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Full abstraction

Theorem 1 ([JL87popl])

TX
P ↑ ω = Ogs(P)

TX
P ↑ ω ⊂ Ogs(P) is proved by induction on the powers n of TX

P .
n = 0, i.e., ∅, is trivial. Let Aρ ∈ TX

P ↑ n, there exists a rule
(A← c|A1, . . . ,An) ∈ P, s.t. {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ n− 1 and X |= cρ. By
induction {A1ρ, . . . ,Anρ} ⊂ Ogs(P). By definition of Ogs and
∧-compositionality. we get Aρ ∈ Ogs(P).
Ogs(P) ⊂ TX

P ↑ ω is proved by induction on the length of derivations.
Successes with derivation of length 0 are ground facts in TX

P ↑ 1.
Let Aρ ∈ Ogs(P) with a derivation of length n. By definition of Ogs

there exists (A← c|A1, . . . ,An) ∈ P s.t. {A1ρ, . . . ,Anρ} ⊂ Ogs(P) and
X |= cρ. By induction {A1ρ, . . . ,Anρ} ⊂ TX

P ↑ ω. Hence by definition of
TX
P we get Aρ ∈ TX

P ↑ ω.
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SBDS

In 99, [BW99cp] proposed a completely different symmetry
breaking technique, Symmetry Breaking During Search
(SBDS).

It overcomes the main drawback of static symmetry breaking:

the choice of the representative element in each class of
solutions is forced

breaking all trials at improving performance by clever search
heuristics
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Symmetric Constraints

Consider a set Σ of symmetries, such that for any constraint c
and all σ ∈ Σ one can find a constraint σ(c) corresponding to
the symmetric of c
X |= σ(c)ρ⇔ cσ(ρ)

For example, if σ is the value symmetry that turns v into N− v
we have σ(X = v) is X = (N - v)

We can now define a technique for removing symmetries
adding constraints when choice-points are explored, à la
branch and bound.
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Enumerating Solutions

The general method of enumeration of solutions is, at each
choice-point, to add

on one branch the constraint c assigning a value to a
variable;
on the other branch the negation of this constraint ¬c

SBDS adds supplementary constraints on the second branch:

supposing a partial assignment A at the choice-point,
for all σ ∈ Σ such that σ(A) = A one adds σ(¬c).
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Example

Consider the 4-queens problem over X1,X2,X3,X4 ∈ {1, 2, 3, 4}

with a single (value-)symmetry: v 7→ 5− v

suppose that at the top of the search tree the leftmost branch
corresponds to X1 = 1

when backtracking at the top, the next branch to explore will
correspond to the constraint:

X1 ̸= 1 ∧ X1 ̸= 4
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Unicity

Theorem 2 (Non-symmetric Solutions)
If ρ1 and ρ2 are two solutions obtained by SBDS, then

∀σ ∈ Σ σ(ρ1) ̸= ρ2

Proof.
Suppose that σ0(ρ1) = ρ2 for some σ0
let A be the partial assignment at the choice-point that
differentiates the ρ1 and ρ2 branches, and c the constraint
added on the ρ1 branch there.
We have σ0(A) = A
since both are solutions, we get that c is true in ρ1
and that σ0(¬c) is true in ρ2 i.e., ¬c is true in ρ1
⇒ contradiction
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About Partial Assignments

If one adds systematically σ(¬c) even when σ(A) ̸= A

one loses solutions!

Example 3
Consider again the 4 queens problem,
at some point we explore the branch X1 = 2 and then X2 = 1
⇒ failure ⇒ X2 ̸= 4
we never find any solution…

Conversely, new local symmetries might appear in some
partial assignments (the overhead of handling those is usually
not worth it).
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Detecting Symmetries

[GHK02cp] show that constraint symmetries such as those
considered for SDBS form a group

they link CSPs (in ECLiPSe) with the GAP computational
abstract algebra system

many symmetries (even local ones) can be detected
automatically

remains costly and not much used…
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Prescriptive vs. Descriptive Typing

“Well typed programs never go wrong”

Descriptive type systems try to upper-approximate the
denotation (i.e., success set) of a program.

Subject reduction ensures that well-typedness is conserved
during the execution.

append(X, [4, 5], []) has no success…
append([], X, X) has a success, whatever X

What should the type of append be?
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Prescriptive Type Systems

Defined by the user to express the intended use of function
and predicate symbols in programs.

Orthogonal to the question of the feasibility of type inference.

Subject reduction becomes a verification of the consistency of
the type system w.r.t. the execution model (in our case,

the
CSLD resolution).
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Meta-programming

functor(X, F, N).
call(G).
setof(X, G, L).

Even parametric polymorphism, introduced by Damas-Milner
for ML and adapted to logic programming by
[MycroftOkeefe84ai] is not enough.

Subtyping is!

list(α) ≤ term
pred ≤ term

list(α) ̸≤ pred
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[CF01tplp]

they obtain subject reduction w.r.t. substitutions and CSLD
resolution with p.o.-terms and covariant constructors.

type checking amounts to solving left-linear and acyclic
inequalities ⇒ linear algorithm
type inference is slightly harder (non-left-linear inequalities
appear)

the whole SICStus library was checked (around
600 predicates, quite similar to SWI) with type declarations
only for the about 100 built-ins.
Inferred types were exact in vast majority; a few errors were
also detected.
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Constraint Handling Rules (CHR)
Constraint programming language for Computational
Logic

Created by Thom Frühwirth in 1991

Multi-headed guarded committed-choice rules transform
multi-set of constraints until exhaustion

Ideal for concise executable specifications and rapid
prototyping

Any-time (approximation), on-line (incrementality),
concurrent algorithms for free.

Logical and operational semantics coincide strongly

High-level supports program analysis and transformation:
Confluence/completion, operational equivalence,
termination/time complexity, correctness…
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Syntax

Simplification rule:
H⇔ C | B

Propagation rule:
H⇒ C | B

H: non-empty conjunction of CHR constraints
C: conjunction of built-in constraints
B: conjunction of CHR and built-in constraints

Constraint Theory T for Built-In Constraints
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Example

X  ≤ Y ⇔ X = Y | true
X  ≤ Y ∧ Y ≤ X ⇔ X = Y
X  ≤ Y ∧ Y ≤ Z ⇒ X ≤ Z

A ≤ B ∧ B ≤ C ∧ C ≤ A
−→ (transitivity)
A ≤ B ∧ B ≤ C ∧ C ≤ A ∧ A ≤ C
−→ (antisymmetry)
A ≤ B ∧ B ≤ C ∧ A = C
−→ (built-in solver)
A ≤ B ∧ B ≤ A ∧ A = C
−→ (antisymmetry)
A = B ∧ A = C
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Operational Semantics

Apply rules until exhaustion in any order (fixpoint
computation).

Simplify

(H⇔ C | B)[x/y] ∈ P T |= Gbuiltin ⊃ ∃x(H = H′ ∧ C)
H′ ∧G −→ G ∧H = H′ ∧ B

Propagate

(H⇒ C | B)[x/y] ∈ P T |= Gbuiltin ⊃ ∃x(H = H′ ∧ C)
H′ ∧G −→ H′ ∧G ∧H = H′ ∧ B

Refined operational semantics [Duck04iclp]: Similar to Prolog,
CHR constraints evaluated depth-first from left to right and
rules applied top-down in program text order.
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Operational Properties

Computation can be interrupted and restarted at any
time. Intermediate results approximate final result.

Monotonicity and Incrementality
If G −→ G′
then G ∧ C −→ G′ ∧ C

Termination, Consistency and Confluence can be
analyzed:

▶ Termination is as usual difficult in general…
▶ For terminating programs, confluence is analyzed on

critical pairs
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Applications

Many CLP solvers have been written in CHR

B
FD
R (linear)
unification
scheduling
typing inequalities
…

Even outside of the CLP community:
Understanding functional dependencies via Constraint
Handling Rules, Martin Sulzmann, Gregory J. Duck, Simon
Peyton Jones, and Peter J. Stuckey.
[Journal of Functional Programming 2007].
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CHRsss
Many extensions:

probabilistic
CHR∨

soft constraints

Many implementations

SWI-Prolog
Haskell
Java

Many semantics

refined
compositional
classical logic
linear logic
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Generalities

Lost of pretty good submissions (haven’t looked at everything
thoroughly yet).

Almost no use of the existing literature. Could have helped
especially for the third part. Programming is like research: do
not forget to check the state-of-the-art.

The pure CLP(H) part seems to have been easy for everyone.

Almost every possible optimization was tried, but not all in
any solution.

Since in many cases the “optimal optimizations” are a
question of combination, I will simply give you ideas instead
of a specific solution.
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check_dice
check_dice([H | T]) :-

check_dice_pairs([H | T], H).

check_dice_pairs([A], B) :-
check_dice_pair(A, B).

check_dice_pairs([A, B | L], C) :-
check_dice_pair(A, B),
check_dice_pairs([B | L], C).

check_dice_pair(A, B) :-
check_dice_pair2(A, B, Won, Tot),
P is Won / Tot,
P > 0.5,
format(”~w␣>␣~w␣with␣p:␣~w~n”, [A, B, P]).
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check_dice_pair2([], _, 0, 0).
check_dice_pair2([A | LA], LB, W, T) :-

check_dice_pair3(A, LB, WW, TT),
check_dice_pair2(LA, LB, WWW, TTT),
W is WW + WWW,
T is TT + TTT.

check_dice_pair3(_, [], 0, 0).
check_dice_pair3(A, [B | LB], W, T):-

check_dice_pair3(A, LB, WW, TT),
T is TT + 1,
(

A > B % @> is the term ordering
->

W is WW + 1
;

W = WW
).
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dice
dice(N, F, D) :-

M is N*F,
dice_init(N, F, D, M),
cycle(D, _W),
flatten(D, DD),
all_different(DD),
break_sym(D),
labeling([ff], DD),
check_dice(D).

dice_init(0, _, [], _).

dice_init(N, F, [D | DL], M) :-
N > 0,
length(D, F),
D ins 1..M,
NN is N-1,
dice_init(NN, F, DL, M). 34



cycle([H | T], W) :-
cycle2([H | T], H, W).

cycle2([], _, 0).

cycle2([A], B, W) :-
win(A, B, W).

cycle2([A, B | L], C, W) :-
win(A, B, WW),
cycle2([B | L], C, WWW),
W #=< WW, % some way to get the min
W #=< WWW. % purely with constraints
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win(A, B, C) :-
win2(A, B, L),
length(L, N),
M is N // 2,
fd_cardinality(L, C),
C #> M.

win2([], _, []).

win2([A | LA], LB, LC) :-
win3(A, LB, L),
append(L, LL, LC),
win2(LA, LB, LL).

win3(_, [], []).

win3(A, [B | LB], [A #> B | LC]):-
win3(A, LB, LC).
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Cardinality

fd_cardinality([], 0).

fd_cardinality([H | T], C) :-
B #<==> H,
C #= B + D,
fd_cardinality(T, D).

This is very different from creating a choice point like:

win3(A, B, C) :-
A #> B,
...

win3(A, B, C) :-
A #=< B,
...
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break_sym([[1 | D] | DD]) :-
order_rec([[1 | D] | DD]).

order_rec([]).

order_rec([H | T]) :-
order(H), % same as chain(H, #=<)
order_rec(T).

order([]).

order([_]).

order([H1, H2 | L]) :-
H1 #=< H2,
order([H2 | L]).
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dice

dice(N, F, D) :-
M is N*F,
dice_init(N, F, D, M),
cycle(D, W),
flatten(D, DD),
all_different(DD), % not permutation
break_sym(D),
labeling([ff,max(W)], DD), % B&B not findall
check_dice(D),
write(W),
nl.

Not bad (optimizes 4 dice with 5 faces or 3 dice with 6 faces
in less than 30s)
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Alternative approach
Hand-code the branch and bound procedure on W and search
with W instantiated!
Does gain a little in SWI

Does gain 2 orders of magnitude in GNU…

> gprolog --consult-file dice.pl
...
| ?- dice(3, 6, L).
[1,9,10,11,12,14] > [5,6,7,8,13,18] with p: 0.58333333333333337
[5,6,7,8,13,18] > [2,3,4,15,16,17] with p: 0.58333333333333337
[2,3,4,15,16,17] > [1,9,10,11,12,14] with p: 0.58333333333333337
21

L = [[1,9,10,11,12,14],[5,6,7,8,13,18],[2,3,4,15,16,17]] ?

(85 ms) yes
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Optimizing the generation

One can actually create cycles of 3 or 4 dice, whatever the
number of faces

They can be chained for any number of dice (except 5)

One can also add faces to a given cycle (carefully)

Or on the contrary limit the number of different faces
If S ̸= 4 you need

▶ 5 if N mod 3 = 0
▶ 6 otherwise
▶ 7 values for N=5

If S=4 then you need one more

These cycles have a low winning ratio (close to 0.5) not useful
for optimization.

41



Optimizing the optimization
Upper bound given by reasoning on median value (see
[Trybula 1965, Savage 1994]):

p ≤ 3

4
− 1

2n
− α

1

4n2

where α = 1 if S is odd and 0 if S is even.

This bound is reached if N is equal to S

or greater

If N < S this limit might be unreachable (e.g. 24 wins for 4
dice with 6 faces, but 21 if only 3 dice…)

Some lower bounds can be obtained through the same kind of
reasoning as before, but not perfect (e.g. 14 for 3 dice with 5
faces, but 15 can be obtained and upper bound would be 16)

Other ones come from other systematic constructions
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Minizinc

From minizinc.org’s tutorial

include ”alldifferent.mzn”;

int: n; % number of dices
int: s; % number of sides

array[1..n,1..s] of var 1..n*s: dices;

constraint dices[1,1] = 1;
constraint alldifferent([ dices[i,j] | i in 1..n, j in 1..s ]);
constraint forall ( i in 1..n, j in 1..s-1 ) ( dices[i,j] < dices[i,j+1] );
constraint forall ( i in 1..n ) (

sum ([1 | j,k in 1..s where dices[i,j] > dices[i+1 mod n, k]]) > n*s / 2
);

solve satisfy;

output [”dices = ”,show(dices),”\n”];

Many global constraints in “globals.mzn”.

Used for the CP contest each year.
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Issues

What happens when a solver does not have a global
constraint?

Not very declarative, even though loops and comprehensions
have been added.

Search strategies are crucial, yet limited possibilities via
search annotations.
e.g. solve :: int_search(q, first_fail, indomain_min,
complete) satisfy;
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Hot topics in CP

Global constraint decomposition with same AC propagation
(there might still be an overhead, typically linked to the
number of variables).

“Search is dead”
Getting rid of search strategies through Lazy Clause
Generation (the CP equivalent of nogood learning in SAT).

High-level search strategies definitions through reified
constraints. In CLPZinc, a search strategy is a constraint.
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CLPZinc
dichotomy(X, Min, Max) :-

dichotomy(X, ceil(log(2, Max - Min + 1))).

dichotomy(X, Depth) :-
Depth > 0,
Middle = (min(X) + max(X)) div 2,
(X <= Middle ; X > Middle),
dichotomy(X, Depth - 1).

dichotomy(X, 0).

dichotomy_list([], _Min, _Max).
dichotomy_list([H | T], Min, Max) :-

dichotomy(H, Min, Max),
dichotomy_list(T, Min, Max).

var 0..5: x;
:- dichotomy(x, 0, 5).
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Compiles to…
var 0..5: x;
var 0..5: X3; var 0..5: X5; var 0..1: X7;
var 0..5: X4; var 0..5: X6; var 0..5: X2;
var 0..1: X8; var 0..5: X1; var 0..1: X9;
constraint X7 = 0 <-> x <= (X1 + X2) div 2;
constraint X8 = 0 <-> x <= (X3 + X4) div 2;
constraint X9 = 0 <-> x <= (X5 + X6) div 2;
solve :: seq_search([

indexical_min(X1, x),
indexical_max(X2, x),
int_search([X7], input_order, indomain_min, complete),
indexical_min(X3, x),
indexical_max(X4, x),
int_search([X8], input_order, indomain_min, complete),
indexical_min(X5, x),
indexical_max(X6, x),
int_search([X9], input_order, indomain_min, complete)

]) satisfy;
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And/Or tree

∧

∨
x > (X5 + X6) div 2

x <= (X5 + X6) div 2

indexical_max(X6, x)

indexical_min(X5, x)

∨
x > (X3 + X4) div 2

x <= (X3 + X4) div 2

indexical_max(X4, x)

indexical_min(X3, x)

∨
x > (X1 + X2) div 2

x <= (X1 + X2) div 2

indexical_max(X2, x)

indexical_min(X1, x)
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