Algebraic Biochemistry: a Framework for On-line Analog Computation in Cells

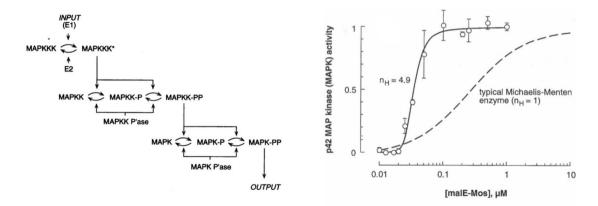
Mathieu Hemery & François Fages

EPI Lifeware, Centre Inria Saclay Île de France

September, CMSB 2022

Mitogen-Activated Protein Kinase (MAPK)

An "on-line" analog digital converter: $f(x) \simeq \frac{x^{4.9}}{1+x^{4.9}}!$



Huang, C.-Y. et Ferrell J. Ultrasensitivity in the MAPK cascade. PNAS, 1996, 93,19.

Chemical Reactions Networks 101

A Chemical Reaction Network (CRN) is:

- a finite set of species X_i
- a set of reactions:
 - a multiset of reactants: R
 - a multiset of products: P
 - a kinetic rate function: f(R)

and denoted:

 $R \xrightarrow{f(R)} P.$

Chemical Reactions Networks 101

In the *differential semantics*, a CRN defines an Ordinary Differential Equations (ODE), $A \xrightarrow{f(A)} 2 \cdot B$:

$$\frac{dA}{dt} = -f(A),$$
$$\frac{dB}{dt} = 2 \cdot f(A).$$

With Mass Action Law, f is a monomial: $f(R) = k \prod_{X \in R} X$, and we have Polynomial ODE (PODE).

Chemical Reactions Networks are Turing Complete $f: I \subset \mathbb{R}_+ \to \mathbb{R}_+$ is CRN-computable if $\lim out = \cos x^2$ there exist a CRN over species \overline{y} , $t \rightarrow \infty$ with ODE semantics \overline{p} , \equiv and a polynomial $q \in \mathbb{R}^n_+[\mathbb{R}_+]$, such that for all $x \in I$: • $\overline{y}(0) = \overline{q}(x)$ • $\overline{y}'(t) = \overline{p}(\overline{y}(t))$ • $\forall t > 1$, $|y_1(t) - f(x)| \le y_2(t)$,

•
$$y_2(t) \ge 0$$
 and $\lim_{t \to \infty} y_2(t) = 0$.

Fages F., Le Guludec G., et al. Strong turing completeness of continuous CRN..., CMSB 2017.

Time (s)

Computing "on-line" with perturbations 2 A toy model: the "1-level MAPK" 1.5 nol/I $L + I \rightarrow L + A$ $\varnothing \leftrightarrow I$ (2) $A \rightarrow \emptyset$ 0.5 15

What is the class of functions that can be computed On-line by a CRN?

- Definition
- Proof & Theorem
- Compilation pipeline

Def – F_S : functions stabilized by a CRN

A CRN over *m* inputs *X*, 1 output *y* and *n* auxiliary *Z*, stabilizes $f : I \subset \mathbb{R}^m_+ \mapsto \mathbb{R}_+$, over the domain $D \subset \mathbb{R}^{m+1+n}_+$ if:

•
$$\forall X^0 \in I, \{(X, y, Z) \in D | X = X^0\}$$
 is of plain dimension $n + 1$,

In the differential semantic with pinned input species X and initial conditions X⁰, y⁰, Z⁰ ∈ D:

$$\lim_{t \to \infty} y(t) = f(X^0)$$

It can be extended to functions $f : \mathbb{R}^m \to \mathbb{R}$ by dual-rail encoding:

$$\lim_{t\to\infty} (y^+ - y^-)(t) = f(X^+ - X^-).$$

Example: 1-level MAPK

We use the differential semantics with Mass Action Law. At steady state, we have:

$$\frac{dI}{dt} = 1 - I - LI = 0, \quad \frac{dA}{dt} = LI - A = 0, \quad \frac{dL}{dt} = 0.$$
(3)

Thus by elimination:

$$P(L,A) = \boxed{L - A - LA = 0}.$$

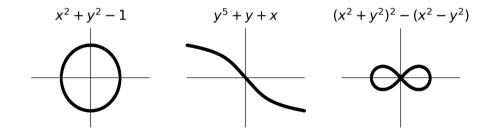
That is:
$$A(L) = \frac{L}{1+L}$$
.

(4)

$Def - F_A$: real algebraic functions

A function $f : I \subset \mathbb{R}^m \mapsto \mathbb{R}$ is algebraic iff there exists a polynomial P_f of m + 1 variables such that:

$$\forall X \in I, \quad P_f(X, f(X)) = 0 . \tag{5}$$



 $F_S \subset F_A$ (sketch of the proof) As y(t) is projectively polynomial [1]:

$$P(X, y, y^{(1)}, \dots, y^{(n)}) = 0$$
(6)

with X^0 , y^0 as initial condition we have: $\forall k$, $y^{(k)}(t) = 0$, thus:

$$P^{\star}(X^0, y^0) = 0. \tag{7}$$

Can we stabilize any algebraic functions?

[1] Carothers D., Parker G., et al. Some properties of solutions to PODE. EJDE 2005, vol. 2005, No. 40, 17.

 $F_A \subset F_S$ (sketch of the proof)

Take $f : I \mapsto \mathbb{R}$ a real algebraic function $\exists P_f$ in **reduced form**, $\forall X \in I, P_f(X, f(X)) = 0$,

$$\frac{dy}{dt} = \pm P_f(X, y),$$
$$\frac{dX}{dt} = 0,$$

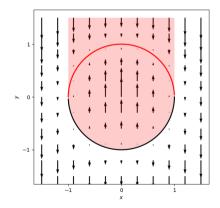
Y = f(X) is a fixed point.

Choose + or - to stabilized the desired branch.

(8)

Example: Unit circle

$$P(x, y) = 1 - x^2 - y^2$$



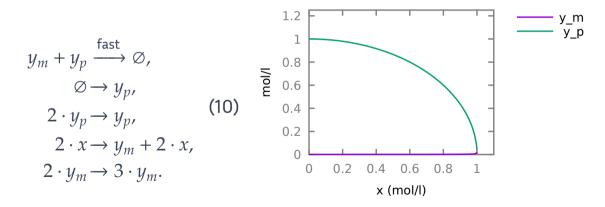
(9)

Theorem

 $F_S = F_A$

Example: Unit circle in Biocham

stabilize_expression($x^2 + y^2 - 1$, y, [x = 0, y=1]).



Compilation pipeline in Biocham

stabilize_expression(polynomial, output_name, point)

Polynomialization preprocessing to ease the user interface Stabilization choose the ± to stabilize the selected branch Quadratization reduce to a quadratic PODE to enforce elementary reactions

Dual-rail encoding split variable that may become negative into their positive and negative part

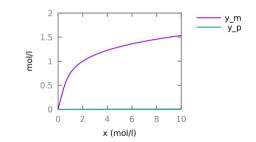
CRN generation insert a reaction for each monomial

Hemery M., Fages F. et Soliman S., On the complexity of quadratization for PODE. CMSB 2020.

Example: Bring radical

stabilize_expression($y^5 + y + x$, y, [x = 2, y=1]).

 $y_m + y_p \xrightarrow{\text{fast}} \emptyset,$ $y2_m + y2_p \xrightarrow{\text{fast}} \emptyset,$ $y3_m + y3_n \xrightarrow{\text{fast}} \emptyset$, $y_n \to \emptyset$, $y_{2m}^2 + y_{3n}^2 \rightarrow y_{2m}^2 + y_{3n}^2 + y_n^2$ $y_{2n}^2 + y_{3m}^2 \rightarrow y_{2n}^2 + y_{3m}^2 + y_n$ $x \rightarrow x + y_m$ $y_m \to \emptyset$, $y_{2n}^{2} + y_{3n}^{2} \rightarrow y_{2n}^{2} + y_{3n}^{2} + y_{m}^{2}, \qquad y_{2m}^{2} + y_{3m}^{2} \rightarrow y_{2m}^{2} + y_{3m}^{2} + y_{m}^{2},$ $2 \cdot y_n \rightarrow y_{2n}^2 + 2 \cdot y_n$ $2 \cdot y_m \rightarrow y_{2n} + 2 \cdot y_m$ $y_{2v} \rightarrow \emptyset$, $y_{2m} \rightarrow \emptyset$, $y_{2n}^{2} + y_{n}^{2} \rightarrow y_{2n}^{2} + y_{3n}^{2} + y_{n}^{2}, \qquad y_{2m}^{2} + y_{m}^{2} \rightarrow y_{2m}^{2} + y_{3n}^{2} + y_{m}^{2},$ $\nu 3_n \rightarrow \emptyset$. $y_{2n}^2 + y_m \rightarrow y_{2n}^2 + y_{3m}^2 + y_m$ $y_{3m} \rightarrow \emptyset$. $y_{2m}^2 + y_p \rightarrow y_{2m}^2 + y_{3m}^2 + y_p$



Hermite, C. Sur la résolution de l'équation du cinquème degré. Comptes Rendus de l'Académie des Sciences, 1858.

A two inputs example: Computing the norm

$$norm(x, y) = \sqrt{x^2 + y^2} \implies P(x, y, norm) = norm^2 - x^2 - y^2$$

stabilize_expression(norm $^2-x^2-y^2$, norm, [norm = 1.4, x = 1, y=1]).

$$2 \cdot x \rightarrow norm + 2 \cdot x,$$

$$2 \cdot y \rightarrow norm + 2 \cdot y,$$

$$2 \cdot norm \rightarrow norm.$$

Conclusions & Perspectives

- On-line analog computation is restricted to the set of algebraic functions,
- We can compile any algebraic function into an abstract stabilizing CRN.
- Towards a concrete compiler with real reactions from BRENDA,
 and its *in-vitro* implementation [1].

[1] Courbet A., Amar P., Fages F., et al. Computer-aided biochemical programming of synthetic microreactors as diagnostic

devices. Mol. sys. bio., 2018.