
Docker setup

You can start
docker pull registry.gitlab.inria.fr/soliman/inf555/td3
now
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Thanks to P. Flener, L. Michel and P. Van Hentenryck for inspiration
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What is “Local Search”

iterative optimizationmethod

looking for an assignment of variables to values of their
domains that minimizes some cost

localmove from solution to neighboring solution

try to (always or not) decrease the cost of the selected
assignment
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How does this relate to Constraint Solving?

Compared to what we have seen up to now:

only optimization

requires defining:

▶ neighborhood and

▶ selection criterion (single state)

▶ stopping criterion

⇒ incomplete (i.e., not optimal) but low cost (time and memory)
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Constraint-Based Local Search

A pure CSP can be transformed easily into a LS problem:

Use constraint violations as cost function

Some constraints can be given an infinite cost, these are hard
constraints that all states have to satisfy

Other are soM constraints that will guide the search
Allows us to solve over-constrained problems

Neighborhood is defined as changing a single variable assignment

In that framework redundant constraints play two roles: propagation
and search
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Violations

Violations defined on basic constraints

Can be composed:
𝑉(𝑐􏷠 ∧ 𝑐􏷡) = 𝑉(𝑐􏷠) + 𝑉(𝑐􏷡)
𝑉(𝑐􏷠 ∨ 𝑐􏷡) = min(𝑉(𝑐􏷠), 𝑉(𝑐􏷡))

𝑉(¬𝑐) = 1 −min(1, 𝑉(𝑐))

⇒ not compatible with the above!

For global constraints, one can decompose or not
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N-Queens as a Local Search problem

constraint alldifferent(q);
constraint alldifferent([q[i] + i | i in 1..n]);
constraint alldifferent([q[i] - i | i in 1..n]);

Count violations as the total number of identical pairs in an
alldifferent constraint

Very dependent on the model! (dual, symmetries, etc.)
But the state space does depend too!

Could use themax number of equalities instead of their sum
try to guide the search as much as possible
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4 qZqZ
3 ZqZq
2 0Z0Z
1 Z0Z0

a b c d

alldifferent lists:
→

[4, 3, 4, 3] ↘[4, 4, 6, 6] ↗[4, 2, 2, 0]

Violations:
2+2+1 = 5

Neighborhood:
Move one queen in its column
i.e., change the valuation of a single
variable
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Example: Greedy Local Search (aka. Hill-climbing)

Pure exploitation (intensification)

Analog for the discrete case of gradient descent

Select themost improving neighbor (random if multiple bests)

Stop when no improvement found

9



Example: Min. Conflict Search (MCS) / Heuristics (MCH)

Original heuristics for CBLS on SAT problems (and still part of GSAT,
WalkSAT, etc.)

Implemented by default in the COMET system

Basis of most other heuristics

Select the neighbor (i.e., variable assignment) that minimizes the
number of violated constraints

IOW, Hill-Climbing with violations saturated at 1
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Issues

Local extrema

Plateaus

Diagonal ridges (i.e., moves of same cost leading to different extrema)

Big neighborhood (might require two steps: variable and then value
selection)
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Real local optimum

Necessary to get through a
worse solution to get to a
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Example: Randomwalk

Pure exploration (diversification)

Select a random neighbor

Remember the best solution found

Stop aMer a given number of iterations
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Being smarter

⇒ combine a way to escape local extrema with some Hill-climbing

Some examples:
diagonal moves (see Practical work session)

Simulated annealing (idem)
Tabu search
random restarts (underrated!)

What if restarts were actually done simultaneously?
population-based approaches
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Simulated annealing

Inspiration from the physics’ world (Metropolis-Hastings algorithm
for a sampling states of a thermodynamic system, 1953)

Allow some exploration while the temperature of the system is high

Decrease temperature with time (i.e., iterations)

Focus on exploitation when the system cools down
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© Texas Materials Institute (UTexas)
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Practically

At each step:
select a random neighbor (no guidance at all…)

compare its cost with the current cost

accept it or not depending on the temperature but always
accept improving moves

stop if the move was rejected and the temperature too low
(return the best solution found)

Parameters: initial/stopping temperature, cooling regime,
acceptance condition
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Parameters

Initial temperature:

allow any move (random-walk)

Ending temperature: would reject most non-improving moves
(hill-climbing)

Cooling regime: observed to have almost no impact
usually 𝑇𝑡+􏷠 = (1 − 𝑐)𝑇𝑡 with a small cooling-rate, e.g., 𝑐 = 0.01

Acceptance condition: mostly coming from physics
consensus: exp(𝛥/𝑇) > 𝑟, 𝛥 is current cost minus new cost,
𝑟 is a random variable in [0, 1)
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Results

Very oMen used as a basic LS algorithm

Decent results on the Traveling Salesman Problem
not for finding an optimal solution but a good solution

On the N-Queens problem…

we’ll see during the practical work session

Not always easy to fine-tune temperature
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Tabu search

Created by F. Glover in 1986

At its core: Hill-Climbing with some kind of memory forbidding
moves

At each step select the best neighbor that is not tabu

Stop aMer a given number of iterations

Tabu moves force diversification

in a more guided way than
random-walks

22
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Types of memory

The Tabu-list is usually a list of recently visited states, to avoid cycles
(classical issue with random diagonal moves)

Its length is a sensitive parameter

Sometimes not a full state but a feature is stored

in that case it might be necessary to overcome tabu when a better
candidate is found

Intermediate-termmemory (intensification) and Long-termmemory
(diversification) rules can be added
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Results

Same as SA but better/worse

More guided, but more parameters

Good results on TSP

Even trickier to fine-tune (especially complex Tabu structures/rules)
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Population-based approaches

Many versions: Genetic algorithms, Particle Swarm Optimization,
Ant-Colony Optimization, etc.

Main idea: instead of restarts, use the information of parallel runs
while they are running

Balance between exploration/exploitation,
diversification/intensification remains hard
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Conclusion

Incomplete but efficientmethod, even with simple algorithms (e.g.,
Hill-climbing with restarts and diagonal moves)

Used for hard problems for which a complete search is not tractable
(e.g., Ant Colony on graph problems by C. Solnon)

Or for problems that are over-constrained (and can be expressed as
optimization) (e.g., MaxSAT)

Can be made generic for CSPs once violations are defined

Remains oMen tricky to parametrize
Does never prove optimality
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Docker setup

You can start
docker pull registry.gitlab.inria.fr/soliman/inf555/td3
now
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