in 𝜋 nor in an SCC

26

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching

(i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges not in𝑀, nor in 𝜋 nor in an SCC

26

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching (i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges not in𝑀, nor in 𝜋 nor in an SCC

26

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching (i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges not in𝑀, nor in 𝜋 nor in an SCC

26

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching (i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges

not in𝑀, nor in 𝜋 nor in an SCC

26

How do we use that?

Find a maximummatching𝑀

Start from a free value

look for a path 𝜋 in𝐺with the opposite orientation as
before

any arc in 𝜋 belongs to somemaximummatching (i.e.,
solution)

SCCs are alternating cycles, arcs also belong to some
solution

filter edges not in𝑀, nor in 𝜋 nor in an SCC

26

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

Filtering
𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {2, 4} 𝐷(𝑥ଖ) = {3, 4, 5, 6} 𝐷(𝑥ଗ) = {6, 7}

𝑥଒ 𝑥ଓ 𝑥ଔ 𝑥କ 𝑥ଖ 𝑥ଗ

1 2 3 4 5 6 77

𝐷(𝑥଒) = {1, 2} 𝐷(𝑥ଓ) = {2, 3} 𝐷(𝑥ଔ) = {1, 3}
𝐷(𝑥କ) = {4} 𝐷(𝑥ଖ) = {5, 6} 𝐷(𝑥ଗ) = {6, 7}

27

423 global constraints

Global Constraint Catalog
(http://sofdem.github.io/gccat/)

Created by Nicolas Beldiceanu (EMN) in 2006

aims at an exhaustive characterization of all global
constraints, with their filtering algorithm(s)

as comparison, only about 100 global constraints in
globals.mzn

28

http://sofdem.github.io/gccat/

Common global constraints

alldifferent, N-queens, Sudoku, any mutual
exclusion, …

minimum/maximum, imposes that the value of one
variable is the min/max of those of other variables.
Bidirectional!

global_cardinality, specifies the number of
occurrences of each value in a list of variables
Can be used for magic-series, and derived in atleast,
atmost, etc.
Flow algorithm for consistency

29

Common global constraints

lex_chain, imposes that vectors are
lexicographically ordered

Most common usage will be given next week

Can be encoded with reified constraints

but has a dedicated filtering algorithm based on
computing tight lower/upper bounds

30

Common global constraints

cumulative, limits the capacity of a machine
handling several tasks (𝑠𝑖, 𝑑𝑖) at any point in time

Filtering based on computing compulsory parts, but if
all durations (and heights) are fixed⇒ balancing
knapsack constraint (i.e., dynamic programming)

31

Semantic decomposition

Same solutions, but simpler (binary, sometimes
ternary) constraints
Typical example alldifferent

One can allow extra variables and project solutions
e.g., exactly([𝑥଒, … , 𝑥𝑛], 𝑘, 𝑣) can be decomposed
using 𝑛 + 1 extra variables 𝑏଑, … , 𝑏𝑛 ∈ {0, … , 𝑛}, such
that:

𝑏଑ = 0
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)
𝑏𝑛 = 𝑘

32

Semantic decomposition

Same solutions, but simpler (binary, sometimes
ternary) constraints
Typical example alldifferent

One can allow extra variables and project solutions
e.g., exactly([𝑥଒, … , 𝑥𝑛], 𝑘, 𝑣) can be decomposed
using 𝑛 + 1 extra variables 𝑏଑, … , 𝑏𝑛 ∈ {0, … , 𝑛}, such
that:

𝑏଑ = 0
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)
𝑏𝑛 = 𝑘

32

AC-decomposition

Semantic decomposition is actually always feasible,
and doesn’t help with filtering…

We want the same solutions but also the same level of
propagation

Not the case for

alldifferent
but true for exactly

Why?⇒ we need to call Claude Berge to the rescue
again!

33

AC-decomposition

Semantic decomposition is actually always feasible,
and doesn’t help with filtering…

We want the same solutions but also the same level of
propagation

Not the case for alldifferent
but true for

exactly

Why?⇒ we need to call Claude Berge to the rescue
again!

33

AC-decomposition

Semantic decomposition is actually always feasible,
and doesn’t help with filtering…

We want the same solutions but also the same level of
propagation

Not the case for alldifferent
but true for exactly

Why?

⇒ we need to call Claude Berge to the rescue
again!

33

AC-decomposition

Semantic decomposition is actually always feasible,
and doesn’t help with filtering…

We want the same solutions but also the same level of
propagation

Not the case for alldifferent
but true for exactly

Why?⇒ we need to call Claude Berge to the rescue
again!

33

Hypergraphs and constraints
An hypergraph𝐻 = (𝑉, 𝐸) is a generalization of a
graph where the edges 𝐸 are arbitrary subsets of the
vertices 𝑉
The incidence graph of𝐻 is the bipartite graph with
vertices 𝑉 ⊎ 𝐸 and edges: {(𝑣, 𝑒) ∣ 𝑣 ∈ 𝑒 in𝐻}

A B

C D

an n-ary constraint can be seen as an hyperedge in the
hypergraph of constraints

34

Hypergraphs and constraints
An hypergraph𝐻 = (𝑉, 𝐸) is a generalization of a
graph where the edges 𝐸 are arbitrary subsets of the
vertices 𝑉
The incidence graph of𝐻 is the bipartite graph with
vertices 𝑉 ⊎ 𝐸 and edges: {(𝑣, 𝑒) ∣ 𝑣 ∈ 𝑒 in𝐻}

A B

C D

an n-ary constraint can be seen as an hyperedge in the
hypergraph of constraints

34

Berge acyclicity

An hypergraph is Berge-acyclic iff its incidence graph
is acyclic

Very strict: no hyperedge should intersect any other
hyperedge with cardinal > 1

Theorem: If the decomposition of a constraint is
Berge-acyclic, AC on the decomposition is equivalent
to AC on the original constraint

Sketch of proof: the choice of values for the
satisfiability of the decomposed constraints is
compatible

35

Berge acyclicity

An hypergraph is Berge-acyclic iff its incidence graph
is acyclic

Very strict: no hyperedge should intersect any other
hyperedge with cardinal > 1

Theorem: If the decomposition of a constraint is
Berge-acyclic, AC on the decomposition is equivalent
to AC on the original constraint

Sketch of proof: the choice of values for the
satisfiability of the decomposed constraints is
compatible

35

Even better…

Actually, if the decomposition is Berge-acyclic it is
enough to propagate twice each of the decomposed
constraints

The constraint hypergraph is a tree/forest (acyclic):
propagate from leaves and contract, until you reach a
single constraint, then propagate in the opposite
order

36

Even better…

Actually, if the decomposition is Berge-acyclic it is
enough to propagate twice each of the decomposed
constraints

The constraint hypergraph is a tree/forest (acyclic):
propagate from leaves and contract, until you reach a
single constraint, then propagate in the opposite
order

36

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints? ⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣) ∧೎

𝑏𝑖
= 𝑘

Still Berge-acyclic (star shape) but sum!

37

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints? ⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣) ∧೎

𝑏𝑖
= 𝑘

Still Berge-acyclic (star shape) but sum!

37

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints?

⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣) ∧೎
𝑏𝑖
= 𝑘

Still Berge-acyclic (star shape) but sum!

37

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints? ⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣)

∧೎
𝑏𝑖
= 𝑘

Still Berge-acyclic (star shape) but sum!

37

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints? ⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣) ∧೎

𝑏𝑖
= 𝑘

Still Berge-acyclic (star shape) but sum!

37

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints? ⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣) ∧೎

𝑏𝑖
= 𝑘

Still Berge-acyclic

(star shape) but sum!

37

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints? ⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣) ∧೎

𝑏𝑖
= 𝑘

Still Berge-acyclic (star shape)

but sum!

37

Example: exactly(𝑥, 𝑣, 𝑘)
(𝑥𝑖 = 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒ + 1) ∨ (𝑥𝑖 ≠ 𝑣 ∧ 𝑏𝑖 = 𝑏𝑖−଒)

𝑥ଜ 𝑥ଝ 𝑥ଞ ⋯

𝑏ଛ 𝑏ଜ 𝑏ଝ 𝑏ଞ ⋯

Propagate from one end or the other

What if we had decomposed exactly using reified
constraints? ⋀(𝑏𝑖 ⇔ 𝑥𝑖 = 𝑣) ∧೎

𝑏𝑖
= 𝑘

Still Berge-acyclic (star shape) but sum!

37

“With great power comes great
responsibility”

(French National Convention, May 8th 1793 « une
grande responsabilité est la suite inséparable d’un
grand pouvoir »)

Global constraints are 𝑛-ary constraints, with
dedicated algorithms for efficient propagation

they can sometimes be decomposed, but the cost
might not be negligible (loss of filtering, additional
variables, …)

When they are available, they are very powerful, so,
use them!

38

“With great power comes great
responsibility”

(French National Convention, May 8th 1793 « une
grande responsabilité est la suite inséparable d’un
grand pouvoir »)

Global constraints are 𝑛-ary constraints, with
dedicated algorithms for efficient propagation

they can sometimes be decomposed, but the cost
might not be negligible (loss of filtering, additional
variables, …)

When they are available, they are very powerful, so,
use them!

38

Docker setup

You can start
docker pull \
registry.gitlab.inria.fr/soliman/inf555/td6
now

39

	Introduction
	Examples
	Catalog
	Decomposition

