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Symmetries in the N-queens problem

queens(N,[X1,...XN])

iff

queens(N,[XN,...,X1]) horizontal axis symmetry

variable symmetry
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Symmetries in the N-queens problem

queens(N,[X1,...XN])

iff

queens(N,[XN,...,X1]) horizontal axis symmetry

variable symmetry

iff queens(N,[N+1-X1,...,N+1-XN]) vertical axis symmetry

value symmetry
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Symmetries in the N-queens problem

queens(N,[X1,...XN])

iff

queens(N,[XN,...,X1]) horizontal axis symmetry

variable symmetry

iff queens(N,[N+1-X1,...,N+1-XN]) vertical axis symmetry

value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i +90o rotation symmetry

variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i −90o rotation symmetry

variable-value symmetry
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Symmetries in the N-queens problem

queens(N,[X1,...XN])

iff

queens(N,[XN,...,X1]) horizontal axis symmetry

variable symmetry broken by X1¡XN

iff queens(N,[N+1-X1,...,N+1-XN]) vertical axis symmetry

value symmetry broken by X1¡5

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=N+1-i +90o rotation symmetry

variable-value symmetry

iff queens(N,[Y1,...,YN]) where Xi=j iff Yj=i −90o rotation symmetry

variable-value symmetry
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Variable Symmetries

Given a Constraint Satisfaction Problem (CSP) c(x1, ..., xn) over X

a variable symmetry σ is a bijection on variables that preserves solutions:

X |= c(x1, ..., xn) iff X |= c(xσ(1), ..., xσ(n))
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Variable Symmetries

Given a Constraint Satisfaction Problem (CSP) c(x1, ..., xn) over X

a variable symmetry σ is a bijection on variables that preserves solutions:

X |= c(x1, ..., xn) iff X |= c(xσ(1), ..., xσ(n))

Proposition 1 (Crawford et al 96) If (X ,≤) is an order, all variable

symmetries can be broken by the global constraint
∧

σ∈Σ

[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]

Proof: This is one way to choose a unique member in each equivalence

class of symmetric assignments. �
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Variable Symmetry Breaking

Global constraint [x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]

arc consistent (AC) if for every variable, every value in its domain belongs

to a solution

lex(L):-

lex(L,B),

B=1.

lex([],1).

lex([_],1).

lex([X,Y|L],R):-

B #<=> (X #< Y),

C #<=> (X #= Y),

lex([Y|L],D),

R #<=> B #\/ (C #/\ D).

O(mn) where m is the maximum domain size [Carlsson Beldiceanu 02]
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Breaking Several Variable Symmetries

Proposition 2 (Puget 05, Walsh 06)

AC(
∧

σ∈Σ[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]) is strictly stronger than∧
σ∈Σ AC([x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]).
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Breaking Several Variable Symmetries

Proposition 2 (Puget 05, Walsh 06)

AC(
∧

σ∈Σ[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]) is strictly stronger than∧
σ∈Σ AC([x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]).

Proof: Consider two symmetries (1423) and (1243).

Let x1, x2, x4 ∈ {0, 1} and x3 = 1.

We have AC([x1, x2, x3, x4] ≤lex [x4, x3, x1, x2])

cases [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]

x1 = 0

x1 = 1

x2 = 0

x2 = 1

x4 = 0

x4 = 1

�
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Breaking Several Variable Symmetries

Proposition 2 (Puget 05, Walsh 06)

AC(
∧

σ∈Σ[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]) is strictly stronger than∧
σ∈Σ AC([x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]).

Proof: Consider two symmetries (1423) and (1243).

Let x1, x2, x4 ∈ {0, 1} and x3 = 1.

We have AC([x1, x2, x3, x4] ≤lex [x4, x3, x1, x2])

cases [x1 x2 x3 x4] ≤lex [x4 x3 x1 x2]

x1 = 0 0 0 0 1

x1 = 1 1 0 1 1

x2 = 0 0 0 1

x2 = 1 0 1 1

x4 = 0 0 0 0 1

x4 = 1 0 1

�
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Breaking Several Variable Symmetries

Proposition 2 (Puget 05, Walsh 06)

AC(
∧

σ∈Σ[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]) is strictly stronger than∧
σ∈Σ AC([x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]).

Proof: Consider two symmetries (1423) and (1243).

Let x1, x2, x4 ∈ {0, 1} and x3 = 1. AC([x1, x2, x3, x4] ≤lex [x4, x3, x1, x2])

and AC([x1, x2, x3, x4] ≤lex [x2, x4, x1, x3]).

cases [x1 x2 x3 x4] ≤lex [x2 x4 x1 x3]

x1 = 0 0 0 0 1

x1 = 1 1 1 1 1 1 1 1 1

x2 = 0 0 0 0 1

x2 = 1 0 1 1

x4 = 0 0 1

x4 = 1 0 1

�
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Breaking Several Variable Symmetries

Proposition 2 (Puget 05, Walsh 06)

AC(
∧

σ∈Σ[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]) is strictly stronger than∧
σ∈Σ AC([x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)]).

Proof: Consider two symmetries (1423) and (1243).

Let x1, x2, x4 ∈ {0, 1} and x3 = 1. AC([x1, x2, x3, x4] ≤lex [x4, x3, x1, x2])

and AC([x1, x2, x3, x4] ≤lex [x2, x4, x1, x3]).

However, their conjonction is not AC as there is no solution with x4 = 0.

Indeed, suppose that x4 = 0.

Then the first lex constraint implies x1 = x2 = 0.

And the second lex constraint implies x3 = 0, which is not possible. �
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Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves solutions.

{xi = vi|1 ≤ i ≤ n} is a solution iff {xi = σ(vi)|1 ≤ i ≤ n} is a solution
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Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves solutions.

{xi = vi|1 ≤ i ≤ n} is a solution iff {xi = σ(vi)|1 ≤ i ≤ n} is a solution

All value symmetries can be broken by posting for each value symmetry σ

[x1, ..., xn] ≤lex [σ(x1), ..., σ(xn)] [Petrie Smith 03]

E.g. Let σ(i) = n + 1 − i.
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Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves solutions.

{xi = vi|1 ≤ i ≤ n} is a solution iff {xi = σ(vi)|1 ≤ i ≤ n} is a solution

All value symmetries can be broken by posting for each value symmetry σ

[x1, ..., xn] ≤lex [σ(x1), ..., σ(xn)] [Petrie Smith 03]

E.g. Let σ(i) = n + 1 − i.

The symmetry breaking constraint implies x1 ≤ n + 1 − x1
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Value Symmetry Breaking

A value symmetry is a bijection σ on values that preserves solutions.

{xi = vi|1 ≤ i ≤ n} is a solution iff {xi = σ(vi)|1 ≤ i ≤ n} is a solution

All value symmetries can be broken by posting for each value symmetry σ

[x1, ..., xn] ≤lex [σ(x1), ..., σ(xn)] [Petrie Smith 03]

E.g. Let σ(i) = n + 1 − i.

The symmetry breaking constraint implies x1 ≤ n + 1 − x1

If n is even, the constraint is thus equivalent to x1 ≤ n

2

If n is odd, it is equivalent to x1 ≤ n+1
2 ∧ x1 = n+1

2 =⇒ x2 ≤ n+1
2 ∧ ...
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Breaking Several Value Symmetries

Proposition 3 AC(
∧

σ∈Σ[x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]) is strictly

stronger than
∧

σ∈Σ AC([x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]).

Proof: Consider the two value symmetries defined by σ1 = (02) and

σ2 = (12).

Let x1 ∈ {0, 1}, x2 ∈ {0, 2}.

We have AC([x1, x2] ≤lex [σ1(x1), σ1(x2)])

�
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Breaking Several Value Symmetries

Proposition 3 AC(
∧

σ∈Σ[x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]) is strictly

stronger than
∧

σ∈Σ AC([x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]).

Proof: Consider the two value symmetries defined by σ1 = (02) and

σ2 = (12).

Let x1 ∈ {0, 1}, x2 ∈ {0, 2}.

We have AC([x1, x2] ≤lex [σ1(x1), σ1(x2)])

cases [x1, x2] ≤lex [σ1(x1), σ1(x2)]

x1 = 0

x1 = 1

x2 = 0

x2 = 2

�
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Breaking Several Value Symmetries

Proposition 3 AC(
∧

σ∈Σ[x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]) is strictly

stronger than
∧

σ∈Σ AC([x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]).

Proof: Consider the two value symmetries defined by σ1 = (02) and

σ2 = (12).

Let x1 ∈ {0, 1}, x2 ∈ {0, 2}.

We have AC([x1, x2] ≤lex [σ1(x1), σ1(x2)])

cases [x1, x2] ≤lex [σ1(x1), σ1(x2)]

x1 = 0 0 2

x1 = 1 1 0 1 2

x2 = 0 0 0 2

x2 = 2 0 2 2 0

�
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Breaking Several Value Symmetries

Proposition 3 AC(
∧

σ∈Σ[x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]) is strictly

stronger than
∧

σ∈Σ AC([x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]).

Proof: Consider the two value symmetries defined by σ1 = (02) and

σ2 = (12).

Let x1 ∈ {0, 1}, x2 ∈ {0, 2}. AC([x1, x2] ≤lex [σ1(x1), σ1(x2)])

and AC([x1, x2] ≤lex [σ2(x1), σ2(x2)])

cases [x1, x2] ≤lex [σ2(x1), σ2(x2)]

x1 = 0 0 0 0

x1 = 1 1 2

x2 = 0 1 0 2 0

x2 = 2 1 2 2 1

�
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Breaking Several Value Symmetries

Proposition 3 AC(
∧

σ∈Σ[x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]) is strictly

stronger than
∧

σ∈Σ AC([x1, ..., xm] ≤lex [σ(x1), ..., σ(xn)]).

Proof: Consider the two value symmetries defined by σ1 = (02) and

σ2 = (12).

Let x1 ∈ {0, 1}, x2 ∈ {0, 2}. AC([x1, x2] ≤lex [σ1(x1), σ1(x2)])

and AC([x1, x2] ≤lex [σ2(x1), σ2(x2)])

However the conjunction is not AC as there is no solution such that x2 = 2.

Suppose indeed that x2 = 2.

Then the first lex constraint implies x1 = 0,

but [0 2] is not minimal for the second lex constraint. �
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Breaking Several Variable and Value Symmetries

Theorem 1 (Puget 05, Walsh 06) The constraints

[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)] for each variable symmetry σ ∈ Σ

and [x1, ..., xm] ≤lex [σ′(x1), ..., σ
′(xn)] for each value symmetry σ′ ∈ Σ′

leave at least one assignment in each equivalence class of solutions.
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Breaking Variable and Value Symmetries

Theorem 1 (Puget 05, Walsh 06) The constraints

[x1, ..., xn] ≤lex [xσ(1), ..., xσ(n)] for each variable symmetry σ ∈ Σ

and [x1, ..., xm] ≤lex [σ′(x1), ..., σ
′(xn)] for each value symmetry σ′ ∈ Σ′

leave at least one assignment in each equivalence class of solutions.

Proof: For any assignment ν,

one can pick the lex leader ν1 of ν under Σ

and then the lex leader ν2 of ν1 under Σ′

If ν2 does not satisfy the lex leader constraint under Σ, iterate.

As the lexicographic orders are well-founded, the process terminates, with

an assignment that satisfies all lex leader constraints. �
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Breaking Several Variable and Value Symmetries

The iterated lex leader may leave several symmetric assignments.

For example, consider the reflection symmetries on both variables and

boolean values. The solutions [0, 1, 1] and [0, 0, 1] are symmetric

but satisfy the lex constraints

[x1, x2, x3] ≤ [x3, x2, x1]

and

[x1, x2, x3] ≤ [¬x1,¬x2,¬x3]

Indeed [0, 1, 1] ≤ [1, 1, 0] and [0, 1, 1] ≤ [1, 0, 0]

[0, 0, 1] ≤ [1, 0, 0] and [0, 0, 1] ≤ [1, 1, 0]

hence both symmetric solutions [0, 1, 1] and [0, 0, 1] are lex leaders.
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Variable-Value Symmetries

Definition 1 A variable-value symmetry (or general symmetry) is a

bijection σ on assignments that preserves solutions.
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Variable-Value Symmetries

Definition 1 A variable-value symmetry (or general symmetry) is a

bijection σ on assignments that preserves solutions.

Definition 2 A valuation [x1, ..., xn] is admissible for σ iff

|{k | xi = j, σ(i, j) = (k, l)}| = n.

E.g. In the 3-queens, the assignment [2, 3, 1] is admissible for r90 but not

[2, 3, 3].

Remark: If [x1, ..., xn] is admissible for σ,

let σ[x1, ..., xn] be its image under σ

σ[x1, ..., xn] = [y1, ..., yn] where yk = l whenever xi = j and σ(i, j) = (k, l).
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Variable-Value Symmetry Breaking

Proposition 4 All variable-value symmetries can be broken by posting the

constraints
∧

σ∈Σ admissible(σ, [x1, ..., xn]) ∧ [x1, ..., xn] ≤lex σ[x1, ..., xn]

E.g. In the 3-queens, let x1 = 2, x2 ∈ {1, 3}, x3 ∈ {1, 2, 3}

r90[x1, ..., x3] prunes X3 6= 2 for admissibility, and x2 6= 3, x3 6= 1 for lex.
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