
MPRI 2015-2016
Constraint Programming (2.35.1) exam

Reified constraints
Sylvain Soliman

November 24, 2015

1 Lexicographic order constraint
Suppose given a CLP(FD) language, like SWI-Prolog, with finite domain con-
straints: X #= Y + Z, X #\=Y + Z, X #=<Y + Z, X #>=Y + Z and their counter-
parts without Z.

Question 1.1
Write a non-deterministic CLP program lexleq(L1, L2) enforcing the lex-

ical order constraint between two tuples represented as lists with the same
number of FD variables, using only constraints given above.

Question 1.2
Write the first two iterations of the TP operator on the above program.

Suppose now that reified constraints are available for each of the FD con-
straints given above, and their combination using #\/, #/\, #<==>, etc.

Question 1.3
Write a deterministic CLP program enforcing the lexical order constraint

between two lists of FD variables.

Question 1.4
Give an example where the second program (the deterministic one) propagates

strictly more than the first one (assuming arc-consistency on the elementary
constraints).

1



2 CC definition and semantics
Suppose now again that only FD constraints are given, but this time in a
CC(FD) concurrent constraint programming language, i.e., tells and asks are
given for X #= Y + Z, X #\=Y + Z, X #=<Y + Z, X #>=Y + Z and their counter-
parts without Z.

When there is no ambiguity, tells can be omitted, but with careful paren-
thesizing.

For the reasons illustrated in the previous section, we want to add to our
language reified constraints of the form:

B #<==> c

where B is a boolean variable with domain {0, 1}, and c is one of the above
FD constraints. The reified constraint enforces that the boolean B equals 1 if
and only if the constraint c is satisfied.

Question 2.1
Write a deterministic (without the choice operator +) CC(FD) program P

defining the constraint B #<==>X #>=Y as a three-argument predicate, for the
Ots observable.

Question 2.2
Give a denotational semantics JP, B #<==>X #>=Y K of the constraint defined

above, related to the Ots observable. Recall precisely how these two semantics
are linked.

Note that it will not be necessary to decompose the sets ↑ c and ↓ c for the
FD constraints considered, but that possible simplifications should be done.

Question 2.3
Write a non-deterministic version of program P , using +.
What can you say about its observables “of interest”?

2



3 LCC definition and semantics
Let us now consider how to implement the same reified constraints B #<==>c
as in the previous section, but in LCC(H). We suppose that FD variables
are represented, as one of you suggested during class, through synchronization
constraints corresponding to some upper (ub) and lower bounds (lb) and not
only the least upper bound (max) and greatest lower bound (min) as in class.

domain(X,Min,Max) = tell(lb(X,Min)) ∥ tell(ub(X,Max))

Note that now, you can have several domain constraints on an FD variable.

Question 3.1
Write the predicate geq_x(X, Y) corresponding to the action on X of the tell

for X #>=Y.

Question 3.2
Supposing that the above tell is given, write the geq(B,X, Y ) program corre-

sponding to B #<==>X #>=Y in LCC(H).

The logical semantics of our program might use, contrary to what we did in
class, Intuitionistic Logic (LJ, not the linear one, ILL).

Question 3.3
Give a sound logical semantics in LJ of LCC agents, and prove its soundness.
Give an example of non-completeness of that semantics with respect to an

observable of your choice.

3



4 Internalizing search as reified constraints
We have seen briefly in class that any search strategy can be internalized as con-
straint propagation and labelling over boolean variables and reified constraints.

Here is an SWI-Prolog program that corresponds to the CLPZinc encoding
of a dichotomic search of a variable between two bounds.
:- use_module(library(clpfd)).

dichotomic_search(X, Min, Max) :-
X in Min..Max,
MaxIter is ceiling(log(Max - Min + 1)/log(2)),
dichotomic_search_rec(X, L, MaxIter),
label_and_indexicals(X, L).

dichotomic_search_rec(_, [], 0).
dichotomic_search_rec(X, [MinX, MaxX, B | L], N) :-

N > 0,
% in FD expressions / is the Euclidean division
B #<==> X #> (MinX + MaxX)/2,
M is N - 1,
dichotomic_search_rec(X, L, M).

label_and_indexicals(_, []).
label_and_indexicals(X, [Min, Max, B | L]) :-

% fd_inf and fd_sup are indexicals on the current
% min and max values in the domain of an FD variable
fd_inf(X, Min),
fd_sup(X, Max),
(

var(B) % B not instantiated yet
->

format("~w␣=<␣X␣=<␣~w~n", [Min, Max]),
label([B]),
label_and_indexicals(X, L)

;
true

).

Question 4.1
Draw the search trees corresponding to the execution of the goals:
- dichotomic_search(X, 0, 4).
- X #\=2, dichotomic_search(X, 0, 4).

On top of the obvious gain to target any CP solver with the same CLPZinc
source, one of the benefits of this approach is that there can be propagation
from the current search state to the strategy.

Question 4.2
Give an example where the use of equivalence constraints B #<==>c allows

for a better propagation than the usual strategy-directed search that corresponds
to B #==>c.

4


