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Part I

Decision problems,
optimization, complexity

and modelling
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Decision Problems

Finite input
▶ Words
▶ Rational
numbers

▶ Images
▶ Sounds
▶ Programs
▶ …

yes/no output
▶ providing an arbitrary solution is optional
▶ providing all solutions is another class:
enumeration problem

4



Examples
We will see during the class:

Can we place𝑁 queens on a chessboard with no
attack?
Do we have enough rooms for the lectures?
assignment problem
Can we land in the next 20 mn a given set of
flights arriving in Orly? scheduling
Can we find a sequence of actions to achieve a
given goal? planning
…

Other classical examples include routing (traveling
salesman), personnel staffing, etc.
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Optimization Problems

Input: finite data
same as before

output: optimal cost
▶ single number, or
▶ vector of numbers formulti-objective optimization

▶ providing an arbitrary optimal solution is optional
▶ providing all solutions is another class:
enumeration problem
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Howmany rooms are necessary to give the
lectures?
What is the time required to land a given set of
flights arriving in Orly?
Howmany flights from a given set of flights can
land in the next 20min?
…

An optimization problem admits one associated
decision problem: Is there a solution of given cost 𝑘?
Several optimization problems can be associated to a
decision problem (choice of the inputs treated as
objective function)
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Mono-objective vs. Multi-objective
optimization

The cost is always finite data

An unique rational number for mono-objective
optimization.

single optimization criterion
possibly a robustness criterion w.r.t.
perturbations
the aggregation of multiple criteria representing
a trade-off
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Mono-objective vs. Multi-objective
optimization

Some finite vector of rational numbers for
multi-objective optimization

(𝑓, 𝑔) < (𝑓′, 𝑔′) ≜ (𝑓 < 𝑓′ ∧ 𝑔 ≤ 𝑔′) ∨ (𝑓 ≤ 𝑓′ ∧ 𝑔 < 𝑔′)

The optimal cost vectorsmax(𝑓, 𝑔) not unique:
Pareto frontier
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Computational Time-complexity Classes

An algorithm belongs to time-complexity class 𝐶 if it
requires atmost 𝐶(𝑛) elementary operations on a
random access machine for an input of size 𝑛

A problem belongs to class 𝐶 if there exists an
algorithm in 𝐶 to solve it

𝑔(𝑛) ∈ 𝑂(𝑓(𝑛)) ≜ ∃𝑘, 𝑛􏷟 ∀𝑛 > 𝑛􏷟 𝑔(𝑛) ≤ 𝑘 ⋅ 𝑓(𝑛)
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Examples

𝑂(1) constant time, independent of the input
𝑂(𝑛) linear time
𝑂(𝑛 log 𝑛) best possible complexity for sorting
𝑂(𝑛􏷡) quadratic time
P / PTIME polynomial time, i.e. 𝑂(𝑛𝑘) for some 𝑘
𝑂(2𝑛)
EXPTIME exponential time, i.e. 𝑂(𝑘𝑛) for some 𝑘
𝑂(2􏷡𝑛)
Non-elem. not bounded by a finite tower of

exponentials𝑂(2􏷡􏷫
…
)
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Non-deterministic Time-complexity

NP: class of languages recognized in polynomial time
by a non-deterministic Turing machine
≡ decision problems with proofs verifiable in PTIME

E.g., disjunctive scheduling, timetabling, planning, …

NP-complete: class of problems in NP that can
encode in polynomial time any other NP problem, i.e.,
the hardest NP problems

E.g., boolean satisfiability, graph coloring, disjunctive
scheduling, …
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NP-hard: class of problems harder than NP, i.e., they
can encode in polynomial time any NP problem

E.g., optimization problems with NP-complete
associated decision problem
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Space-complexity Classes

An algorithm belongs to a space complexity class 𝐶 if
it requires at most 𝐶memory locations
PSPACE: polynomial space, i.e.,𝑂(𝑛𝑘) for some 𝑘

Why do we have NP⊂PSPACE?

Iterative deepening!
Bounded backtracking with increasing depth 𝑑
At depth 𝑑, 𝑑 binary choices to remember,𝑂(𝑑) space
Computation of result at𝑂(𝑛𝑘) depth: 𝑂(𝑛𝑘) space
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Time Complexity ≠ Size of the Search Space

Size of the solution domain:
bad upper bound for time-complexity

Sorting 𝑛 integers !𝑛 𝑂(𝑛 log 𝑛)
Placing 𝑛 queens 𝑛𝑛 or !𝑛

𝑂(1) analytic solution
Fermat Theorem ∞ 𝑂(1)
∀𝑛∃?𝑎𝑏𝑐 𝑎𝑛 + 𝑏𝑛 = 𝑐𝑛 𝑛 >? 2 (A. Wiles 1994)

Separation results (like P ≠ NP) are hard:
need to quantify on all mathematical properties
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Theoretical Complexity only Bounds the
Practical Complexity
Worst-case complexity ≠ average time-complexity
(random inputs)

Can we solve NP-hard problems on very large
instances?

Yes! But not on all (even small) instances
(probably exponential)

Practical instances may happen to be easy
— Polynomial class
— Phase transition
— Pathological examples (exponential algorithm with
polynomial empirical complexity)
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Constraint Satisfaction Problems

Input:
Finite set of Variables 𝑥􏷠, … , 𝑥𝑛
Corresponding Domains of values 𝐷􏷠, … ,𝐷𝑛
Finite set of Constraints 𝑐􏷠, … , 𝑐𝑘
Optional objective function 𝑓(𝑥􏷠, … , 𝑥𝑛) ∈ ℝ

Output:
Decision ∃?(𝑥􏷠, … , 𝑥𝑛) ∈ 𝐷􏷠 ×⋯×𝐷𝑛

s.t. 𝑐􏷠 ∧⋯∧ 𝑐𝑘
Optimization min

𝑐􏷪∧⋯∧𝑐𝑘
𝑓(𝑥􏷠, … , 𝑥𝑛)

Solutions argmin
𝑐􏷪∧⋯∧𝑐𝑘

𝑓(𝑥􏷠, … , 𝑥𝑛)
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The𝑁 Queens Problem

𝑁 Queens on an𝑁 ×𝑁 chessboard with no attack

Variables: 𝑥􏷠, … , 𝑥𝑁 (columns)
Domains: 𝐷𝑖 = {1, … ,𝑁} (lines)
Constraints: “not same line”
∀𝑖 < 𝑗 𝑥𝑖 ≠ 𝑥𝑗
“not same diagonal”
∀𝑖 < 𝑗 𝑥𝑖 ≠ 𝑥𝑗+ 𝑖− 𝑗∧𝑥𝑖 ≠ 𝑥𝑗 − 𝑖+ 𝑗
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MiniZinc Constraint Modelling Language

int: n;
array[1..n] of var 1..n: queens;

constraint forall (i, j in 1..n where i < j) (
queens[i] != queens[j] /\
queens[i] != queens[j] + j - i /\
queens[i] != queens[j] + i - j

);

solve satisfy;
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(Declarative) Programming as Modeling
1940 Machine language
1954 Fortran: arithmetic expressions and control flow
1959 Lisp: functions over lists (Church’s 𝜆-calculus)
1960 Algol: algorithms
1970 C: for whole operating system
1972 Prolog: first-order logic
1975 Smalltalk: objects
1978 ML: typed functions
1984 Constraint Logic Programming
1990 Constraint programming libraries for C++
1991 Python
1996 Java: object-oriented threaded programming
2008 Zinc: solver-independent constraint language

…
20



Von Neumann vs. Constraint machine
memory of values

programming variables
memory of constraints
mathematical variables

𝑉􏷠

𝑉𝑖

𝑉𝑗
𝑉𝑖 ← 𝑉𝑗 + 1

write

read

𝑋𝑖 ∈ [3, 15]
∑ 𝑎𝑖𝑋𝑖 ≥ 𝑏
card(1,

[𝑋 ≥ 𝑌 + 5,… ])

𝑋𝑖 = 𝑋𝑗 + 2

𝑋𝑖 ≥ 5?

ad
d

test

and-concurrency
or-parallelism
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Constraints are Domain Filtering Agents

for each constraint 𝑐𝑖
for each variable 𝑥𝑗 in 𝑐𝑖
compute the projection 𝑃𝑖𝑗 of
the solutions on 𝑥𝑗
over-approximate if necessary
𝐷𝑗 ← 𝐷𝑗 ∩ 𝑃𝑖𝑗 x

y

c(x,y)

communication through shared variables in ∧

Or-branches: no communication, easy to parallelize
And-concurrency: lots of comm., difficult to parallelize

22



Part II

MiniZinc, Jupyter and
friends…
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MiniZinc

Most of the course will use MiniZinc as
programming/modelling language

MiniZinc
high-level

FlatZinc
low-level

compile
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MiniZinc syntax

A MiniZinc programmay contain parameters

int: i = 1;
int j;
j = 2;

Fixed value (named constants), of type
int, float, bool or string

May be given in a separate data file (.dzn)

25



MiniZinc syntax
A MiniZinc programmay contain decision variables

var int: u;
var 1..10: v;

Only int or float, given with an optional domain
Parameters and variables can appear in constraints
(using the usual arithmetic and Boolean relation
operators)

constraint u = 18 * v + 42;
constraint alldifferent([x, y, z]);
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Additional MiniZinc Syntax
It is possible to define sets and arrays of objects

set of int: STUDENT = 0..n;
% m[i] is the mark of student number i
array[STUDENT] of var int: m;

Iterators over those structures are given

constraint exists(s in STUDENT)
(m[s] = 20);

constraint forall(s in STUDENT)
(m[s] <= 20);
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Final Bits

At least one solve statement must appear in a
MiniZinc model

solve satisfy;
solve maximize u+3*v;
solve minimize sum(i in STUDENT)(m[i]);

output takes a list of strings and displays them

Many other things (function or predicate definition,
enums, comprehensions, etc.)⟶ in TDs
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Jupyter

Work will be done using Jupyter Notebooks

Assuming some basic knowledge of Python

Otherwise see: https://docs.python.org/3/
tutorial/introduction.html

Code editing will use a version of VS Code embedded
in a browser. (vim and emacs are also provided)
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Docker

All will be run from Docker containers

Same environment for everyone

Do not forget to save your work!
upload it to the Moodle at the end of the TD session
(and later…)
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Setup

1 Download Docker
https://docs.docker.com/install/

2 Install Docker

3 Pull the image for the course

docker pull \
registry.gitlab.inria.fr/soliman/inf555
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Windows Users

You might need Docker Toolbox (and not CE) if you are
using Family Edition
https://docs.docker.com/toolbox/
toolbox_install_windows/

You might need to use 192.168.99.100 instead of
localhost for connecting to Jupyter

If all else fails, use VirtualBox to install an Ubuntu
image and follow the instructions to install Docker
there
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TD1
Pull the missing files

docker pull \
registry.gitlab.inria.fr/soliman/inf555/td1

Run on local port 8888 with the work directory of the
container pointing to where you launch the command

docker run -p 8888:8888 -p 8080:8080 -v \
”$PWD”:/home/jovyan/work \
registry.gitlab.inria.fr/soliman/inf555/td1

You can now start the TD: http://localhost:
8888/notebooks/TD.ipynb
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