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Abstract. To make constraint programming easier to use by the non-
programmers, a lot of work has been devoted to the design of front-end
modelling languages using logical and algebraic notations instead of pro-
gramming constructs. The transformation to an executable constraint
program can be performed by fundamentally two compilation schemas:
either by a static expansion of the model in a flat constraint satisfac-
tion problem (e.g. Zinc, Rules2CP, Essence) or by generation of proce-
dural code (e.g. OPL, Comet). In this paper, we compare both compi-
lation schemas. For this, we consider the rule-based modelling language
Rules2CP with its static exansion mechanism and describe with a formal
system a new compilation schema which proceeds by generation of pro-
cedural code. We analyze the complexity of both compilation schemas,
and present some performance figures of both the compilation process
and the generated code on a benchmark of scheduling and bin packing
problems.

1 Introduction

Constraint programming is a programming paradigm which relies on two compo-
nents: a constraint component which manages posting and checking satisfiability
and entailment of constraints over some fixed computational domain, and a pro-
gramming component which makes it possible to state the constraints of a given
problem and define a search procedure for solving it. To make constraint pro-
gramming easier to use by non-programmers, a lot of work has been devoted
to the design of front-end modelling languages using logical and algebraic no-
tations instead of programming constructs, e.g. OPL[14,7], Comet [10] , Zinc
[11,3], Essence [6] or Rules2CP [4,5,2].

Such modelling languages for constraint programming offer a high-level of
abstraction for stating constraint problems, and rely on default, possibly param-
eterized or adaptive, search strategies. The transformation to an executable con-
straint program can be performed by fundamentally two compilation schemas:
either by a static expansion of the model in a flat constraint satisfaction prob-
lem, or by generation of procedural code. The first schema by static expansion



has been adopted by Zinc, Essence and Rules2CP, while the second schema by
code generation has been implemented for OPL and Comet.

In this paper, we compare both compilation schemas. For this, we consider
the rule-based modelling language Rules2CP with its static exansion mechanism
described in [4], and introduce a new compilation schema which proceeds by
generation of procedural code. With this new implementation, called Cream, we
show that the code generation schema exhibits a time overhead of approxima-
tively a factor 2 at runtime w.r.t. the statically expanded code. However, we
show that the size of the procedural code is linear, which must be compared to
the potentially exponential size of the expanded code. In particular, for problems
where the search space is defined dynamically by values of variables at runtime,
the code generation schema is the only viable one.

Furthermore, in a rule-based modelling language such as Rules2CP, the
search tree is represented by a logical formula and search tree ordering heuris-
tics can be expressed declaratively by pattern-matching on the rules’ left-hand
sides [5]. Compared with other modelling languages capable of expressing search
heuristics, such as OPL/Comet for instance, rule-based pattern matching elimi-
nates the need to program with lists and indices and to introduce data structures
for defining the ordering criteria. Compared with Zinc, this mechanism provides
a possible mean to define heuristics for the default search procedure. The price
to pay for this expressivity however is in the compilation process which becomes
more complicated. This was our original motivation for defining the transforma-
tions with a formal system.

The rest of the paper is organized as follows. The next section defines the
syntax of Rules2CP, its polymorphic type system and the declarative semantics
of the language. Section 3 defines the static expansion schema with a formal
system that is reused in section 4 to define the code generation schema and to
analyze their complexity. Section 5 evaluates the performance of both compila-
tion schema and generated code on a benchmark of n-queens, scheduling and
bin packing problems. Finally we conclude on the merits of each compilation
schema.

2 Rules2CP Syntax and Declarative Semantics

2.1 Syntax

There are four data structures in Rules2CP:

– integer constants, with basic arithmetic operators and comparisons.
– finite domain variables, with indexicals and the equality constraint in addi-

tion to the operators shared with integer constants.
– lists, constructed by enumeration, interval between two integers and con-

catenation, and browsed with quantifiers and aggregators.
– records, with labeled fields used for projection.

The Rules2CP syntax is summarized in table 1. The non-terminal variable
and ident range over a countable set of names. The non-terminal integer ranges



over a finite intervalD ⊆ N which includes at least the values 0 and 1. Underlined
non-terminal var mark the binders which affect the underlined expr .

The sets of bound and free variables in an expression e, denoted bv(e) and
fv(e) respectively, are defined in the standard way: a variable is bound if it is
in the scope of a binder (let or foldl) or if it appears in the left-hand side of a
clause. Any assignment ν : var → D is homomorphically extended to a function
ν̃ : expr → expr .

program ::= clause ... clause
clause ::= domain ident := { ident,...,ident }

| object ident(var,...,var) := expr

| rule ident(var,...,var) := expr

| heuristics ident(var,...,var) := heuristics
| query expr

expr ::= variable | integer | error
| expr op expr where op ∈ {+, -, *, /}
| expr rel expr where rel ∈ {=, #, =<, <, >, >=}
| expr logop expr where logop ∈ {and, or, implies, equiv}
| not expr
| ident(expr,...,expr)
| let(var := expr, expr)

| [expr,...,expr] | [expr .. expr] | expr ++ expr
| length(expr) | nth(expr, expr)
| {ident: expr,...,ident: expr} | expr:ident
| foldl(var from expr,var in expr,expr)

| minimize(expr,expr) | maximize(expr,expr)
| search(heuristics,expr) | constraint(expr)
| dynamic(expr) | static(expr)

heuristics ::= conjunctive(expr for ident(var,...,var))

| disjunctive(expr for ident(var,...,var))

| ident(expr,...,expr)
| nil | heuristics and heuristics

Table 1. Rules2CP syntax

Free variables are not allowed in rule definitions. Free variables in object
definitions are allowed and denote finite-domain variables. They are indexed by
the head of the definition. For instance, the following definition introduces a new
finite-domain variable in the field row for each value of I.

object queen(I) := { row : _, column : I }.

The concrete Rules2CP implementation introduces some syntactic sugar:

– the let-construction is recursively extended for multiple bindings. For all n,
the let of n+1 bindings let(X0:=e0,...,Xn:=en,e) is defined with the sim-
ple let and the let of n bindings: let(X0:=e0,let(X1:=e1,...,Xn:=en,e)).



– forall(X in l, e) is a synonym for foldl(A from 1, X in l, A and

e) where A is a fresh variable.
– exists(X in l, e) is foldl(A from 0, X in l, A or e) where A is a

fresh variable.
– map(X in l, e) is foldl(A from [], X in l, A ++ [e]) where A is a

fresh variable.
– reverse(l) is foldl(A from [], X in l, [X] ++ A) where A and X

are fresh variables.
– foldr(A from i, X in l, e) is foldl(A from i,X in reverse(l), e)

where A is a fresh variable.

Example 1. The classical (unavoidable) n-queens problem can be modelled in
Rules2CP as follows. First, the board of queens can be defined by the following
object definitions:

object queen(I) := { row : _, column : I }.

object board(N) := map(I in [1 .. N], queen(I)).

For each integer I, queen(I) defines one record representing the queen in
column I. Then, the goal is to post the constraints over the list of queens B and
assign values to the free variables.

? let(N := 4, B := board(N),

queens_constraints(B, N) and

queens_labeling(variables(B), N)).

The predicate queens_constraints is defined by the following rules.

rule queens_constraints(B, N) := domain(B, 1, N) and safe(B).

rule safe(L) :=

all_different(L) and

forall(Q in L, forall(R in L,

let(I := Q:column, J := R:column,

I < J implies

Q:row # J - I + R:row and

Q:row # I - J + R:row))).

The rule safe(L) ensures that every queen in the list L is on a safe position:
the global constraint all_different prevents row attacks and simple binary
difference constraints prevents diagonal attacks.

The rule for queens_labeling(Vars, N) defines the search through a logical
formula which induces a basic labeling search tree on variables Vars.

rule queens_labeling(Vars, N) :=

search(mo(N), forall(Var in Vars, queens_labeling_var(Var, N))).

rule queens_labeling_var(Var) :=

exists(Val in [1 .. N], queens_labeling_val(Var, Val)).

rule queens_labeling_val(Var, Val) := Var = Val.



The parameter mo(N) for search refers to the middle out heuristics which is
defined by the following rule:

heuristics mo(N) :=

disjunctive(least(abs(N/2 - Val))

for queens_labeling_val(Var, Val)).

This statement specifies that the disjunctive formulae derived from queens_labeling_val

must be ordered by increasing value of abs(N/2 - Val) (middle out ordering of
values).

2.2 Type System

Rules2CP integrates a type system with five type constructors:

– int for integer values.
– fd for finite domain variables.
– constraint for first-order logic formulas.
– [τ] for (homogeneous) lists whose elements have type τ .
– {f1 :: τ1, ..., fn:: τn} for records with the fields f1, . . . , fn carrying

values of type τ1, . . . , τn respectively.

A free variable in a Rules2CP program is always an FD variable. The boolean
values true and false are not distinguished from the integers 1 and 0.

The type system enjoys a type inference algorithm à la Hindley-Milner: typ-
ing rules are driven by the syntax of the expression and induce type equality
constraints solved by unification. Type schemes with universal quantification are
given to polymorphic definitions and rules where arguments are not completely
specified.

Arithmetic operators and comparisons are overloaded to deal with both in-
teger values and FD variables. For example, the addition operator is typed
int + int :: int if both arguments are known to be of type int, otherwise it
is typed fd + fd :: fd. It is worth noting that Hindley-Milner does not allow
ad-hoc overloading in general. Here we made the choice to use int to follow
statically known integer values and fd for model variables. Some constructions
are specific to integer values: in particular, the list interval constructor has type
[int .. int] :: [int]. Indexical built-ins transform FD variables into integer
values: min(fd) :: int and max(fd) :: int.

Records are typed with row types [12], and two records are equal when they
have the same set of fields and when fields of the same name carry values of
equal types.

Example 2. Let us consider the two following rules defining the area and volume

of an object. The argument X is only accessed by projection and can be of
any record type containing at least the fields width and height (and depth for
volume).



area(X) = X:width * X:height

volume(X) = area(X) * X:depth

In the inferred type,

area({ height: fd, width: fd , A }) :: fd

volume ({ depth: fd , height: fd , width: fd , A }) :: fd

the unknown other fields are symbolized by a row variable. Such a row type
containing a row variable is said to be open. Row types without row variables
are closed.

In the following shape object definition

shape(Id) = { id: Id, width = _, height = _ }

the parameter Id can be of any type. The type inferred for shape is polymorphic
and parameterized by a type variable A given to the argument Id. The other ar-
guments are model variables (free variables at the right-hand side of a definition)
and are therefore typed with fd.

shape(A) :: { id: A, width: fd, height: fd }

The Hindley-Milner type inference with row types is known to be decidable
with a theoretical PSPACE-hard time complexity [8]. However, this worst-case
time complexity does not exhibit in practice and the type inference algorithm is
very efficient.

2.3 Declarative Semantics

Let M be a Rules2CP model. Let O(M) be the set of all the objects of M,
let R(M) be the set of all the rules, and Q(M) be the set of all the queries of
M. Queries are interpreted conjunctively: the query associated toM is q(M) =∧

q∈Q(M) q.
This section will characterize the solutions of the Rules2CP model M. A

solution is an assignment of all the free variables of M which satisfies all the
constraints of M. Free variables occurs in the query q(M) and in object defi-
nitions. The free variables in object definitions are distinct for each instance of
the object. The arguments of an object are restricted to belong to the following
grammar.

indexable ::= integer
| [indexable,...,indexable]
| {ident: expr,...,ident: expr}uid

Each indexable value v defines an index id(v) which serves to index the free
variables appearing in the object definition.

id : indexable → index
i ∈ integer 7→ constant(i)
[i1,...,in] 7→ [id(i1),...,id(in)]

{ident: expr,...,ident: expr}uid 7→ uid(uid)



An assignment for M is a tuple (νQ, νO), where:

– νQ : fv(q(M))→ D
– νO is a family of assignments which maps every object o ∈ O(M) and every

tuple (i1, . . . , in) ∈ indexn, where n is the arity of the head of d, to an
assignment νOo(i1,...,in) : fv(o)→ D

n ∈ N op n′ ∈ N→ n op n′

n ∈ N rel n′ ∈ N→ δ(n rel n′)

n ∈ {0, 1} logop n′ ∈ {0, 1} → δ(n = 1 logop n′ = 1)

not n ∈ {0, 1} → δ(n = 0)

e→ ν̃Q(e)
if query e ∈ Q(M)

o(e1,...,en)→ ν̃Oo(id(e1),...,id(en))(e)[X1 := e1, . . . , Xn := en]

if d = object o(X1,...,Xn) := e ∈ O(M)
and (e1, . . . , en) ∈ indexablen

p(e1,...,en)→ e[X1 := e1, . . . , Xn := en]
if d = rule p(X1,...,Xn) := e ∈ R(M)

let(x := v,e)→ e[x := v]

[n ∈ N .. n′ ∈ N]→

{
[n, n+ 1,...,n′] if n ≤ n′

[] otherwise

[e1,...,en] ++ [e′1,...,e′n]→ [e1,...,en,e
′
1,...,e′n]

length([e1, ..., en])→ n

nth(i ∈ {1, . . . , n}, [e1, ..., en])→ ei

{f1: e1,...,fn: en}:fi → ei

foldl(A from i,X in [e1,...,en],e)→ i �e e1 �e · · · �e en
where u�e v = e[A := u,X := v]

minimize(g,k)
maximize(g,k)
search(h,g)

constraint(g)
static(g)
dynamic(g)


→ g

Table 2. Small-step reduction semantics defining the success semantics of Rules2CP
(without distinguishing optimization from satisfaction predicates).

Let δ be the reification operator: δ(>) = 1 and δ(⊥) = 0. A solution for a
model M is an assignment (νQ, νO) for which the query of M is reduced to 1
by the small-step reduction described in table 2.



Definition 1. The set of observables Os(M) for the success semantics of M is
the set of solutions of M.

Os(M) = {(νQ, νO) | νQ(q(M))
∗→ 1}

3 Static Expansion Schema

The static expansion schema is defined by two transformations, the first one
producing intermediate code:

1. −−〈stc〉−→ expands a query to the deterministic code which adds the con-
straints

2. −−〈 stc
srch
〉−→ expands the search code.

The elimination of negations in formulae by descending them to the con-
straints with De Morgans laws are part of transformations, but are not pre-
sented.

3.1 Deterministic code generation

Built-in operators Reification transforms boolean values in integers and log-
ical operators in artihmetic operators. Partial evaluation occurs on arithmetic,
comparison and logical operators.

e1 −−〈stc〉−→ e′1 e2 −−〈stc〉−→ e′2
e1 op e2 −−〈stc〉−→ e′1 op e′2

e1 −−〈stc〉−→ e′1 e2 −−〈stc〉−→ e′2
e1 rel e2 −−〈stc〉−→ reify(e′1 rel e′2)

e1 −−〈stc〉−→ e′1 e2 −−〈stc〉−→ e′2
e1 logop e2 −−〈stc〉−→ reify(e′1 = 1 logop e′2 = 1)

e−−〈stc〉−→ e′

not e−−〈stc〉−→ reify(e′ = 0)

Definitions and calls Within this static expansion schema, definitions are fully
expanded. Free variables in object definitions are indexed and stored in a table
νO.

a1 −−〈stc〉−→ a′1
. . .

an −−〈stc〉−→ a′n
e[X1 := a′1, . . . , Xn := a′n]−−〈stc〉−→ e′

p(a1,...,an)−−〈stc〉−→ e′

{
r = rule p(X1,...,Xn) := e ∈ R(M)

fv(r) = ∅



a1 −−〈stc〉−→ a′1
. . .

an −−〈stc〉−→ a′n
σ(e)[X1 := a′1, . . . , Xn := a′n]−−〈stc〉−→ e′

p(a1,...,an)−−〈stc〉−→ e′


d = object o(X1,...,Xn) := e ∈ R(M)

σ = νOo(id(a′
1),...,id(a

′
n))

dom(σ) = fv(d)

Lists If its bounds are statically instantiated, a range is reduced to the list of
integers that it contains by partial evaluation.

e1 −−〈stc〉−→ l . . . en −−〈stc〉−→ u

[e1 .. e2]−−〈stc〉−→ [l, l + 1,..., u]

{
l, u ∈ N

l ≤ u

l1 −−〈stc〉−→ [d1, . . . , dn] l2 −−〈stc〉−→ [e1, . . . , em]

l1 ++ l2 −−〈stc〉−→ [d1,...,dn, e1,...,en]

e1 −−〈stc〉−→ e′1 . . . en −−〈stc〉−→ e′n
[e1,...,en]−−〈stc〉−→ [e′1,...,e′n]

Records Record projection need the record to be statically instantiated.

ei −−〈stc〉−→ e′i
{f1: e1,...,fn: en }:fi −−〈stc〉−→ e′i

fi ∈ {f1, . . . , fn}

e1 −−〈stc〉−→ e′1 . . . en −−〈stc〉−→ e′n
{f1: e1,...,fn: en } −−〈stc〉−→ {f1: e′1,...,fn: e′n }

Let-binding Substitutions are implicitly operated modulo alpha-conversion.

v −−〈stc〉−→ v′

let(X := v, e)−−〈stc〉−→ e[X := v′]

Combinators Combinators are expanded and require their list and initial ele-
ment arguments to be statically instantiated.

i−−〈stc〉−→ i0 l −−〈stc〉−→ [e1, . . . , en]
i0 �e e1 −−〈stc〉−→ i1

i1 �e e2 −−〈stc〉−→ i2 . . . in−1 �e en −−〈stc〉−→ in

foldl(A from i, X in l, e)−−〈stc〉−→ in

where u�e v = e[A := u,X := v]



Search By default, a logic formula f defines a reified constraint. In the context
of a search(f) predicate, f defines a search tree.

f −−〈 stc
srch
〉−→ f ′

search(f)−−〈stc〉−→ f ′
f −−〈stc〉−→ f ′

constraint(f)−−〈stc〉−→ f ′

A predicate minimize(f, c) minimizes the value of the finite domaine vari-
able V denoted by c following a branch and bound search. f is a formula implic-
itly interpreted as a search tree that constrain V to an assignment.

search(e)−−〈 stc
srch
〉−→ e′ c−−〈stc〉−→V

p(e, c)−−〈stc〉−→ p(e′, V )

{
p ∈ {minimize,

maximize}

Dynamic mode It is possible to dynamically evaluate (see Sec. 4) an expression
instead of statically expand it with the predicate dynamic/1.

e−−〈dyn〉−→ e′

dynamic(e)−−〈stc〉−→ e′
e−−〈stc〉−→ e′

static(e)−−〈stc〉−→ e′

Example 3. For the n-queens model presented in example 1, the static expansion
compilation schema procudes the following intermediate code for n = 4:

domain([Q_1_1,Q_2_1,Q_3_1,Q_4_1], 1, 4) and

all_different([Q_1_1,Q_2_1,Q_3_1,Q_4_1]) and

Q_1_1 # 1+Q_2_1 and Q_1_1 # -1+Q_2_1 and

Q_1_1 # 2+Q_3_1 and Q_1_1 # -2+Q_3_1 and

Q_1_1 # 3+Q_4_1 and Q_1_1 # -3+Q_4_1 and

Q_2_1 # 1+Q_3_1 and Q_2_1 # -1+Q_3_1 and

Q_2_1 # 2+Q_4_1 and Q_2_1 # -2+Q_4_1 and

Q_3_1 # 1+Q_4_1 and Q_3_1 # -1+Q_4_1 and

search(Q_1_1 = 2 or Q_1_1 = 3 or Q_1_1 = 1 or Q_1_1 = 4 and

Q_2_1 = 2 or Q_2_1 = 3 or Q_2_1 = 1 or Q_2_1 = 4 and

Q_3_1 = 2 or Q_3_1 = 3 or Q_3_1 = 1 or Q_3_1 = 4 and

Q_4_1 = 2 or Q_4_1 = 3 or Q_4_1 = 1 or Q_4_1 = 4)

It is worth noting that the complete cartesian product of all queens is not gener-
ated for the binary difference constraints thanks to the partial evaluation mech-
anism.

3.2 Non-deterministic code generation

By the −−〈 stc
srch
〉−→ transformation, the conjunction operator and becomes a se-

quence operator and the disjunction operator or becomes a non-deterministic
choice operator.

The formula f is expanded following −−〈stc〉−→ schema and the modification

described above is operated giving a non-deterministic code f ′ : f −−〈 stc
srch
〉−→f ′.



3.3 Correctness and complexity of the static expansion schema

Proposition 1. Given a Rule2CP model M, let M′ such that M −−〈stc〉−→
M′, then Os(M) = Os(M′) ( i.e., −−〈stc〉−→ preserves the model declarative
semantics.)

Proof. For every assignment (νQ, νO) forM, we check inductively on the deriva-

tion of −−〈stc〉−→ and −−〈 stc
srch
〉−→ that νQ(M)

∗→ νQ(M′). Most of derivations

are independent from assignment and verify this property by definition. Calls
to object definitions are restricted to indexable arguments and the table νO is
used for indexation. −−〈 stc

srch
〉−→ schema does not change the set of solutions with

respect to −−〈stc〉−→.

Definition 2. Given a Rule2CP model M, the fold rank α(s) of a symbol s is
defined inductively by:

α(s) = 0 if s is not the head symbol of a declaration or rule in M,
α(s) =max{n + α(s′) | L = R ∈ M, s is the head symbol of L and R con-
tains a nesting of n fold operators or quantifiers on an expression containing
symbol s′}.

The fold rank of M is the maximum fold rank of the symbols in M.

Definition 3. the definition rank ρ(s) of a symbol s is defined inductively by:

ρ(s) = 0 if s is not the head symbol of a clause in M,
ρ(s) = n+ 1, if s is the head symbol of a clause in M and n is the greatest
definition rank of the symbols in the right hand side of the clause.

The definition rank of M is the maximum definition rank of the symbols defined
in M.

Proposition 2. [4] For any Rules2CP model M, the size of the generated pro-
gram is in O(la ∗ br), where l is the maximum length of the lists in M (or at
least 1), a is the fold rank of M, b is the maximum size of the declaration and
rule bodies in M, and r is the definition rank of M.

Example 4. The fold rank of the n-queens model presented in example 1 is 2.
Therefore the size of the generated program is in O(l2). The bound is tight in
this example.

Example 5. The exponential size of the generated code in the definition rank of
the model can be reached with the following model:

rule c1(A) := c2(A+1) and c2(2*A)

rule c2(A) := c3(A+1) and c3(2*A)

...

rule cn(A) := c(A+1) and c(2*A)

rule c(A) := A # 666

In this example, the generated code for the query c1(X) is of size 2n.



4 The dynamic compilation schema

The dynamic compilation schema is defined by two transformations which pro-
duce intermediate code. The first transformation, noted −−〈dyn〉−→, expands a
query to a deterministic code which adds the constraints and calls the dynamic
search part. The second transformation, noted −−〈 dyn

srch
〉−→, rewrites the search

part to a non-deterministic code which performs the reordering and search. The
intermediate code follows the syntax of Rules2CP programs but allows recursion.
Search-tree directives S are eliminated and reformulated by −−〈 dyn

srch
〉−→.

It is worth noting that the operator or represents a reified ∨-constraint in
the deterministic code, and a choice-point in the non-deterministic code. The
syntactic construction delay(p(X)) is introduced in the intermediate code to
denote the symbolic term p(X) as opposed to a call to the definition p(X).
Such an intermediate code is then straightforward to translate to a Prolog or
Java program.

To illustrate dynamic compilation, let us consider two rule definitions that
constrain the shape of objects in a simple two-dimensional placement problem
of thin sticks, where the sticks can be either short (from 1 to 5 units), normal
(from 11 to 15 units) or long (from 21 to 25 units). A stick is a 1-unit wide
rectangle which can be either horizontal or vertical.

shape constraint(O) = exists(S, [1, 11 , 21],

shape stick(O, S, S + 4)).

shape stick(O, Min, Max) = domain(O:w, Min, Max) and O:h = 1

or domain(O:h, Min, Max) and O:w = 1.

The compilation scheme for fold described in the next section transforms the
expression shape constraint(S) into a code computing the same answers as
the following unfolded expression:

((1≤S:w and S:w≤1+4) and S:h=1) or ((1≤S:h and S:h≤1+4) and S:w=1)
or (((11≤S:w and S:w≤11+4) and S:h=1) or ((11≤S:h and S:h≤11+4) and S:w=1)

or (((21≤S:w and S:w≤21+4) and S:h=1) or ((21≤S:h and S:h≤21+4) and S:w=1)
or false)).

(1)

4.1 Transformation of the query to deterministic code

V ` ·−−〈dyn〉−→· reformulates search directives inductively over the structure of
Rules2CP expressions as follows. V is supposed to contain all the free variables
appearing in the expression: V is used to pass the context to auxiliary definitions
introduced by the translation.

Each definition p(X) = e is translated in the intermediate code to the defi-
nition: pd(X) = e′, where fv(e) ` e−−〈dyn〉−→ e′. Then, translated calls rely on
these definitions: V ` p(X)−−〈dyn〉−→ pd(X)

Recursive predicates iterating on lists are generated for each fold.

V ` l −−〈dyn〉−→ l′ V ` i−−〈dyn〉−→ i′

V ` foldl(A from i, X in l, e)−−〈dyn〉−→ q(l′, i′, V )



with q a new predicate symbol described by the following definitions, where
all variables are fresh with respect to V :

q([], I, V ) = I.

q([H | T], I, V ) = q(T, e′, V ). V ` e[A := I,X := H]−−〈dyn〉−→ e′

Other cases for −−〈dyn〉−→ are defined homomorphically with respect to sub-
expressions, taking care of scopes and name clashes: e.g.,

V ` d−−〈dyn〉−→ d′ V ·X ` e[V := X]−−〈dyn〉−→ e′

V ` let(V = d in e)−−〈dyn〉−→ let(X = d′ in e′)

where X is a fresh variable.
Search directives rely on the search transformation (defined in Sec. 4.2).

V ` h−−〈dyn〉−→ conjunctive(o1∧) ... and conjunctive(on∧) and

disjunctive(o1∨) ... and disjunctive(om∨ )

([o1∧, . . . , o
n
∧], [o1∨, . . . , o

m
∨ ]);V ` e−−〈 dyn

srch
〉−→ e′

V ` search(h, e)−−〈dyn〉−→ e′

4.2 Transformation of the search to non-deterministic code

The compilation of the search-strategy relies on the notion of O-layers in a tree:
for O ∈ {∧,∨}, we call O-layer of an ∧/∨-tree any maximal tree sub-graph with
either only ∧-nodes or only ∨-nodes.

The following ∧/∨-tree corresponds to the expression (1) given in the previ-
ous section, where layers have been circled:

∨∨
∧

∧

1≤S:w S:w≤1+4 S:h=1 ∧
∧

1≤S:h S:h≤1+4 S:w=1

∨∨
∧

∧

11≤S:w S:w≤11+4 S:h=1 ∧
∧

11≤S:h S:h≤11+4 S:w=1

∨∨
∧

∧

21≤S:w S:w≤21+4 S:h=1 ∧
∧

21≤S:h S:h≤21+4 S:w=1

false



The definition ofO-layers is generalized for Rules2CP expression syntax trees,
by letting layers go through let-bindings, definition calls, and in the right-hand
side of implies and through the tree intentionnaly constructed by fold. The
child nodes of a layer are the nodes which are child of a node in the layer without
being themselve in the layer. The root O-layer is the O-layer containing the root
node if it is not the dual of O, or the empty layer otherwise. By convention,
the root node is the (only) child of the empty layer. Tree reordering is applied
between all the child nodes of each O-layer: criteria defined for O ∈ {∧,∨}
associate a vector of scores to each child and children are reordered according
to their scores, lexicographically (the score returned by the first criterion for O
is considered first, then, in case of equality, the score of the second criterion for
O, and so on).

Neither the tree (due to fold over arbitrary lists) nor the scores (due to
indexicals) are supposed to be completely known at compile-time. Therefore,
the transformation generates code for computing the reordering at execution-
time rather than computing the reordering statically.

For a fixed pair of criteria (o∧,o∨), (o∧,o∨);V ` ·−−〈 dyn
srch
〉−→· produces code

which reorders the root O-layer of the tree and explores its children sequentially.
c∧ and c∨ are current score vectors (they have the same dimension than o∧
and o∨ respectively). Initially, scores are c−∞∧ and c−∞∨ , vectors whose every
component equals to bottom, since no criteria apply outside any definition. V `
·−−〈 dyn

srch
〉−→· is arbitrarily defined as (c−∞∧ , c−∞∨ );V ` ·−−〈 dyn

srch(∧)〉−→· to initiate

the transformation (the root layer, possibly empty, can always be considered

as being an ∧-layer). · −−〈 dyn
srch(O)

〉−→ · relies on the auxiliary transformation

(c∧, c∨);V ` · −−〈 dyn
list(O)

〉−→ · which produces code computing an associative

list: for each child node of the O-layer, the score vector of the node is associated
to the definition to call to explore the child recursively.

(c∧, c∨);V ` e−−〈 dyn
list(O)

〉−→ e′

(c∧, c∨);V ` e−−〈 dyn
srch(O)

〉−→ iter predicatesO(e
′)

where iter predicatesO(L) is an internal function which iteratively selects
the item of L which has the best score, executes the associated definition, then
consider the other items recursively, either in conjunction or in disjunction, ac-
cording to O.



Definitions and calls For each definition p(X) = e, the compilation produces
two definitions in the intermediate code, one for each kind of layer:

(u(C∧,o∧, p(X)),C∨); fv(e) ` e−−〈 dyn
srch(∧)〉−→ e′

(o∧,o∨);V ` rule p(X) := e−−〈 dyn
srch(∧)〉−→ p∧(C∧,C∨,X) = e′

(C∧, u(C∨,o∨, p(X))); fv(e) ` e−−〈 dyn
srch(∨)〉−→ e′

(o∧,o∨);V ` rule p(X) := e−−〈 dyn
srch(∨)〉−→ p∨(C∧,C∨,X) = e′

where the function u(c,o, p(X)) calculates the score vector c′, where compo-
nents corresponding to criteria matching p(X) are updated:

u(−→ci ,
−−−−−−−−−−−→
ei for pi(Xi), p(X)) =

−→
c′i

where:

c′i =

{
σ(ei) if σ(pi(Xi)) = p(X)

ci otherwise

Calls rely on one of these two definitions, depending on the kind of the current
layer.

(c∧, c∨);V ` p(X)−−〈 dyn
list(O)

〉−→ pO(c∧, c∨, X)

Boolean operators −−〈 dyn
list(∧)〉−→ aggregates lists in the root ∧-layer. A new

predicate q is introduced for each child node of the ∧-layer.

(c∧, c∨);V ` a−−〈 dyn
list(∧)〉−→ a′ (c∧, c∨);V ` b−−〈 dyn

list(∧)〉−→ b′

(c∧, c∨);V ` a and b−−〈 dyn
list(∧)〉−→ append(a′, b′)

(c∧, c∨);V ` a or b−−〈 dyn
list(∧)〉−→ [{costs = c∧,

predicate = delay(q(c∧, c∨, V )) }]

where q applies the transformation recursively to the sub-∨-layer (all vari-
ables are fresh with respect to V ):

q(C∧, C∨, V ) = e. (C∧,C∨);V ` a or b−−〈 dyn
srch(∨)〉−→ e

Dual definitions hold for −−〈 dyn
list(∨)〉−→



Filtering

V ` a−−〈dyn〉−→ a′ (c∧, c∨);V ` b−−〈 dyn
list(O)

〉−→ b′

(c∧, c∨);V ` a implies b−−〈 dyn
list(O)

〉−→ filter(cO, a′, b′)

where, filter(c, e, e′) is an internal function which returns e′ if e is true,
and returns the singleton list [{ costs = c, predicate = delay(true) }]
otherwise.

Let-binding

V ` v −−〈dyn〉−→ v′ (c∧, c∨);V · Y ` e[X := Y ]−−〈 dyn
list(O)

〉−→ e′

(c∧, c∨);V ` let(X = v in e)−−〈 dyn
list(O)

〉−→ let(Y = v′, e′)

where Y is a fresh variable.

Aggregators Aggregators use a special source symbol, rec, to handle recursion.

V ` reverse(l)−−〈dyn〉−→ l′

(c∧, c∨);V ` foldl(A from i, X in l, e)−−〈 dyn
list(O)

〉−→ qO(l
′, c∧, c∨, V )

where qO is a new predicate symbol described by the following definitions (all
variables are fresh with respect to V ):

qO([],C∧,C∨,V ) = i′.

qO([H | T],C∧,C∨,V ) = e′.

(C∧,C∨);V ` i−−〈 dyn
list(O)

〉−→ i′

(C∧,C∨);V ·H `
e[A := rec(q, T, V ), X := H]

−−〈 dyn
list(O)

〉−→ e′

and rec is translated to a recursive call to q:

(c∧, c∨);V ·H ` rec(q, T, V )−−〈 dyn
list(O)

〉−→ qO(T, c∧, c∨, V )

Constraints and sub-search directives Constraints and sub-search direc-
tives are children of the layer, therefore the transformation produces singleton
lists associating their score to a fresh predicate q.

(c∧, c∨);V ` e−−〈 dyn
list(O)

〉−→ [{costs = cO,
predicate = delay(q(V )) }]

where q applies the transformation recursively (all variables are fresh with

respect to V ):
q(V ) = e′. V ` e−−〈dyn〉−→ e′



Property 1. There are O(d · s) pd-, p∨- and p∧-definitions in intermediate code,
where d is the number of definitions in the Rules2CP code and s is the number of
search clauses. Each definition in the intermediate code, including the auxiliary
definitions for fold and sub-layers, has a size linear in the size of the original
Rules2CP definition. In particular, if there is one search clause, the intermediate
code has a size linear in the size of the original Rules2CP code. The complexity
of the transformation is linear in the size of the generated code.

Proof. −−〈dyn〉−→ and −−〈dyn
list
〉−→ are inductive transformations where each step

linearly composes results of the sub-transformations, either in auxiliary defini-
tions or in-place expressions. Therefore, there exists a multiplicative constant
factor between the size of the generated definitions and the size of the original
Rules2CP definition. For each Rules2CP definition p(X), there is one definition
pd in the intermediate code, plus two definitions p∨ and p∧ by search clauses.

This complexity result contrasts with Rules2CP transformation complexity[4]
where definition unfolding leads to exponential code size in the worst case.

Example 6. Consider the result of transforming the 4-queens Rules2CP model by
the dynamic compilation schema. Instead of expanding rule definitions as in the
static schema, the dynamic schema generates one definition of the intermediate
code for each definition, e.g. safe/1 and queens_constraints/1, as follows:

safe(L) =

all_different(rcp_variables(L)) and safe_foldl_2(L, 1, []).

queens_constraints(B, N) =

domain(rcp_variables(B), 1, N) and safe(B).

Similarly, one (recursive) definition is generated for each aggregator of the
model, e.g. the two nested universal quantifiers:

safe_foldl_2([], I_safe_foldl_2, _) = I_safe_foldl_2.

safe_foldl_2([Q_2 | Tail_2], I_safe_foldl_2, []) =

safe_foldl_2(Tail_2, I_safe_foldl_2 and

safe_foldl_3(L,1,Q_2), []).

safe_foldl_3([], I_safe_foldl_3, _) = I_safe_foldl_3.

safe_foldl_3([R_3 | Tail_3], I_safe_foldl_3, [Q_2]) =

safe_foldl_3(Tail_3,

(I_safe_foldl_3 and

let(I := rcp_att(Q_2, column),

J := rcp_att(R_3, column),

I < J implies

rcp_att(Q_2, row) # J - I + rcp_att(R_3, row) and

rcp_att(Q_2, row) # I - J + rcp_att(R_3, row))),

[Q_2]).



As for the search component, all rules in the scope of a search predicate
generate two definitions of the intermediate code, one for a use in a conjunctive
context and one for the disjunctive context.

When compiled with the dynamic schema, the model presented in the exam-
ple 1 can be advantageously modified by writing the rule queens_labeling_var
as follows:

rule queens_labeling_var(Var) :=

exists(Val in [domain_min(Var) .. domain_max(Var)],

queens_labeling_val(Var, Val)).

Here, the existential quantifier ranges over the actual bounds of queen vari-
ables instead of [1 .. N] as in the static version, thus allowing the search to
benefit from propagation.

Similarly, the search tree ordering heuristics can be written with a dynamic
criterion as follows:

heuristics mo :=

disjunctive(

least(abs((domain_max(Var) - domain_min(Var))/2 - Val))

for queens_labeling_val(Var, Val)).

5 Evaluation

In this section, we first compare the compilation times and run times of Rules2CP
and Cream. The performances are measured on classical N-Queens, Bridge Schedul-
ing, and Open-Shop Scheduling problems. Then, we report performances of
Cream on the Optimal Rectangle Packing problem which illustrates the need
for dynamic search strategies that cannot be compiled with the static expansion
schema.

5.1 Comparison of both compilation schemes

The Bridge problem consists in finding a schedule, involving 46 tasks subject to
precedence, distance and resource requirement constraints, that minimizes the
time to build a five-segment bridge [14] p. 209.

The Open-Shop problem consists in finding the non-preemptive schedule with
minimal completion time of a set J of n jobs, consisting each of m tasks, on a
set M of m machines. The processing times are given by a m× n-matrix P , in
which pij ≥ 0 is the processing time of task Tij ∈ T of job Jj to be done on
machine Mi. The tasks of a job can be processed in any order, but only one at
a time. Similarly, a machine can process only one task at a time. Here, the j6-4
(n = m = 6) and j7-1 (n = m = 7) Open-Shop problem instances (Brucker et
al. [1]) are considered.

Table 3 compares the compilation and execution runtimes in seconds in
Cream with those obtained in Rules2CP.



Rules2CP Cream

Compilation Solving Compilation Solving

8-Queens 0.070 0.000 0.020 0.000

16-Queens 0.290 0.000 0.020 0.020

32-Queens 1.840 0.005 0.020 0.080

64-Queens 15.430 0.030 0.020 0.340

96-Queens 58.510 0.060 0.020 0.740

Bridge 0.360 0.150 0.200 0.370

Open-Shop j6-4 1.370 160 0.790 325

Open-Shop j7-1 2.150 1454 1.310 2327

Table 3. Rules2CP and Cream programs runtimes in seconds.

In all N-Queens instances, the “first-fail variables selection heuristics” is
applied. In Rules2CP, first-fail is handled by the SICStus labeling/2 built-
in, whereas in Cream selection is handled by generated code (leaning on the
domain size/1 predicate in this case).

In all scheduling problem instances, the same heuristics on disjunctive formu-
lae with static criterion “schedule first the task that has the greatest duration”
was used. The implementation of the Cream compiler is a proof of concept of the
transformations presented in Sec. 4, and no effort has been made yet to improve
performances.

When heuristics on formulae are involved, the compilation in Cream is about
twice faster than in Rules2CP because ordering is delayed to execution time and
partial evaluation does not occur.

On the one hand, Cream yields structured constraint programs including
(recursive) clauses as a programmer would have written the model in Prolog.
On the other hand, Rules2CP produces optimized flatten constraint programs by
complete expansion of definitions and record projections with partial evaluation.

Solving runtimes of constraint programs generated by Cream are twice slower
than those generated by Rules2CP. This overhead is explained by the following
reasons: (a) in both Rules2CP and Cream, finite domain variables are global
variables. But in constraint programs generated with Cream, they are handled
by a backtrackable table associating names with actual variables. Whereas pro-
grams generated by Rules2CP does not need such a mechanism because of the
complete expansion scheme; (b) In Rules2CP, partial evaluation at compile-time
avoids the need of Prolog tests for handling logical implication as it is the case
in programs generated with Cream; (c) record projections, finite domain arith-
metic expressions computation, and goal calls in general are yet other sources of
overhead. As we considered optimization problems, this aggregation of overheads
for one call of the search goal is to multiply by the number of iterations of the
branch and bound algorithm; (d) finally, priority queues could advantageously
substitute for lists of pairs to enumerate children of layers.



It is worth noticing that these points are mainly implementation details and
should be avoided in future work by an optimizing compiler.

5.2 Dynamic search strategies

Our work on rule-base modelling languages for constraint programming origi-
nates from the EU project Net-WMS1 which aims at solving real-size non-pure
bin packing problems of the automotive industry. Three-dimensional Packing
problems tackled in this project involve many business constraints, in addition
to pure containment and non-overlapping constraints. To solve efficiently these
problems, it is mandatory to benefit as much as possible from propagation dur-
ing the search. Hence the need of expressing dynamic search strategies which
depend on the values or domains of variables at runtime.

The Optimal Rectangle Packing problem, also known as Korf’s benchmark
[9], consists in finding the smallest rectangle containing n squares of sizes Si = i
for 1 ≤ i ≤ n. In [13], Simonis and O’Sullivan have provided a simple but
efficient dynamic search strategy for solving this problem in SICStus Prolog,
improving the best known runtimes obtained by Korf up to a factor of 300.
We have transposed their model in Cream and report the performance figures
obtained with the same SICStus Prolog system in table 4

n Compilation Solving

Cream Cream Reference

18 0.650 17 9

19 0.700 17 8

20 0.780 30 17

21 0.810 100 63

22 0.870 430 297

23 0.930 2700 1939

24 0.980 3900 2887

25 1.060 27020 20713

Table 4. Optimal Rectangle Packing problem runtimes in seconds (Linux / Intel Core2
CPU, 2.83GHz).

Table 4 shows that with fast compilation times, Cream generates SICStus
Prolog code nearly as efficient as the hand-written SICStus Prolog program of
[13] for the different instances of the problem.

6 Conclusion

Modelling languages for stating combinatorial optimization problems can be
interpreted to produce executable constraint programs by fundamentally two

1 http://net-wms.ercim.org



compilation schemas: the static expansion schema and the procedural code gen-
eration schema. We have shown that the static expansion schema may generate
constraint programs of exponential size in the level of nesting of definitions
(which remains limited in practice), while the code generation schema generates
code of linear size. In our implementation of both schemas for the rule-based
modelling language Rules2CP, we have shown that the code generation schema
exhibits a time overhead of approximatively a factor 2 at runtime w.r.t. the stat-
ically expanded code. Furthermore the code generation schema makes it possible
to benefit from propagation during search by executing dynamical search strate-
gies specified in Rules2CP with a good efficiency as shown on optimal rectangle
packing problems. All these results thus militate in favor of the procedural code
generation schema which should probably be preferred to the static expansion
schema.

The declarative specification of ordering heuristics by pattern matching on
rules’ left-hand sides introduced in Rules2CP should also be applicable to other
modelling languages that use definitions, such as Zinc [11,3] for instance. A
natural extension for future work is the specification of more complex search
procedures which are currently limited in our system to depth-first backtracking
and branch and bound search.
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