Docker setup

You can start

docker pull registry.gitlab.inria.fr/soliman/inf555/td2 now
Boolean satisfiability, SAT solvers (part 1)

Sylvain Soliman

September 25th, 2019

Thanks to Lintao Zhang and David L. Dill for inspiration
Propositional Logic

Propositional formulae are built from the following:

- **Constants:** 1 and 0
- **Propositional variables:** \(a, b, p, q, x, y, \ldots\)
- **Logical Connectives:** \(\lor, \land, \neg\)
 (others too, e.g., \((a \Rightarrow b) \iff (\neg a \lor b)\))

No quantifiers, no functions

A formula itself is a function \(\mathbb{B}^n \mapsto \mathbb{B}\) of its \(n\) variables

Satisfiable iff \(\exists\) mapping of variables to constants such that the formula becomes true (tautology)
Boolean Satisfiability problem

Definition
The Boolean satisfiability problem (SAT) is the decision problem whether a propositional formula ϕ is satisfiable, i.e., $\phi^{-1}(1) \neq \emptyset$

First NP-complete problem (Cook 1971)

- solving SAT efficiently provides a way to solve any other NP problem rather efficiently
Combinatorial Problems

Most combinatorial problems (AI planning, theorem proving, model checking, resource allocation, etc.) are in NP

Ubiquitous in the industry

Solver competitions in the academia

▶ SAT was well studied for the last 40 years and now very efficient (millions of variables)

We will see how SAT-solvers work and how to use one
Formula Representation

Representing formulae by the state space, i.e., the Boolean hypercube \mathbb{B}^n is exponential

Same for truth tables

Better representations:
- Boolean circuit
- Binary Decision Diagram (BDD)
- Boolean formula in normal form
Conjunctive Normal Form — CNF

Used in most modern SAT solvers

Functions represented as a big conjunction (\(\land\) sometimes noted multiplicatively) of clauses, i.e., disjunctions (\(\lor\) sometimes noted +)

of literals (a variable \(x\) or its negation \(\neg x\) or \(x'\))

\[(x'(y' + z'))' = x + yz\]
Normalization

Eliminate constants:
- $x1 = x$
- $x0 = 0$

Optionally do more simplifications
- $xx = x$
- $xx' = 0$
- etc.

If the formula is a constant, no need for CNF

Careful! applying distribution leads to an exponential blowup
Tseytin’s Transformation

Add **new variables** for subformulae of the original formula, e.g.

\[\phi = pq + \psi \]

Introduce \(x \leftrightarrow p \land q \), i.e., \((x \Rightarrow (p \land q)) \land ((p \land q) \Rightarrow x)\)

\[(x' + pq)((pq)' + x)\]

\[(x' + p)(x' + q)(p' + q' + x)\]

\[\phi = (x + \psi)(x' + p)(x' + q)(p' + q' + x) \]
Example — The N-Queens revisited

Given an integer N, write a (mathematical) Boolean satisfiability problem representing the N-Queens problem that you already saw last week.

All variables need to be Boolean.

Try to write the constraints in CNF.
Clauses Optimizations

Once in clause form:

\[(p + p + ...) = (p + ...)\]

\[(p + p' + ...)(\psi) = \psi\]

Avoid introducing two variables in Tseytin’s transformation for \(\phi\) and \(\neg\phi\)

Now, we have to solve:

\[(p + q + r)(p' + q' + r)(p' + q + r')(p + q' + r')\]
Clauses Optimizations

Once in clause form:

\[(p + p + ...) = (p + ...)\]

\[(p + p' + ...)(\psi) = \psi\]

Avoid introducing two variables in Tseytin’s transformation for \(\phi\) and \(\neg\phi\)

Now, we have to solve:

\[(p + q + r)(p' + q' + r)(p' + q + r')(p + q' + r')\]
Naïve Solver

A naïve solver could try possible assignments by backtracking

Until either all clauses have a true literal (return SAT)

or some clause has all false literals (return UNSAT)

Very slow, unless early SAT or UNSAT result
Iterative variable elimination and clause rewriting for clauses with one incompatible variable (p and p')

$$(a+b+c)(b+c'+f')(b'+e) \rightarrow (a+c+e)(c'+e+f') \rightarrow (a+e+f') \rightarrow \text{SAT}$$

$$(a+b)(a+b')(a'+c)(a'+c') \rightarrow (a)(a'+c)(a'+c') \rightarrow (c)(c') \rightarrow \text{UNSAT}$$

If some literal is always positive (or negative), i.e., pure, don’t try the other valuation

Potential memory explosion issue

Avoids EXPSPACE issue of Davis-Putman

Replace DP with **Depth First Search (DFS) and BCP** to obtain DPLL, the current basis of all SAT solvers

Unit propagation a.k.a. Boolean Constraint Propagation (BCP):
- if only one literal of a clause doesn’t currently evaluate to 0 ⟹ set it to 1
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]
DPLL example

$$(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)$$
$$(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)$$

Diagram:

- a
- b
- 0

SAT (d=1)

Pure 0

⊥ 0

⊥ 1
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]
DPLL example

\((a' + b + c)(a + c + d)(a + c + d')(a + c' + d')(a + c' + d')(a' + b + c')(a' + b' + c)\)
DPLL example

\((a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\)
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d')\]
\[(a + c' + d')(b' + c' + d')(a' + b + c')(a' + b' + c)\]
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]

\[
\text{0} \quad \text{a} \\
\quad b \\
\quad \begin{array}{c}
\text{0} \\
\text{Pure} \\
\text{c} \\
\text{0} \\
\text{1} \\
\bot \\
\bot
\end{array}
\]
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d')(a + c' + d')(b' + c' + d')(a' + b + c')(a' + b' + c)\]
DPLL example

\((a' + b + c)(a + c + d)(a + c + d')(a + c' + d)\)
\((a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\)
DPLL example

$$(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)$$
$$(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)$$
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]
DPLL example

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)
(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]
C’est bien, mais pas suffisant !

Learning from conflicts:
\[a \land b \land c \Rightarrow \text{conflict} \]

is equivalent to:
\[\text{no conflict} \Rightarrow \neg a \lor \neg b \lor \neg c \]

When a conflict occurs, add a new clause to the initial problem!
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)\]
\[(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)\]
\[(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]

\[a = 0\]
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)\]
\[(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]

\[a = 0, b = 0\]
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)
(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]

\[a = 0, b = 0, c = 0\]

Conflict: \[a = 0 \land c = 0, \text{i.e., } a'c'\]
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)\]

\[a = 0, b = 0, c = 0\]

Conflict: \[a = 0 \land c = 0\], i.e., \[a'c'\]

We can add the new non-conflict clause: \[(a'c')' = (a + c)\]
Backjumping

We can use conflicts to backtrack better: **Conflict-driven backtracking**

A conflict clause will lead to BCP when the second from last variable gets instantiated.

Sometimes you can jump even more (cf. Unique implication point).

In our example, adding \((a + c)\) will instantiate \(c\) to 1 by BCP as soon as \(a = 0\) is chosen: we can backtrack to that level and proceed from here...
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)(a + c)\]
DPLL example revisited

\((a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a' + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)(a + c)\)

\(a = 0\)
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)
(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)(a + c)\]

\[a = 0\] BCP
DPLL example revisited

\[(a' + b + c)(a + c + d)(a + c + d')(a + c' + d)(a + c' + d')(b' + c' + d)(a' + b + c')(a' + b' + c)(a + c)\]

\[a = 0 \text{ BCP: } c = 1\]

We get the \(d\) conflict without needing to go through the choices for \(b\) or \(c\), only unit propagation
There’s more...

Most of the computation time is taken by BCP: **optimize unit propagation**

The procedure remains a search procedure: use **heuristics** to choose variables and assignments
Variable/Value selection heuristics

There are many heuristics

For values (try True or False first?)

But mostly for variables, e.g.,

- RAND (random)
- MOM (Maximum Occurrences on clauses of Minimum Size)
- DLIS/DLCS (Dynamic Largest Individual/Combined Sum in unresolved clauses)
- etc.

But there will be a course dedicated to heuristics in CSPs in general
Optimizing BCP

BCP takes a lot of time because of bookkeeping:
- Find all unit clauses;
- Detect conflicts;
- Detect satisfied clauses;
- Undo all of this on backtracking!

Many algorithms (SATO, Chaff, etc.) optimize this process with significant impact on the solver performance.

You will see the cost of naive BCP in TD.
Literal Counting Scheme

Basic optimization

Maintain a count of *non*-false literals in each clause

Unit clause when $k = 1$
The remaining literal has to be found and instantiated to 1

Conflict when $k = 0$
Idea: a clause can become Unit when all but one of its literals are 0. Just pick two literals to watch and ignore the rest. Maintain this as an invariant. Handle clauses with a single literal as a special case. Maintain the state and pending assignments as stacks. Undoing assignments on backtrack maintains our invariant!
Idea: a clause can become Unit when *all but one* of its literals are 0
Chaff

Idea: a clause can become Unit when all but one of its literals are 0

Just pick two literals to watch and ignore the rest
Maintain this as an invariant

Handle clauses with a single literal as a special case

Maintain the state and pending assignments as stacks

Undoing assignments on backtrack maintains our invariant!
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[(a + b')\]
\[(a' + d)\]
\[(a')\]
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[(a + b')\]
\[(a' + d)\]
\[(a')\]

Watched literals
Example

\((b + c + a + d + e)\)
\((a + b + c')\)
\((a + b')\)
\((a' + d)\)
⇒ \((a')\) Special case of BCP

Watched literals
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[(a + b')\]
\[(a' + d)\]

⇒ \[(a')\] Special case of BCP

Watched literals

Current assignment: \[a = 0\]
Pending:
Example

\[(b + c + a + d + e) \Rightarrow (a + b + c')\]

\[(a + b')\]

\[(a' + d)\]

\[(a')\]

Watched literals

Current assignment: \(a = 0 \)

Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e) \Rightarrow (a + b + c')\]

Replace \(a = 0\) by an unassigned literal

\[(a + b')\]
\[(a' + d)\]
\[(a')\]

Watched literals

Current assignment: \(a = 0\)
Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[\Rightarrow (a + b + c')\]
\[(a + b')\]
\[(a' + d)\]
\[(a')\]

Watched literals

Current assignment: \(a = 0\)
Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[\Rightarrow (a + b')\]
\[(a' + d)\]
\[(a')\]

Watched literals

Current assignment: \(a = 0\)
Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
⇒ \[(a + b')\] Unit! Record assignment
\[(a' + d)\]
\[(a')\]

Watched literals

Current assignment: \(a = 0\)
Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[\Rightarrow (a + b')\]
\[(a' + d)\]
\[(a')\]

Watched literals

Current assignment: \(a = 0 \)
Pending: \(b = 0 \)

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[(a + b')\]
\[\Rightarrow (a' + d)\]
\[(a')\]

Watched literals

Current assignment: \(a = 0\)

Pending: \(b = 0\)

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[(a + b')\]
\[\Rightarrow (a' + d)\] Satisfied
\[(a')\]

Watched literals

Current assignment: \(a = 0 \)
Pending: \(b = 0 \)

Maintain watched literals!
Example

\[
\Rightarrow (b + c + a + d + e) \\
(a + b + c') \\
(a + b') \\
(a' + d) \\
(a')
\]

Watched literals

Current assignment: \(a = 0 \ b = 0 \)
Pending:

Maintain watched literals!
Example

\[\Rightarrow (b + c + a + d + e) \]
\[(a + b + c') \]
\[(a + b') \]
\[(a' + d) \]
\[(a') \]

Watched literals

Current assignment: \(a = 0 \ b = 0 \)

Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e) \Rightarrow (a + b + c')\]

\[(a + b')\]

\[(a' + d)\]

\[(a')\]

Watched literals

Current assignment: $a = 0 \ b = 0$

Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[\Rightarrow (a + b + c')\]
\[(a + b')\]
\[(a' + d)\]
\[(a')\]

Watched literals

Current assignment: \(a = 0 \) \(b = 0 \)

Pending: \(c = 0 \)

Maintain watched literals!
Example

$$\Rightarrow (b + c + a + d + e)$$

$$= (a + b + c')$$

$$= (a + b')$$

$$= (a' + d)$$

$$= (a')$$

Watched literals

Current assignment: $a = 0 \ b = 0 \ c = 0$

Pending:

Maintain watched literals!
Example

⇒ \((b + c + a + d + e)\)
 \((a + b + c')\)
 \((a + b')\)
 \((a' + d)\)
 \((a')\)

Watched literals

Current assignment: \(a = 0\) \(b = 0\) \(c = 0\)
Pending:

Maintain watched literals!
Example

\[(b + c + a + d + e)\]
\[(a + b + c')\]
\[(a + b')\]
\[(a' + d)\]
\[(a')\]

Watched literals

Current assignment: \[a = 0 \quad b = 0 \quad c = 0\]

Pending: Nothing to do, done with BCP!

Maintain watched literals!
“You don’t have to think too hard when you talk to teachers.”

— J. D. Salinger
You can start

docker pull registry.gitlab.inria.fr/soliman/inf555/td2

now

and then

docker run -p 8888:8888 -p 8080:8080 \
-v "PWD":/home/jovyan/work \
registry.gitlab.inria.fr/soliman/inf555/td2