Symmetries and Symmetry Breaking

François Fages INRIA Rocquencourt, Francois.Fages@inria.fr

- 1. Introduction, Logical Background
- 2. Constraint Solving
- 3. Symmetries and Symmetry Breaking
- 4. Constraint Logic Programs (CLP) : operational and fixpoint semantics
- 5. Logical Semantics of CLP, automated deduction
- 6. Concurrent Constraint Languages (CC) :operational and denotational Semantics
- 7. Semantics in Linear Logic
- 8. Phase model checking

Symmetries and Symmetry Breaking

- 1. Examples of symmetries in the N-queens problem
- 2. General variable symmetry breaking
- 3. Value symmetry breaking
- 4. Variable and value symmetry breaking
- 5. Variable-value symmetry breaking

queens(N, [X1, ...XN])

 iff

queens(N,[XN,...,X1]) horizontal axis symmetry
variable symmetry

 $\operatorname{queens}(\mathbf{N},\![\mathbf{X}1,\!\ldots\!\mathbf{X}\mathbf{N}])$

iff

queens(N,[XN,...,X1]) horizontal axis symmetry

variable symmetry

iff queens(N,[N+1-X1,...,N+1-XN]) vertical axis symmetry

value symmetry

queens(N, [X1, ...XN])

iff

queens(N,[XN,...,X1]) horizontal axis symmetry
variable symmetry

iff queens(N,[N+1-X1,...,N+1-XN]) vertical axis symmetry

value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i +90° rotation symmetry
variable-value symmetry
iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i -90° rotation symmetry

variable-value symmetry

queens(N, [X1, ..., XN]) iff

queens(N,[XN,...,X1]) horizontal axis symmetry variable symmetry broken by X1;XN

iff queens(N,[N+1-X1,...,N+1-XN]) vertical axis symmetry

value symmetry broken by X1;5

iff queens (N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i $+90^{\circ}$ rotation symmetry variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i -90° rotation symmetry variable-value symmetry

Variable Symmetries

Given a Constraint Satisfaction Problem (CSP) $c(x_1, ..., x_n)$ over \mathcal{X}

a variable symmetry σ is a bijection on variables that preserves solutions:

$$\mathcal{X} \models c(x_1, ..., x_n) iff \mathcal{X} \models c(x_{\sigma(1)}, ..., x_{\sigma(n)})$$

Variable Symmetries

Given a Constraint Satisfaction Problem (CSP) $c(x_1, ..., x_n)$ over \mathcal{X}

a variable symmetry σ is a bijection on variables that preserves solutions:

$$\mathcal{X} \models c(x_1, ..., x_n) \ iff \ \mathcal{X} \models c(x_{\sigma(1)}, ..., x_{\sigma(n)})$$

Proposition 1 (Crawford et al 96) If (\mathcal{X}, \leq) is an order, all variable symmetries can be broken by the global constraint

$$\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]$$

PROOF: This is one way to choose a unique member in each equivalence class of symmetric assignments.

Variable Symmetry Breaking

Global constraint $[x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]$

arc consistent (AC) if for every variable, every value in its domain belongs to a solution

```
lex(L):-
    lex(L,B),
    B=1.
lex([],1).
lex([_],1).
lex([X,Y|L],R):-
    B #<=> (X #< Y),
    C #<=> (X #< Y),
    lex([Y|L],D),
    R #<=> B #\/ (C #/\ D).
```

O(mn) where m is the maximum domain size [Carlsson Beldiceanu 02]

Proposition 2 (Puget 05, Walsh 06)

 $AC(\bigwedge_{\sigma\in\Sigma} [x_1,...,x_n] \leq_{lex} [x_{\sigma(1)},...,x_{\sigma(n)}]) \text{ is strictly stronger than} \\ \bigwedge_{\sigma\in\Sigma} AC([x_1,...,x_n] \leq_{lex} [x_{\sigma(1)},...,x_{\sigma(n)}]).$

Proposition 2 (Puget 05, Walsh 06) $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}])$ is strictly stronger than $\bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]).$ PROOF: Consider two symmetries (1423) and (1243).

Let $x_1, x_2, x_4 \in \{0, 1\}$ and $x_3 = 1$.

We have $AC([x_1, x_2, x_3, x_4] \leq_{lex} [x_4, x_3, x_1, x_2])$

cases
$$[x_1 \ x_2 \ x_3 \ x_4] \le_{lex} [x_4 \ x_3 \ x_1 \ x_2]$$

 $x_1 = 0$
 $x_1 = 1$
 $x_2 = 0$
 $x_2 = 1$
 $x_4 = 0$
 $x_4 = 1$

Proposition 2 (Puget 05, Walsh 06)

 $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]) \text{ is strictly stronger than} \\ \bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]).$

PROOF: Consider two symmetries (1423) and (1243).

Let $x_1, x_2, x_4 \in \{0, 1\}$ and $x_3 = 1$.

We have $AC([x_1, x_2, x_3, x_4] \leq_{lex} [x_4, x_3, x_1, x_2])$

cases	$[x_1$	x_2	x_3	$x_4]$	$\leq_{lex} [x_4$	x_3	x_1	$x_2]$
$x_1 = 0$	0	0			0	1		
$x_1 = 1$	1	0			1	1		
$x_2 = 0$	0	0			1			
$x_2 = 1$	0	1			1			
$x_4 = 0$	0	0			0	1		
$x_4 = 1$	0				1			

Proposition 2 (Puget 05, Walsh 06)

 $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]) \text{ is strictly stronger than} \\ \bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]).$

PROOF: Consider two symmetries (1423) and (1243).

Let $x_1, x_2, x_4 \in \{0, 1\}$ and $x_3 = 1$. $AC([x_1, x_2, x_3, x_4] \leq_{lex} [x_4, x_3, x_1, x_2])$ and $AC([x_1, x_2, x_3, x_4] \leq_{lex} [x_2, x_4, x_1, x_3]).$

cases	$[x_1$	x_2	x_3	$x_4]$	$\leq_{lex} [x_2$	x_4	x_1	$x_3]$	
$x_1 = 0$	0	0			0	1			
$x_1 = 1$	1	1	1	1	1	1	1	1	
$x_2 = 0$	0	0			0	1			
$x_2 = 1$	0	1			1				
$x_4 = 0$	0				1				
$x_4 = 1$	0				1				

Proposition 2 (Puget 05, Walsh 06)

 $AC(\bigwedge_{\sigma\in\Sigma} [x_1,...,x_n] \leq_{lex} [x_{\sigma(1)},...,x_{\sigma(n)}]) \text{ is strictly stronger than} \\ \bigwedge_{\sigma\in\Sigma} AC([x_1,...,x_n] \leq_{lex} [x_{\sigma(1)},...,x_{\sigma(n)}]).$

PROOF: Consider two symmetries (1423) and (1243).

Let $x_1, x_2, x_4 \in \{0, 1\}$ and $x_3 = 1$. $AC([x_1, x_2, x_3, x_4] \leq_{lex} [x_4, x_3, x_1, x_2])$ and $AC([x_1, x_2, x_3, x_4] \leq_{lex} [x_2, x_4, x_1, x_3]).$

However, their conjunction is not AC as there is no solution with $x_4 = 0$. Indeed, suppose that $x_4 = 0$.

Then the first lex constraint implies x1 = x2 = 0.

And the second lex constraint implies $x^3 = 0$, which is not possible.

A value symmetry is a bijection σ on values that preserves solutions.

 $\{x_i = v_i | 1 \le i \le n\}$ is a solution iff $\{x_i = \sigma(v_i) | 1 \le i \le n\}$ is a solution

A value symmetry is a bijection σ on values that preserves solutions. $\{x_i = v_i | 1 \le i \le n\}$ is a solution iff $\{x_i = \sigma(v_i) | 1 \le i \le n\}$ is a solution

All value symmetries can be broken by posting for each value symmetry σ $[x_1, ..., x_n] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]$ [Petrie Smith 03]

E.g. Let $\sigma(i) = n + 1 - i$.

A value symmetry is a bijection σ on values that preserves solutions. $\{x_i = v_i | 1 \le i \le n\}$ is a solution iff $\{x_i = \sigma(v_i) | 1 \le i \le n\}$ is a solution

All value symmetries can be broken by posting for each value symmetry σ $[x_1, ..., x_n] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]$ [Petrie Smith 03]

E.g. Let $\sigma(i) = n + 1 - i$.

The symmetry breaking constraint implies $x_1 \leq n+1-x_1$

A value symmetry is a bijection σ on values that preserves solutions. $\{x_i = v_i | 1 \le i \le n\}$ is a solution iff $\{x_i = \sigma(v_i) | 1 \le i \le n\}$ is a solution

All value symmetries can be broken by posting for each value symmetry σ $[x_1, ..., x_n] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]$ [Petrie Smith 03]

E.g. Let $\sigma(i) = n + 1 - i$.

The symmetry breaking constraint implies $x_1 \leq n+1-x_1$ If *n* is even, the constraint is thus equivalent to $x_1 \leq \frac{n}{2}$ If *n* is odd, it is equivalent to $x_1 \leq \frac{n+1}{2} \wedge x_1 = \frac{n+1}{2} \implies x_2 \leq \frac{n+1}{2} \wedge \dots$

Proposition 3 $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)])$ is strictly stronger than $\bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]).$

PROOF: Consider the two value symmetries defined by $\sigma_1 = (02)$ and $\sigma_2 = (12)$.

Let $x_1 \in \{0, 1\}, x_2 \in \{0, 2\}.$

We have $AC([x_1, x_2] \leq_{lex} [\sigma_1(x_1), \sigma_1(x_2)])$

Proposition 3 $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)])$ is strictly stronger than $\bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]).$

PROOF: Consider the two value symmetries defined by $\sigma_1 = (02)$ and $\sigma_2 = (12)$.

Let $x_1 \in \{0, 1\}, x_2 \in \{0, 2\}.$

We have $AC([x_1, x_2] \leq_{lex} [\sigma_1(x_1), \sigma_1(x_2)])$

cases $[x_1, x_2] \leq_{lex} [\sigma_1(x_1), \sigma_1(x_2)]$ $x_1 = 0$ $x_1 = 1$ $x_2 = 0$ $x_2 = 2$

Proposition 3 $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)])$ is strictly stronger than $\bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]).$

PROOF: Consider the two value symmetries defined by $\sigma_1 = (02)$ and $\sigma_2 = (12)$.

Let $x_1 \in \{0, 1\}, x_2 \in \{0, 2\}.$

We have $AC([x_1, x_2] \leq_{lex} [\sigma_1(x_1), \sigma_1(x_2)])$

cases	$[x_1,$	$x_2]$	$\leq_{lex} [\sigma_1(x_1),$	$\sigma_1(x_2)]$
$x_1 = 0$	0		2	
$x_1 = 1$	1	0	1	2
$x_2 = 0$	0	0	2	
$x_2 = 2$	0	2	2	0

Proposition 3 $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)])$ is strictly stronger than $\bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]).$

PROOF: Consider the two value symmetries defined by $\sigma_1 = (02)$ and $\sigma_2 = (12)$.

Let $x_1 \in \{0, 1\}, x_2 \in \{0, 2\}$. $AC([x_1, x_2] \leq_{lex} [\sigma_1(x_1), \sigma_1(x_2)])$ and $AC([x_1, x_2] \leq_{lex} [\sigma_2(x_1), \sigma_2(x_2)])$

cases	$[x_1,$	$x_2]$	$\leq_{lex} [\sigma_2(x_1),$	$\sigma_2(x_2)]$
$x_1 = 0$	0		0	0
$x_1 = 1$	1		2	
$x_2 = 0$	1	0	2	0
$x_2 = 2$	1	2	2	1

Proposition 3 $AC(\bigwedge_{\sigma \in \Sigma} [x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)])$ is strictly stronger than $\bigwedge_{\sigma \in \Sigma} AC([x_1, ..., x_m] \leq_{lex} [\sigma(x_1), ..., \sigma(x_n)]).$

PROOF: Consider the two value symmetries defined by $\sigma_1 = (02)$ and $\sigma_2 = (12)$.

Let $x_1 \in \{0, 1\}, x_2 \in \{0, 2\}$. $AC([x_1, x_2] \leq_{lex} [\sigma_1(x_1), \sigma_1(x_2)])$ and $AC([x_1, x_2] \leq_{lex} [\sigma_2(x_1), \sigma_2(x_2)])$

However the conjunction is not AC as there is no solution such that $x^2 = 2$. Suppose indeed that $x_2 = 2$.

Then the first lex constraint implies x1 = 0,

but $[0 \ 2]$ is not minimal for the second lex constraint.

Breaking Several Variable and Value Symmetries

Theorem 1 (Puget 05, Walsh 06) The constraints $[x_1, ..., x_n] \leq_{lex} [x_{\sigma(1)}, ..., x_{\sigma(n)}]$ for each variable symmetry $\sigma \in \Sigma$ and $[x_1, ..., x_m] \leq_{lex} [\sigma'(x_1), ..., \sigma'(x_n)]$ for each value symmetry $\sigma' \in \Sigma'$ leave at least one assignment in each equivalence class of solutions.

Breaking Variable and Value Symmetries

Theorem 1 (Puget 05, Walsh 06) The constraints $[x_1,...,x_n] \leq_{lex} [x_{\sigma(1)},...,x_{\sigma(n)}]$ for each variable symmetry $\sigma \in \Sigma$ and $[x_1, ..., x_m] \leq_{lex} [\sigma'(x_1), ..., \sigma'(x_n)]$ for each value symmetry $\sigma' \in \Sigma'$ leave at least one assignment in each equivalence class of solutions. **PROOF:** For any assignment ν , one can pick the lex leader ν_1 of ν under Σ and then the lex leader ν_2 of ν_1 under Σ' If ν_2 does not satisfy the lex leader constraint under Σ , iterate. As the lexicographic orders are well-founded, the process terminates, with

an assignment that satisfies all lex leader constraints.

Breaking Several Variable and Value Symmetries

The iterated lex leader may leave several symmetric assignments. For example, consider the reflection symmetries on both variables and boolean values. The solutions [0, 1, 1] and [0, 0, 1] are symmetric but satisfy the lex constraints

$$[x_1, x_2, x_3] \le [x_3, x_2, x_1]$$

and

$$[x_1, x_2, x_3] \le [\neg x_1, \neg x_2, \neg x_3]$$

Indeed $[0, 1, 1] \leq [1, 1, 0]$ and $[0, 1, 1] \leq [1, 0, 0]$ $[0, 0, 1] \leq [1, 0, 0]$ and $[0, 0, 1] \leq [1, 1, 0]$ hence both symmetric solutions [0, 1, 1] and [0, 0, 1] are lex leaders.

Variable-Value Symmetries

Definition 1 A variable-value symmetry (or general symmetry) is a bijection σ on assignments that preserves solutions.

Variable-Value Symmetries

Definition 1 A variable-value symmetry (or general symmetry) is a bijection σ on assignments that preserves solutions.

Definition 2 A valuation $[x_1, ..., x_n]$ is admissible for σ iff $|\{k \mid x_i = j, \sigma(i, j) = (k, l)\}| = n.$

E.g. In the 3-queens, the assignment [2, 3, 1] is admissible for r90 but not [2, 3, 3].

Remark: If $[x_1, ..., x_n]$ is admissible for σ , let $\sigma[x_1, ..., x_n]$ be its image under σ $\sigma[x_1, ..., x_n] = [y_1, ..., y_n]$ where $y_k = l$ whenever $x_i = j$ and $\sigma(i, j) = (k, l)$.

Variable-Value Symmetry Breaking

Proposition 4 All variable-value symmetries can be broken by posting the constraints $\bigwedge_{\sigma \in \Sigma} admissible(\sigma, [x_1, ..., x_n]) \land [x_1, ..., x_n] \leq_{lex} \sigma[x_1, ..., x_n]$

E.g. In the 3-queens, let $x_1 = 2, x_2 \in \{1, 3\}, x_3 \in \{1, 2, 3\}$ r90[$x_1, ..., x_3$] prunes $X_3 \neq 2$ for admissibility, and $x_2 \neq 3, x_3 \neq 1$ for lex.

