zinc2cmaes: A Stochastic Continuous Optimization Backend for MiniZinc.


Thierry Martinez and François Fages and Abder Aggoun, A Stochastic Continuous Optimization Backend for MiniZinc with Applications to Geometrical Placement Problems, CPAIOR 2016, the Thirteenth International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming. [pdf]


MiniZinc is a solver-independent constraint modeling language which is increasingly used in the constraint programming community. It can be used to compare different solvers which are currently based on either Constraint Programming, Boolean satisfiability, Mixed Integer Linear Programming, and recently Local Search. In this paper we present a stochastic continuous optimization backend for MiniZinc models over real numbers. More specifically, we describe the translation of FlatZinc models into objective functions over the reals, and their use as fitness functions for the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) solver. We illustrate this approach with the declarative modeling and solving of hard geometrical placement problems, motivated by packing applications in logistics involving mixed square-curved shapes and complex shapes defined by Bézier curves.