Graphical Conditions for Rate Independence in Chemical Reaction Networks
Chemical Reaction Networks (CRNs) provide a useful abstraction of molecular interaction networks in which molecular structures as well as mass conservation principles are abstracted away to focus on the main dynamical properties of the network structure. In their interpretation by ordinary differential equations, we say that a CRN with distinguished input and output species computes a positive real function $f : R+ → R+$, if for any initial concentration x of the input species, the concentration of the output molecular species stabilizes at concentration f (x). The Turing-completeness of that notion of chemical analog computation has been established by proving that any computable real function can be computed by a CRN over a finite set of molecular species […]
Tue, Sep 1, 2020