Modular CHR with ask and tell

Frangois Fages, Cleyton Mario de Oliveira Rodrigues, Thierry Martinez
Contraintes Project—Team, INRIA Paris—Rocquencourt, France

@ Why CHRat?
@ A Simple Example.

@ Syntax and Semantics.
@ Translation of CHRat to flat CHR.
@ Examples of Modular CHRat Solvers.

Thierry Martinez (INRIA) July 21, 2008 1/1

Programming in CHR.

CHR is a language to define constraint-solvers by multiset
rewriting rules which are guarded by built-in constraints.
Frihwirth, T.W.: Theory and practice of constraint
handling rules. J. Log. Program. 37 (1998) 95-138

Example of constraint solver definition.

Let leq(X,Y) token represent the constraint X <Y.

1) leq(X,X) <=true. o .

2) leq(X.Y), leq(Y.X) <X = V. « simplifications
3) leq(X, Y) leq(Y,Z) = leq(X,Z). <« propagation
4) leq(X,Y) \ leq(X,Y) <=true. — simpagation

A~ N~ o~

Solved forms are irreflexive and transitively closed.

Thierry Martinez (INRIA)

July 21, 2008 2/1

Programming in CHR is non-modular.

Non-reusability of CHR Constraint-Solvers in Guards
Once a new CHR constraint-solver is defined, the resulting
solver cannot become the built-in constraint solver of
another CHR program.

Satisfaction and Entailment

@ CHR constraint-solvers define satisfiability checkers.
e Guards have to be entailed to fire the associated rule.

Thierry Martinez (INRIA) July 21, 2008 3/1

Towards a Modular CHR Language

Entailment Checking
Three approaches:

@ External implementation
Duck, G.J., Stuckey, P.J., de la Banda, M.G.,
Holzbaur, C.: Extending arbitrary solvers with
constraint handling rules. In: PPDP’03, Uppsala,
Sweden, ACM Press (2003) 79-90

@ Automatic entailment checking

C—-DA4+CAD<C

Schrigvers, T., Demoen, B., Duck, G., Stuckey, P.,
Frihwirth, T.W.: Automatic implication checking for
CHR constraint solvers. Electronic Notes in
Theoretical Computer Science 147 (2006) 93-11

© Our approach: a discipline for programming
entailment checking in CHR with ask and tell.

Thierry Martinez (INRIA) July 21, 2008 4 /1

min Solver over leq Solver in CHR?

Let min(X,Y,Z) represent the constraint that Z is the minimum value
among X and Y.

leq (X,Y) \ min(X,Y,Z) < Z=X.
leq (Y,X) \ min(X,Y,Z) < Z=Y.
min(X,Y,Z) = leq(Z,X), leq(Z,Y).

Does not work: min(X,X,Z) will not be rewritten to X=Z because there
is no leq(X,X) token in the store.

Thierry Martinez (INRIA)

July 21, 2008 5/1

leq Solver Component in CHRat.

File leq_solver.cat
component leq_solver.
export leq /2.
leq (X,X) <= true.
leq (X,Y), leq(Y,X) < X =Y.
leq (X,Y), leq(Y,Z) = leq(X,Z).
leq (X,Y) \ leq(X,Y) < true.

ask(leq(X,X))<=entailed(leq(X,X)).

leq (X,Y)\ask(leq(X,Y)) < entailed(leq(X,Y)).

Thierry Martinez (INRIA)

July 21, 2008

6 /1

min Solver Component in CHRat.

File min_solver.cat

component min_solver.

import leq/2 from leq_solver.

export min /3.

min(X)Y,Z) <=leq(X)Y) | Z=X.

min(X,Y,Z) <=leq(Y,X) | Z=Y.

min(X,Y,Z) = leq(Z,X), leq(Z,Y).

ask(min(X, Y, X)) < leq(X, Y) |
entailed (min(X, Y, X)).

ask(min(X, Y, Y)) < leq(Y, X) |
entailed (min(X, Y, Y)).

min(X,Y,Z)\ask(min(X,Y,Z)) <= entailed(min(X,Y,Z)).

Thierry Martinez (INRIA) July 21, 2008 7/1

CHRat Syntax.

component <component-name>. one per file.

import <constraint-declarations> from <component-name>.
separation is atom-prefix based.
export <constraint-declarations>.

<rule-name> @ <H> \ <H> «— <C>,<T> | .

where:

@ C: built-in constraints

o H=T Wask(7)
@ 7: CHR constraints

o B=CWw7T Wentailed(7)

Side condition Every variable which appears in a CHR guard must

appear in the built-in guard or in the heads of the rule

Thierry Martinez (INRIA)

July 21, 2008 8/1

CHRat Operational Semantics for Rules. (1/3)

Configurations ((F , E , D)y
)
query CHR built-in

store store

where V is the set of free variables of the initial query.

Logical meaning 35(F A E A D), where ¢ enumerates fv (F, £, D)\ V.

Thierry Martinez (INRIA) July 21, 2008 9/1

CHRat Operational Semantics for Rules. (2/3)

Solve
celC

({c}W F,E,D),, — (F,E,ch\ D),

Introduce
teT*

<{t} H'J‘{??l?:l)%} = <F7 {t} LﬂEvD>V
where 7° = 7 W ask(7) W entailed(7).

Trivial Entailment

teT
(F,{ask(t),t} W E, D)\, — ({entailed(t)} & F, {t} & E, D),,

Thierry Martinez (INRIA) July 21, 2008 10 /1

CHRat Operational Semantics for Rules. (3/3)

Ask

(H \ H & Cb,CC|B.)JEP Dbte Yy
(F,HWH'WE, D)\, — (ask(C.) W F,HW H' & E, D),,

Fire

(H\ H & C,,C.|B)oeP DreCy
(F,H# H'¢entailed(C.) & E, D), — (BWF,H W E, D),,

Thierry Martinez (INRIA) July 21, 2008 11 /1

CHRat Declarative Semantics for Rules.

(H \ H < C,C.|B)'=
Vij(Cy — H AN H' — ask(C,))
AVG(Cy — (H A H' A entailed(C..) « 35 (H A B)))

Theorem

Operational semantics is sound and complete with respect to declarative
semantics.

If D is the declarative semantics of a program P and S1 — Sa two
successive configurations in an execution of P, then:

Dbte Sy« Sy

Adapted from the soundness and completeness theorem of CHR:
Frihwirth, T.W.: Theory and practice of constraint handling rules. J.
Log. Program. 37 (1998) 95-138

Thierry Martinez (INRIA) July 21, 2008 12 /1

Translation to flat CHR.

[H \ H & Cy,C.|B]

L JH H = Cy | ask(C,).
" | H \ H entailed(C,) < C,| B.

Theorem

If:
o D is the CHRat declarative semantics of a CHRat program P; and
o D' is the CHR declarative semantics of [P].

then:

FeD & D

Thierry Martinez (INRIA) July 21, 2008 13 /1

Example of Translation to flat CHR.

min(X,Y,Z)\ask-min(X,Y,Z)=entailed_min(X,Y,Z).
min(X,Y,Z) < leq(X,Y) | Z=X.

min(X,Y,Z)= ask_leq (X,Y).
entailed_leq (X,Y), min(X,Y,Z)<=7Z=X.

min(X,Y,Z) = leq(Z,X), leq(Z,Y).
min(X,Y,Z) = leq(Z,X), leq(Z,Y).

ask(min(X, Y, X)) < leq(X, Y) |
entailed (min(X, Y, X)).

ask_min (X,Y,X)=ask_leq (X,Y).
entailed_leq (X,Y), ask_min(X,Y ,X)<
entailed_min (X,Y,X).

Thierry Martinez (INRIA) July 21, 2008

14 /1

Union-find Component. (1/3)

Satisfiability solver comes from Schrijvers, T., Frihwirth, T.W.:
Analysing the CHR implementation of unionfind. In: 19th Workshop
on (Constraint) Logic Programming. (2005)

File union_find_solver.cat
component union_find.
export make/1, ~ /2.
make(A) <= root(A, 0).

union (A, B) <= find (A, X), find(B, Y), link (X, Y).

A ~ B, find(A, X) < find(B, X), A ~ X.
root(A, _) \ find(A, X) < X =A.

link (A, A) < true.
link (A, B), root(A, N), root(B, M) < N> M |

B ~ A, N1 is max(M+1, N), root(A, N1).
link (B, A), root(A, N), root(B, M) <= N> M |

B ~ A, N1 is max(M+1, N), root(A, N1).

Thierry Martinez (INRIA)

July 21, 2008 15 /1

Union-find Component. (2/3)

File union_find_solver.cat

A ~ B = union(A, B).

find (A, X), find (B, Y),
check (A, B, X, Y).
root(X) \ check(A, B, X, X) <

entailed (A ~ B).

Thierry Martinez (INRIA)

July 21, 2008

16 /1

Union-find Component. (3/3)

X ~ C\ check(A, B, X, Y) <

find (A, Z), check(A, B, Z, Y).
Y ~» C\ check(A, B, X, VY) <

find (B, Z), check(A, B, X, Z).

Thierry Martinez (INRIA) July 21, 2008

17 /1

Rational Tree Solver Component.

File rational_tree_solver.cat

component rational_tree_solver.

import ~ /2 from union_find_solver.

export fun/3, arg/3, ~ /2.

fun (X0, FO, NO) \ fun(X1l, F1, N1) < X0 ~ X1 |
FO = F1, NO = N1.

arg (X0, N, Y0) \ arg(X1, N, Y1) <= X0 ~ X1 |
YO ~ YL.

X ~ Y < X ~ Y.

Check the paper for the ask-solver!

Thierry Martinez (INRIA) July 21, 2008 18 /1

Conclusion.

Objective.

o Generalization of guards.
@ Modular definition of solvers.

Proposed Solution.

e Programming discipline to define satisfiability and
entailment constraint solvers.

Perspectives.

@ Relax the restriction on guard variables.

e Link between declarative semantics of ask and logical
implication.

@ Modular compilation.

Thierry Martinez (INRIA) July 21, 2008 19 /1

