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ABSTRACT
The Constraint Simplification Rules (CSR) subset of CHR
and the flat subset of LCC, where agent nesting is restricted,
are very close syntactically and semantically. The first con-
tribution of this paper is to provide translations between
CSR and flat-LCC. The second contribution is a transfor-
mation from the full LCC language to flat-LCC which pre-
serves semantics. This transformation is similar to λ-lifting
in functional languages. In conjunction with the equivalence
between CHR and CSR with respect to original operational
semantics, these results lead to semantics-preserving trans-
lations from full LCC to CHR and conversely. Immediate
consequences of this work include new proofs for CHR linear
logic and phase semantics, relying on corresponding results
for LCC, plus an encoding of the λ-calculus in CHR.

1. INTRODUCTION
Constraint Handling Rules (CHR) [1] is a rule-based declar-
ative programming language. Programs are sets of trans-
formation rules on constraint stores. Some constraints are
built-ins and can only be accumulated into the store. Other
constraints are user-defined and can be added or deleted. Al-
though initial motivations were the definition of constraint
solvers and propagators, nowadays applications include typ-
ing [2, 3], software testing [4], scheduling [5] and so on.

Foundations of the class CC of Concurrent Constraint pro-
gramming languages [6] rely on a model of concurrent com-
putation, where agents communicate through a shared con-
straint store, with a synchronization mechanism based on
constraint entailment. In classical constraint settings, the
store evolves monotonically, similarly to the built-in con-
straint store of CHR. The LCC languages [7, 8] introduce
linear constraint systems, based on Girard’s intuitionistic
linear logic (ILL) [9]. A remarkable kind of linear constraints
are linear tokens [8], which can be freely added or consumed,
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comparably to CHR constraints. Linear logic leads to a nat-
ural semantics for classical CC languages as well [8]. More
recently, a precise declarative semantics for CHR has been
described in linear logic [10].

CHR and LCC have been developed independently and with
distinct concerns. This paper formalizes connections be-
tween CHR with original operational semantics and LCC.
Two translations from CHR to LCC and back are proposed,
both preserving the semantics. Strong bisimilarity results
are formulated. As direct corollary, we obtain a natural
encoding of the λ-calculus in CHR. While existence of low-
level translations is guaranteed by Turing-completeness via
a compilation process, there are more fine-grained criteria
to compare expressiveness [11]. In particular, translations
presented here are natural and (relatively) agnostic with re-
spect to the constraint theory.

Section 2 presents CHR and LCC in full generality and re-
calls some already published and well-known results. Section
3 focuses on distinguished subsets Constraint Simplification
Rules (CSR) and flat-LCC, provides translations between
these two subsets. Linear logic semantics [10] and phase se-
mantics [12] of CHR are recovered as corollary. Section 4
introduces the ask-lifting transformation from full LCC to
flat-LCC. Section 5 presents the encoding of the call-by-
value λ-calculus in CHR.

Related work
The translation from full LCC to CHR relies on ask-lifting.
This is a transformation comparable to the λ-lifting [14] for
functional languages: the common idea is the materializa-
tion of the environment in data structures, i.e. values in
functional languages or tokens in LCC. The adaptations of
functional concepts in LCC languages have been initiated
with the embedding of closures and modules [13].

Flattening nested programming structures was suggested
in [15] for connecting the Celf system [16] to CHR but no
formal transformation seems to have been published.

Encoding for RAM machines into CHR [29] showed that
CHR was expressive enough to embed imperative style pro-
gramming. The encoding of λ-calculus and closures shows
that CHR can as well host programs written in a functional
style. The CHR linear-logic semantics [10] is close to the
previous work on the LCC semantics [8]: the present paper
formally describes the intuitions behind this transposition.



2. SYNTAX & SEMANTICS OF CHR & LCC
Let V be a set of variables, and Σ a signature for constant,
function and predicate symbols. The set of free variables of a
formula e is denoted fv(e), a sequence of variables is denoted
by x. e[t/x] denotes the formula e in which free occurrences
of variables x are substituted by terms t (with the usual
renaming of bound variables to avoid variable clashes).

For a set S, S? denotes the set of finite sequences of ele-
ments of S and M(S) denotes the set of finite multi-sets
of elements of S. More formally, (S?; ·; ε) denotes the free
monoid and (M(S); , ; ∅) the free commutative monoid over
S. Therefore, if a, b ∈ M(S) are two multisets, (a, b) de-
notes the multiset sum. For relations R and R′, aR · R′ c
if there exists b such that aR bR′ c. For a relation →, ?→ is
the reflexive and transitive closure of →.

2.1 Syntax and Semantics of CHR
The CHR operational semantics are usually described as
small-steps transition rules. The original operational seman-
tics was presented as a rewriting system of sets [1], fully cap-
tured by the logical semantics expressed in classical logic.
Most implementations today suppose that the constraint
store is a multi-sets and the original operational semantics
has been adapted for multi-sets and proved sound and com-
plete with respect to linear-logic semantics [10].

In parallel, CHR implementations give more fine-grained
control to the programmer and some operational semantics
capturing this control have been described [25]. However,
correct and complete correspondence with logical semantics
are only known for original operational semantics (whether
they are expressed on sets or multi-sets). LCC having been
developed with correspondence with linear logic in mind,
the original operational semantics is the natural choice to
establish the comparison between the two languages.

Let Pb and Pc be two disjoint subsets of predicate symbols
in Σ. Predicates built from Σ with predicate symbols in
Pb are atomic built-in constraints, their set is denoted B0.
Built-in constraints are conjunctions of atomic built-in con-
straints, their set is denoted B. Predicates built from Σ with
predicate symbols in Pc are atomic CHR constraints, their
set is denoted U0. CHR constraints are (finite) multi-sets of
atomic CHR constraints, their set is denoted U . A goal is a
multi-set of built-in constraints and CHR constraints.

Definition 1. A CHR program is a set of rules, each rule
being denoted 〈H\H ′ ⇔ G |B〉 where

• heads H and H ′ are CHR constraints such that the
multiset sum (H,H ′) 6= ∅,

• the guard G is a built-in constraint,

• and the body B is a goal.

The definition 1 gives the general form of CHR rule. If
H and H ′ are both non empty, the rule is a simpagation
rule. If H is empty, the rule is a simplification rule and is
usually denoted 〈H ′ ⇔ G | B〉. If H ′ is empty, the rule is a
propagation rule and is usually denoted 〈H ⇒ G |B〉.

Example 1. The CHR program below is adapted from [17]
and describes the dining philosophers protocol [18], where N
philosophers are sitting around a table and alternate think-
ing and eating. N forks are dispatched between them. Each
philosopher is in competition with her neighbors to take her
two adjacent forks and eat.

diner(N) ⇔ recphilo (0, N).
recphilo(I , N) ⇔

J is (I + 1) mod N, philo(I, J), fork(I ),
nextphilo(I , N).

nextphilo(I , N) ⇔ I < N − 1 |
J is I + 1, recphilo(J, N).

philo(I , J) \ fork(I ), fork(J) ⇔ eat(I , J).
eat(I , J) ⇔ fork(I ), fork(J).

Built-in constraints are supposed to include the equality =.
Let CT be a constraint theory over built-in constraints: CT
is supposed to be a non-empty, consistent and decidable
first-order theory. For two multi-sets H = (H1, . . . , Hm)
and H ′ = (H ′1, . . . , H

′
n), H + H ′ denotes the formula H1 =

H ′1 ∧ · · · ∧Hn = H ′n if m = n, and false if m 6= n [19].

A state is a tuple denoted 〈g; b; c〉V where g is a goal, b is
a built-in constraint, c is a CHR constraint and V is a set
of variables. The relation ≡C over states is the smallest
equivalence relation such that:

• 〈g; b; c〉V ≡C 〈g; b′; c〉V for CT |= b↔ b′;

• 〈g; b; c〉V ≡C 〈g; b; c〉V [y/x] for all variables x and y such
that x /∈ V and y /∈ V ∪ fv(g, b, c).

Let P be the set of pairs of CHR programs and states.

The following semantics for CHR is adapted from [1]. CHR
is described as a guarded rewriting system of multi-sets.

Definition 2. A CHR program P is executed along a tran-
sition relation →P over states:

Firing Rule
Applẏ

H\H ′ ⇔ G |B
¸
is a fresh variant of a rule in P

with variables x
CT |= ∀(b→ ∃x(H + h ∧H ′ + h′ ∧G))˙

g; b;h, h′, c
¸

V →P

˙
B, g;H + h ∧H ′ + h′ ∧G ∧ b;h, c

¸
V

Solving Rules
Solve
B ∈ B CT |= B ∧ b↔ b′

〈B, g; b; c〉V →P

˙
g; b′; c

¸
V

Introduce
C ∈ U

〈C, g; b; c〉V →P 〈g; b;C, c〉V

Let q be an initial goal, the query. From the initial state
s0 = 〈q;>; ∅〉V , with V = fv(q), a derivation is a sequence
s0→P s1→P · · ·→P sn. Such a state sn is an accessible state.



The original operational semantics is correct and complete
with respect to the following CHR linear logic semantics [10].

Definition 3. The linear logical semantics of a rule r =
〈H\H ′ ⇔ G|B〉 is r† = 〈!∀(G†⊗H†⊗H ′†( ∃x(H†⊗B†))〉
with x = fv(B)\fv(H,H ′, G) and where built-in constraints,
CHR constraints, goals and states are translated as follows.

Constraint B= 〈B1 ∧ · · · ∧Bn〉B†= 〈!B1 ⊗ · · · ⊗ !Bn〉
CHR constraintC= (C1, . . . , Cn) C†= 〈C1 ⊗ · · · ⊗ Cn〉
Goal G= (G1, . . . , Gn) G†= 〈G†1 ⊗ · · · ⊗G†n〉
State S= 〈g; b; c〉V S†= ∃x(g† ⊗ b† ⊗ c†)
where x = fv(G,B,C) \ V

For a program P = {r1, . . . , rn}, the linear logic semantics
of P is P † = 〈r†1 ⊗ · · · ⊗ r†n〉.

Let CT † be the Girard translation of CT [9].

Theorem 1 (Soundness & Completeness [10]). For
all CHR program P and query q,

• (Sound) If s is an accessible state from q in P , then
P †,CT † |= ∀(q†( s†).

• (Complete) For every formula c such that P †,CT † |=
∀(q† ( c), there is an accessible state s from q in P
such that CT † |= ∀(s†( c).

2.2 Syntax and Semantics of LCC
The LCC language is defined over an arbitrary linear con-
straint system. The mapping from classical constraint the-
ory to linear constraint system is formalized in section 3.

Definition 4. A linear constraint system is a pair (C,`C),
where:

• C is a set of formulas (the linear constraints) built with
multiplicative conjunction ⊗, its neutral 1, hiding ∃,
exponential ! and constant >; and closed by renaming,
multiplicative conjunction and hiding;

• C is a binary relation over C, which defines the non-
logical axioms.

• `C is the least subset of C?×C containing C and closed
by the rules of intuitionistic multiplicative exponential
linear logic for 1, >, ⊗, ! and ∃.

Definition 5. The syntax for building LCC agents follows
the grammar: A ::= ∀V?(C → A)

˛̨
∀V?(C ⇒ A)

˛̨
∃V.A

˛̨
C

˛̨
A‖A

where ‖ stands for parallel composition, ∃ for variable hid-
ing, → for (transient) ask and ⇒ for persistent ask. When
there are no universally quantified variables, the notation
(c→ a) is preferred to ∀ε(c→ a).

Agent ∀x(c→ a) suspends until c is entailed then wakes up
and does a. Transient asks wake up at most one time. Per-
sistent asks are introduced [13] to replace declarations. The
agent ∀x(c⇒ a) can wake up as many times as c is entailed.
This makes sense as entailment consumes resources.

Example 2. Here is the LCC version for dining philoso-
phers [8, 20]. Compared to the CHR version, the following
code is reentrant: the variable K identifies tokens and let
several diners to be run in parallel (a banquet [20]) and sepa-
ration results from the LCC module theory prove that tables
cannot steal cutlery from each other [13].

∀N(diner(N)⇒
∃K(∀I(recphilo(K, I)⇒

fork(K, I) ‖
∃J.(J is (I + 1) modN ‖

(fork(K, I)⊗ fork(K,J)⇒
eat(K, I)‖
(eat(K, I)→
fork(K, I)⊗ fork(K,J)) ‖

(I < N − 1→ recphilo(K,J)) ‖
recphilo(K, 0))))))

This example makes use of non-trivial scopes: variables N ,
K, I and J are in turn introduced and shared by subse-
quent asks. The philosopher between forks I and J is an
agent in LCC, whereas she is materialized in example 1 by
the CHR constraint philo(I , J) in order to carry the envi-
ronment {I, J}.

A configuration is a triple (X; c; Γ) where c is a constraint
(the store), Γ is a multi-set of agents and X is a set of
variables (the hidden variables). The relation ≡L over con-
figurations is the smallest equivalence relation such that:

• (X; c; a ‖ b,Γ)≡L (X; c; a, b,Γ) for all agents a and b;

• (X; c; 1,Γ)≡L (X; c; Γ);

• (X; c; Γ)≡L (X; c′; Γ) for c `C c′ and c′ `C c;

• (X; c; Γ)≡L(X; c; Γ)[y/x] for x ∈ X and y 6∈ fv(X, c,Γ)

Let K be the set of configurations.

Definition 6. The transition relation →L is the least re-
lation on configurations satisfying the following rules:

Firing Rules
Transient Ask
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c,Γ) = ∅

d and t are the most general choices
(X; c; ∀x(e→ a),Γ)→L (X ∪ Y ; d; a[t/x],Γ)
Persistent Ask
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c,Γ) = ∅

d and t are the most general choices
(X; c; ∀x(e⇒ a),Γ)→L

(X ∪ Y ; d; a[t/x],∀x(e⇒ a),Γ)

Solving Rules
Hiding

y /∈ X ∪ fv(c,Γ)

(X; c;∃x.a,Γ)→L (X ∪ {y} ; c⊗ d; a[y/x],Γ)

Tell

(X; c; d,Γ)→L (X; c⊗ d; Γ)

Equivalence
κ0 ≡L κ

′
0→L κ

′
1 ≡L κ1

κ0→L κ1



An agent a is associated with initial configuration (∅;>; a).
Accessible observables from a configuration κ are the config-
urations κ′ such that κ ?→L κ

′.

The side-conditions that d and t are the most general choices
guarantee that transitions do not weaken the store as en-
tailment may lead to forget some constraints (for example,
x > 2 `N> 1). It can be formalized as ∀d′t′((c `C ∃Y (d′ ⊗
e[t′/x])) ∧ (d′ `C d)⇒ (d `C d′) ∧ (e[t/x] `C e[t′/x])).

Definition 7. The translation (·)‡ of LCC agents into their
linear logic semantics is defined inductively as follows:

(∀x(c→ a))‡ = ∀x(c( a‡)

(∀x(c⇒ a))‡ = !∀x(c( a‡) (∃x.a)‡ = ∃x(a‡)

c‡ = c (a ‖ b)‡ = a‡ ⊗ b‡

If Γ is a multi-set of agents (a1, . . . , an), we define Γ‡ =

〈a‡1⊗· · ·⊗a‡n〉. Configurations are translated to (X; c; Γ)‡ =
〈∃X(c⊗ Γ‡)〉.

Theorem 2 (Soundness & Completeness [8, 13, 20]).
For all agents a:

• (Sound) If κ is an accessible observable from (∅;>; a),
then a‡ `C κ‡.

• (Complete) If c is such that a‡ `C c, then there is
an accessible observable (X; d; Γ) from (∅;>; a) with
∃X(d) `C c and agents in Γ are persistent asks.

2.3 Circumscribing non-determinism in CHR
and LCC operational semantics

Whereas non-determinism in firing rules seems to be inher-
ent to the computation model (and is tackled in CHR by
the committed-choice strategy and by the refined seman-
tics), the non-determinism in sequencing solving rules can
be completely eliminated. This is a classical result for con-
straint logic programming [21]. We formalize such a result
for CHR and LCC since the precise bisimulation results pre-
sented in next sections rely on it.

Let →s
P and →f

P be the restrictions of →P to solving and
firing rules respectively. Let →s

L and →f
L be the similar

restrictions for →L.

We define ⇒s
P such that s⇒s

P s′ if and only if s ?→s
P s′ 6→s

P .
Similarly,⇒s

L is such that κ⇒s
L κ
′ if and only if κ ?→s

L κ
′ 6→s

L.

The first lemma shows that solving rules terminate and are
confluent modulo ≡.

Lemma 1. For every CHR program P , for all state s,
there exists s′ such that s⇒s

P s
′ and for all s′, s′′, if s⇒s

P s
′

and s⇒s
P s′′, then s′ ≡C s

′′.
For every configuration κ, there exists κ′ such that κ⇒s

L κ
′

and for all κ′, κ′′, if κ⇒s
L κ
′ and κ⇒s

L κ
′′ then κ′ ≡L κ

′′.

Proof. Trivial.

Thus, observed configurations can be restricted to be final
for →s (or, equivalently, normalized by ⇒s) without losing
derivations. The following lemma is a specialization of the
“Andorra” principle [22] to the rule selection strategy:

Lemma 2 (Full solving before firing). For every CHR
program P , “

?→P · ⇒s
P

”
=

“
(⇒s

P · →f
P )? · ⇒s

P

”
and, similarly,“

?→L · ⇒s
L

”
=

“
(⇒s

L · →f
L)? · ⇒s

L

”
Proof. Trivial.

The lemma 2 is a corollary of the monotonous selection strat-
egy [20]: intuitively, →s can always be exhausted before ap-
plying →f .

The last lemma shows that solving rules preserve state equiv-
alence. Therefore, the next sections, reasoning up to state
equivalence, can focus on the action of firing rules.

Lemma 3. For every CHR program P , if s→s
P s′, then

s† ≡ s′†. Similarly, if κ→s
L κ
′, then κ‡ ≡ κ′‡.

Proof. Trivial.

Therefore, next sections focus on⇒-transitions where⇒P =
(⇒s

P ·→f
P ·⇒s

P ), and⇒L = (⇒s
L ·→f

L ·⇒s
L): a⇒P -accessible

state from s is a state s′ such that s ?⇒P s′ and a ⇒L-
accessible observable from κ is a configuration κ′ such that
κ

?⇒L κ
′. It is worth noticing that a firing occurs at each

⇒-transition.

3. TRANSLATIONS BETWEEN THE SUB-
LANGUAGES CSR AND FLAT-LCC

From now on, we consider the linear constraint system (C,`C
) induced by the constraint theory CT and with atomic CHR
constraints as linear tokens. More precisely, C is the least set
of formulas which contains > and !B for all B ∈ B0 and C for
all C ∈ U0, closed by renaming, multiplicative conjunction
and existential quantification. We suppose that c C d if
and only if CT † |= ∀(c ( d). The result is a particular
form of linear constraint system where non-logical axioms
follow from the translation of a classical theory.

Bisimulation is the most popular method for comparing
concurrent processes [23], characterizing a notion of strong
equivalence between processes. A transition system is a tu-
ple (S,→) with S a set of states and → a binary relation
over S. We define the CHR transition system as (P,⇒C)
where (P, s)⇒C (P ′, s′) when P = P ′ and s⇒P s

′, and the
LCC transition system as (K,⇒L).



3.1 From CSR to flat-LCC
Resulting configurations of LCC Firing Rules enjoy a new
store where guards have been consumed. This behavior cor-
responds to simplification rules in CHR and we propose in
this subsection a translation of the CSR fragment of CHR
with simplification rules only[19] to LCC.

Definition 8. A CHR program P is a CSR program when
all rules of P are simplifications (i.e. rules are of the form
〈H ⇔ G |B.〉).

As far as original operational semantics and linear-logic se-
mantics are concerned, expressiveness of CHR and CSR is
identical. For a rule r = 〈H\H ′ ⇔ G|B〉, let r× = 〈H,H ′ ⇔
G |H,B.〉 and for P = {r1, . . . , rn}, let P× = {r×1 , . . . , r×n }.

Example 3. We recall the traditional leq program [24].

leq(X, X) ⇔ true.
leq(X, Y) ⇔ number(X), number(Y) | X 6Y.
leq(X, Y), leq(Y, X) ⇔ X = Y.
leq(X, Y), leq(Y, Z) ⇒ leq(X, Z).
leq(X, Y) \ leq(X, Y) ⇔ true.

The translation leq× is as follows.

leq(X, X) ⇔ true.
leq(X, Y) ⇔ number(X), number(Y) | X 6Y.
leq(X, Y), leq(Y, X) ⇔ X = Y.
leq(X, Y), leq(Y, Z) ⇔

leq(X, Y), leq(Y, Z), leq(X, Z).
leq(X, Y), leq(X, Y) ⇔ leq(X, Y).

The following proposition shows that as far as the original
CHR semantics is concerned, CHR and CSR are equivalent.

Proposition 1. For all CHR program P , we have→P =
→P× and P † ≡ (P×)†.

There is probably no natural encoding of the refined seman-
tics for propagation [25] in LCC, at least without ad-hoc
support hard-wired in the constraint system.

Let r = 〈H ′ ⇔ G |B.〉 be a simplification rule. G†⊗H ′† and
B† are in C, thus the following agent is well-formed: r( =
〈∀y(G† ⊗H ′† ⇒ ∃x.B†)〉, where x = fv(B) \ fv(H ′, G) and
y = fv(H ′, G). For every CSR program P = {r1, . . . , rn},
the translation of P in LCC is: P( = 〈r(

1 ‖. . .‖r(
n 〉. States

〈g; b; c〉V are translated in C as well: 〈g; b; c〉V ( = g†⊗b†⊗c†.

We are ready to define the translation from CSR to LCC.

Definition 9. A CSR program P and a query q are trans-
lated to the agent a(P, q) = 〈P(‖q†〉.

Example 4. The leq× program (example 3) is translated

to the agent leq(:

leq( =∀X(leq(X,X)⇒ 1) ‖
∀XY (number(X)⊗ number(Y )⊗ leq(X,Y )⇒

X 6 Y ) ‖
∀XY (leq(X,Y )⊗ leq(Y,X)⇒ X = Y ) ‖
∀XY Z(leq(X,Y )⊗ leq(Y,Z)⇒

leq(X,Y )⊗ leq(Y,Z)⊗ leq(X,Z)) ‖
∀XY (leq(X,Y )⊗ leq(X,Y )⇒ leq(X,Y ))

Since there is no possible confusion between linear tokens
and classical constraints, then, by abuse of notations, we
omit the ! operator on U0 constraints.

Theorem 3 (Bisimilarity). Let ∼ ⊆ P × K be the
relation where (P, s) ∼ κ if and only if κ ≡L (X; s(;P()
with X = fv(s) \ V . Then, ∼ is a bisimulation.

Corollary 1 (Semantics preservation). For CSR
program P , query q:

• if κ is a ⇒L-accessible observable of a(P, q), then κ ≡
(X; c;P() and there is a ⇒P -accessible state s from
q with ∃x(s() a`C ∃X(c), x = fv(s) \ fv(q);

• if s is a ⇒P -accessible state from q, then there is a
⇒L-accessible observable (X; c;P() from a(P, q) such
that ∃x(s() a`C ∃X(c), where x = fv(s) \ fv(q).

3.2 From flat-LCC to CSR
The translation of CSR into LCC generates agents of the
particular form p‖q, where the sub-agent p is the translation
of a CSR program and is therefore a parallel composition of
persistent asks without any nested asks, and the sub-agent
q is a translation of a query and is therefore reduced to a
constraint. Moreover, every ask guard consumes at least a
linear token (since CHR heads are non-empty) and asks are
closed term (i.e. without free variables). Such agents are
characterized by the following definition:

Definition 10. Flat-LCC agents are restricted to the gram-
mar: A↑ ::= A∀ ‖ C where A∀ ::= ∀V?(C ⇒ C) | A∀ ‖ A∀ | 1
with the following side condition for every ask ∀x(g ⇒ c):
g 6`C g ⊗ g (consumption) and fv(g, c) ⊆ x.

This subsection is dedicated to establishing the reverse trans-
lation, from A↑ to CSR. It is worth noticing first that, like a
CSR program, an A↑-agent essentially transforms constraint
stores without introducing new suspensions:

Lemma 4 (Configurations form). Non-initial ⇒L-
accessible configurations from an A↑-agent a are ≡L-equivalent
to configurations of the form (_;_; a∀).

The translation from flat-LCC to CSR should handle the
LCC existential variables which have no counter part in CSR
and the splitting between built-in constraints and CHR con-
straints. Fresh variables should be introduced to translate
constraints such as a(X,Y )⊗∃X(b(X,Y )) into 〈a(X,Y ), b(K,Y )〉



where K is a new local variable. The function fC translates
every constraint in C to a tuple (X;B;C) where B is a built-
in constraint, C a CHR constraint and X a set of variables
local to B and C:

fC(>) = (∅; true; ∅)
fC(!B) = (∅;B; ∅)

for all B ∈ B0

fC(C) = (∅; true;C)
for all C ∈ U0

fC(c⊗ d) = (σc(Xc) ∪ σd(Xd);σc(Bc) ∧ σd(Bd);
σc(Cc), σd(Cd))
where fC(c) = (Xc;Bc;Cc)
and fC(d) = (Xd;Bd;Cd)
with σc and σd renaming of Xc and
Xd respectively such that
σc(Xc) ∩ fv(σd(Bd, Cd)) = ∅ and
σd(Xd) ∩ fv(σc(Bc, Cc)) = ∅

fC(∃x(c)) = (Xc ∪ {x};Bc;Cc)
where fC(c) = (Xc;Bc;Cc)

A∀-agents are translated to CSR programs through the func-
tion f∀. Translation of asks should take care of clashes with
similar renaming as for ⊗ in fC :

f∀(∀x(g ⇒ c)) =
{〈σg(Cg)⇔ σg(Bg) | σc(Bc), σc(Cc).〉}

where fC(g) = (Xg;Bg;Cg)
and fC(c) = (Xc;Bc;Cc)
and σg and σc renaming of Xg and
Xc respectively such that
σg(Xg) ∩ fv(σc(Bc, Cc)) = ∅ and
σc(Xc) ∩ fv(σg(Bg, Cg)) = ∅

f∀(a ‖ b) = f∀(a) ∪ f∀(b)
f∀(1) = ∅

For every ask ∀x(g ⇒ c), f∀(∀x(g ⇒ c)) is a well-formed
CHR rule. In particular, the side condition on g ensures
that σg(Cg) 6= ∅.

f s
V : c 7→ 〈∅; b; c〉V maps constraints to states with (_; b; c) =
fC(c).

Note that all variables in CSR queries are global. The
query should hide existentially quantified variables in the
top-level constraint c0 of the agent. We suppose a fresh
symbol 〈start/n〉 ∈ U0 where n = #fv(c0).

Let v = fv(c0). The CHR constraint start(v) has the same
free variables as the agent to be translated and is therefore
suitable to be the translated query in the translation from
flat-LCC to CSR.

Definition 11. A flat-LCC agent 〈a∀ ‖ c0〉 is translated to
the CHR program P (a∀‖c0) = f∀(a∀)∪{start(v)⇔ B0, C0.}
and the query q(a) = (start(v)) where (_;B0;C0) = fC(c0)
and v = fv(c0).

Theorem 4 (Bisimilarity). Let ∼ ⊆ K × P be the
relation where κ ∼ (P, s) if and only if there exists a flat-
LCC agent 〈a∀ ‖c0〉 where κ≡L (X; c; a∀) and P = P (a) and
s≡C f

s
V (c), with V = fv(c0). Then, ∼ is a bisimulation.

Corollary 2 (Semantics preservation). For every
flat-LCC agent a = 〈a∀ ‖ c0〉, let s0 = 〈q(a);>; ∅〉V , V =
fv(c0), then:

• for all ⇒L-accessible configuration (X; c; a∀) from a,
there exists a ⇒P (a)-accessible state s from s0 such
that ∃x(s() a`C ∃X(c);

• for all⇒P (a)-accessible state s from s0, if s 6= s0, there
exists a ⇒L-accessible configuration (X; c; a∀) from a,
such that ∃x(s() a`C ∃X(c);

where, in both cases, x = fv(s) \ V .

4. ASK-LIFTING: ENCODING LCC INTO
CSR

The main result of this section is a translation from LCC
to flat-LCC which preserves the semantics. Consequently,
thanks to corollary 2, we can deduce a semantics-preserving
translation from LCC to CSR. This section begins with
a preliminary step introducing an intermediary language
LCC` where asks are labeled with linear tokens: these to-
kens do not change the operational semantics and there is
a trivial labeling to transform LCC programs to LCC` pro-
grams. These linear tokens are introduced in order to follow
asks through the transitions of the operational semantics,
which is used to prove the semantics preservation.

4.1 Preliminary step: labeling LCC-agents
Labeled LCC agents A` differ from agents A by labels in-
serted on each ask. In the following definition, labels are
arbitrary linear tokens.

Definition 12. The syntax of LCC` agents is given by the
following grammar:

A` ::=∀V?(C U0−−→ A`)
˛̨
∀V?(C U0=⇒ A`)

˛̨
∃V.A`

˛̨
C

˛̨
A` ‖A`

The transition relation→L is lifted to the transition→LCC`

for LCC`.
Transient Ask (with labeling)
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c,Γ) = ∅

∀d′((c `C ∃Y (d′ ⊗ e[t/x])) ∧ (d′ `C d)⇒ d a` d′)“
X; c; ∀x(e

l−→ a),Γ
”
→LCC` (X ∪ Y ; d; a[t/x],Γ)

Persistent Ask (with labeling)
c `C ∃Y (d⊗ e[t/x]) Y ∩ fv(X, c,Γ) = ∅

∀d′((c `C ∃Y (d′ ⊗ e[t/x])) ∧ (d′ `C d)⇒ d a` d′)“
X; c;∀x(e

l
=⇒ a),Γ

”
→LCC`“

X ∪ Y ; d; a[t/x], ∀x(e
l

=⇒ a),Γ
”

Agents A are translated to a particular family of labeled
agents denoted A`0 with the labeling transformation, which
ensures the following conditions: each label carries a distinct
symbol taken from a set P of fresh predicate symbols and
the arguments enumerate exactly the free variables of the



ask. Such a labeling is simple to obtain as soon as P is large
enough to label each ask of a.

Example 5. The dining philosophers (example 2) can be
labeled as follows:

∀N(diner(N)
p1=⇒

∃K(∀I(recphilo(K, I)
p2(K,N)
=====⇒

fork(K, I) ‖
∃J.(J is (I + 1) modN ‖

(fork(K, I)⊗ fork(K,J)
p3(I,J,K)
======⇒

eat(K, I) ‖
(eat(K, I)

p4(I,J,K)−−−−−−→
fork(K, I)⊗ fork(K,J)) ‖

(I < N − 1
p5(I,J,K,N)−−−−−−−−→

recphilo(K,J)) ‖
recphilo(K, 0))))))

4.2 The ask-lifting transformation
The ask-lifting transformation is defined with two helper
functions. 〈a〉C transforms the agent a to constraints where
asks become linear tokens. 〈a〉∀ puts in parallel every ask
occurring in a and the representing token is added to the
guard. A persistent ask restores the token, a transient ask
consumes it.

The function 〈·〉C : A` → C is defined inductively as follows:˙
∀x(c

f(t)−−→ a)
¸C = f(t)

˙
∀x(c

f(t)
==⇒ a)

¸C = f(t)˙
∃x.a

¸C = ∃x.
˙
a

¸C ˙
a ‖ b

¸C =
˙
a

¸C ⊗ ˙
b
¸C ˙

c
¸C = c

The function 〈·〉∀ : A`0 → A∀ is defined inductively as
follows:˙

∀x(c
f(v)−−−→ a)

¸∀ = ∀vx(f(v)⊗ c f(v)
==⇒

˙
a

¸C) ‖ ˙
a

¸∀
˙
∀x(c

f(v)
==⇒ a)

¸∀ = ∀vx(f(v)⊗ c f(v)
==⇒ f(v)⊗

˙
a

¸C) ‖ ˙
a

¸∀
˙
∃x.a

¸∀ =
˙
a

¸∀ ˙
a ‖ b

¸∀ =
˙
a

¸∀ ‖ ˙
b
¸∀ ˙

c
¸∀ = 1

The function 〈·〉∀ is well-defined: every ask satisfies the
side-condition for A∀.

Definition 13. The agent ask-lifting function J·K ↪→ : A →
A↑ transforms the agent a to the agent JaK ↪→ = 〈a`〉∀ ‖ 〈a`〉C
where a is translated to a` by the labeling defined in sub-
section 4.1 with symbol predicates from a subset P of Pc

whose predicates do not appear in a. J·K ↪→ is well-defined as
soon as the set P is large enough to label agent a.

Theorem 5 (Bisimilarity). Let a be a labeled LCC
agent. Let ∼ ⊆ K × K be the relation such that κ ∼ κ′ if
and only if κ≡L (X; c; Γ) is ⇒-accessible from a and κ′ ≡L

(X; c⊗ 〈Γ〉C ; 〈a〉∀). Then, ∼ is a bisimilarity.

Corollary 3 (Semantics preservation). For every
LCC agent a:

• for all ⇒L-accessible configuration (X; c; Γ) from a,
there is a⇒L-accessible configuration (X; c′; 〈a〉∀) from
JaK ↪→ such that ∃X(c⊗ 〈Γ〉C) a`C ∃X ′(c′);

• for all ⇒L-accessible configuration (X; c′; 〈a〉∀) from
JaK ↪→, there exists a⇒L-accessible configuration (X; c; Γ)
from a and ∃X(c⊗ 〈Γ〉C) a`C ∃X ′(c′).

Example 6. The labeled diner (example 5) can be lifted
as follows:
∀N( p1 ⊗ diner(N)⇒

p1 ⊗ p2(K,N)⊗ recphilo(K, 0)) ‖
∀IKN( p2(K,N)⊗ recphilo(K, I)⇒

p2(K,N)⊗ fork(K, I)⊗
∃J(J is (I + 1) modN ⊗ p3(I, J,K)⊗

p5(I, J,K,N))) ‖
∀IJK( p3(I, J,K)⊗ fork(K, I)⊗ fork(K,J)⇒

p3(I, J,K)⊗ eat(K, I)⊗ p4(I, J,K)) ‖
∀IJK( p4(I, J,K)⊗ eat(K, I)⇒

fork(K, I)⊗ fork(K,J)) ‖
∀IJKN(p5(I, J,K,N)⊗ I < N − 1⇒ recphilo(K, J))‖
p1

5. ENCODING THE λ-CALCULUS IN CHR
The following transformation from pure λ-terms to LCC is
proved correct and complete with respect to the call-by-
value semantics of the λ-calculus [13]. Every function, aka
λ-value, is represented by a variable K. The constraint
apply(K,X, V ) represents that V should code the result
of the application of the function (coded by) K to the λ-
term (coded by) X. Therefore, the transformation of a
λ-abstraction λx.e coded by K should be a persistent ask
which transforms, for allX and V , the constraint apply(K,X, V )
to the equality constraint between V and the evaluation of
e[t/x], where t is the λ-term coded by X. The equality
constraint is put at the level of λ-variables. The constraint
value(K) indicates that the λ-term K has been reduced to
a value so as to encode the particular call-by-value strat-
egy [26].

Definition 14. For every λ-term e, JeK is a function from
variables to LCC agents. JeK is described inductively on the
structure of e:

• JXK(K) = 〈X = K ⊗ value(K)〉

• JλX.eK(K) =
∀XV (apply(K,X, V )⊗ value(X)⇒

JeK(V ) ‖ value(X))

• Jf eK(K) = ∃XY (apply(X,Y,K) ‖ JfK(X) ‖ JeK(Y ))

Each ask introduced by this transformation corresponds to
a λ-abstraction and this property is preserved by ask-lifting.
Therefore, the CSR program obtained by translation has one
rule for each λ-abstraction.

We explicit below the direct transformation from λ-terms
to CSR. We suppose that the labeling has been prepared
directly in λ-terms: λ-abstractions are of the form λiX.e
where i is a unique index.



Definition 15. For every λ-term e, [e] is a function from
variables to pairs CHR programs and queries, each compo-
nent being denoted [e]p and [e]g. [e] is described inductively
on the structure of e as follows.

• [X](K) = (∅; (X = K, value(K)))

• [λXi.e](K) = ([e]p(V ) ∪ {r}; pi(K,v))
where v = fv(λX.e) and
X and V are fresh variables and
r = 〈pi(K,v), value(X), apply(K,X, V )⇔

pi(K,v), value(X), [e]g(V ).〉

• [f e](K) = ([f ]p(X) ∪ [f ]p(Y );
([f ]g(X), [e]g(Y ), apply(X,Y,K)))

where X and Y fresh variables

The pi(v) CHR constraints are supposed to be fresh. Then,
the CSR program associated to e is P [e] = [e]p(R)∪{〈start(R,v)⇔
[e]g(R).〉} and the query is q[e] = start(R,v) with v = fv(e).

It is immediate that the program and the goal produced
by the transformation above correspond syntactically to the
composition of the three transformations: λ-terms to LCC
(14) to flat-LCC (13) to CSR (11). Therefore, the transfor-
mation preserves the semantics as composition of semantics
preserving transformations.

In the case of a CHR encoding, the rule associated to each λ-
abstraction can be denoted as a simpagation: 〈pi(K,v), value(X)\apply(K,X, V )⇔
[e]g(V ).〉.

Example 7. The λ-term (λ1X.λ2Y.X) A B is transformed
to the rules:

start (R,A,B) ⇔
p1(F1), apply(F1,A0,F2), apply(F2,B0,R),
A=A0, value(A0), B=B0, value(B0).

p1(F1), value(X) \ apply(F1,X,F2) ⇔ p2(F2,X).
p2(F2,X), value(Y) \ apply(F2,Y,R) ⇔ X = R, value(R).

and the following goal, where the variable R codes the result:

| ?− start(R, A, B).
p1(_) value(_X) value(_) value(_X) p2(_, _X)
R = A

6. CONCLUSION
We have defined compositional translations from CHR to
LCC and from labeled LCC to CHR and proved that se-
mantics are preserved with strong bisimilarity. Both CHR
and LCC languages are based on the same model of con-
current computation, where agents communicate through a
shared constraint store, with a synchronization mechanism
based on constraint entailment. This is a generalization of
the previous links between CHR and linear logic. As the
work for modules in LCC suggests[13], variables and CHR
constraints are expressive enough to embed a form of clo-
sures, and thus lead to a simple encoding for the λ-calculus.

Whereas the state during a CHR derivation is entirely de-
termined by the contents of constraint stores, an LCC con-
figuration contains suspended agents as well. The ask-lifting
transformation reveals that suspensions can be reified as lin-
ear tokens, which in turns become CHR constraints: tokens
acting as transient asks are consumed whereas tokens acting
as persistent asks are propagated.

Behaviors of programs or agents obtained by translation are
precisely related to their antecedents by (strong) bisimula-
tion. To our knowledge, only weak bisimulation results [27]
were formulated in the literature for CHR before. To achieve
strong bisimulation in our case, we have managed to circum-
scribe collaterally the non-determinism in the original oper-
ational semantics of CHR and in the operational semantics
of LCC.

Future work
Suggested transformations are straightforward enough to be
implemented. However, the moot point is to understand the
relevance of CHR refined semantics for the translated LCC
agents: the question of control in LCC is still open.

Interpreting operational semantics (indifferently CHR or LCC)
as a proof search method in linear logic reveals a parallel
between the elimination of solving non-determinism and fo-
calization theory [28] which remains to explore.

Transition systems considered here are non-labeled: this was
sufficient for semantics preservation and there are good in-
tuitions about the pair of involved firing rules at each step.
Formalizing these intuitions by labeling with rule names
seems feasible but with low interest. However, labels usu-
ally serve to follow messages that an agent either sends or
receives. A challenge would be to label ⇒-transitions by
constraints whereas each single transition consumes some
while adding others.

The closure encoding may suggest a new programming style,
complementary to the imperative RAM-based style recently
described [29]. Optimization of the CHR constraints which
reify closures could be explored.
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