
Handling preferences in Constraint Logic

Programming

with Relational Optimization

Fran�cois Fages

1;2

, Julian Fowler

1

and Thierry Sola

1

1

Thomson-CSF/LCR, 91404 Orsay Cedex, France.

2

LIENS CNRS,Ecole Normale Sup�erieure, 45 rue d'Ulm, 75005 Paris, France.

Abstract. In many Constraint Logic Programming (CLP) applications

one needs to express not only strict requirements but also preferences.

Constraint hierarchies are one way of describing preferred criteria in the

statement of a problem. In [18] CLP was extended to integrate con-

straint hierarchies resulting in Hierarchical Constraint Logic Program-

ming (HCLP). We propose an alternative approach for describing pre-

ferred criteria in CLP as a problem of relational optimization (RO). In

this approach the programmer de�nes a preference relation which indi-

cates when a solution is better than another solution. We study several

schemes based on pruning for optimizing an objective function, and we

show how these schemes can be generalized to handle preference relations

de�ned by CLP programs, while preserving a straightforward logical se-

mantics. Further we show on some examples that the greater 
exibility

of the relational optimization scheme is not at the cost of e�ciency.

Keywords: preference, constraint logic programming, optimization, hierar-

chical constraint logic programming.

1 Introduction

Very often when we have a constraint satisfaction problem we are not simply

interested in �nding any solution, but we have a notion of best solutions to

the problem. The di�culty of describing what constitutes the best solutions to

a problem depends on the choice of preferred criteria. When we state a prob-

lem with constraints we are presented with the problem of how to state these

preferences. If we do not indicate the preferences at all we are left with a large

number of possible solutions which we must then sort to �nd the most interesting

solutions. Alternatively if we insist that all the preferences we may have for a

solution be satis�ed then there may be no solution satisfying all our preferences.

We see that it is important to use these preferences actively in such a way that

all but the least important preferences are satis�ed, this scenario is particularly

true for decision support systems.

One approach consists of specifying all intended constraints as either manda-

tory or as preferences, with an associated label indicating the strength of the

preference, this creates a constraint hierarchy. In [18] Hierarchical Constraint



Logic Programming (HCLP) was proposed as a general approach for integrating

constraint hierarchies in CLP. The HCLP scheme gives rise to a family of lan-

guages each member parameterized both by the domain of constraints, as in the

CLP scheme, and by the comparator of solutions. The comparator of solutions

de�nes the solutions to a constraint hierarchy.

We propose a di�erent approach to integrating preferences in CLP based on

relational optimization. In this approach the programmer de�nes a preference

relation which indicates when a solution is better than another solution. We

study several schemes based on pruning for optimizing an objective function,

and we show how these schemes can be generalized to handle preference relations

de�ned by CLP programs, while preserving a straightforward logical semantics.

Further we show on some examples that the greater 
exibility of the relational

optimization scheme is not at the cost of e�ciency.

We have used the current implementation to resolve a real-life preference

problem consisting of allocating bands of frequencies from a radio spectre to a

set of networks [7]. In this problem, preferences between solutions depend on

several con
ictual criteria.

In the rest of the paper we review the basic ideas of constraint hierarchies

before presenting HCLP languages. We then present relational optimization. We

compare the advantages and disadvantages of the two schemes before evaluating

the performances of the relational optimization approach.

2 HCLP approach

HCLP languages were presented in [1] [17] [18] as an approach to express pref-

erences in CLP [8]. These languages integrate constraint hierarchies and logic

programming.

2.1 Constraint Hierarchies

A labelled constraint is a constraint c labelled with a strength s and is written

c@s. The strengths range from 0 to n where n is the number of non-required

levels. Level 0 corresponds to the required constraints and the other levels to

non-required constraints. The higher the level the weaker the constraint is.

A constraint hierarchy is a multiset of labelled constraints. Given a constraint

hierarchy H, H

0

denotes the required constraints in H with their labels removed.

The sets H

1

;H

2

; : : : are de�ned in the same way for levels 1; 2; : : : respectively.

A valuation, �, for a constraint hierarchy, H, is a mapping of the free vari-

ables of the hierarchy to values in the domains of the variables that satis�es

all the required constraints, and is noted H�. Di�erent valuations are compared

using a comparator to �nd those valuations which relax only the least important

constraints. A comparator, >, is a relation between valuations of a constraint

hierarchy. A solution to a constraint hierarchy is a valuation such that there does

not exist a valuation better than it.

� is a solution to a constraint hierarchy H i� :9� H� > H�



There are many choices for a comparator. It must, however, be a relation

that is transitive, anti-re
exive and respects the hierarchy. A comparator is said

to respect the hierarchy if when there exists a valuation that satis�es all the

constraints upto a level k, then any solution must satisfy all the constraints

upto level k.

In [1] comparators are divided into two classes: local and global. Comparators

are de�ned by the choice of an error function, e, for a constraint and in the

case of global comparators an error function, g, for the combined errors of the

constraints.

The error function for a constraint, c, under a substitution � is a function

which returns a non-negative number indicating how nearly the substitution

satis�es the constraint. If the substitution satis�es the constraint the function

always returns zero. The function g combines the errors of all the constraints at

a given level.

locally-better(�; �;H) �

9k > 0 such that

8i � 1; : : : ; k � 1 8p � H

i

e(p�) = e(p�)

^ 9q � H

k

e(q�) < e(q�)

^ 8r � H

k

e(r�) � e(r�)

globally-better(�; �;H; g) �

9k > 0 such that

8i � 1; : : : ; k � 1 g(�;H

i

) = g(�;H

i

)

^ g(�;H

k

) < g(�;H

k

)

We illustrate the \unsatis�ed count better" comparator (>

ucb

), which is a

global comparator. For this comparator e is de�ned as e(c�) = 0 i� c� holds and

e(c�) = 1 otherwise, and the combining function is g(�;H

i

) =

P

c�H

i

e(c�).

2.2 HCLP

In HCLP, programs are just like CLP programs where constraints have an addi-

tional strength annotation (no annotation means required constraint). In CLP

a CSLD derivation returns a set of constraints, in the case of HCLP this set is

a constraint hierarchy H. For example the program below builds two constraint

hierarchies: fX=1,X>3 @ 1g and fX=5,X>3 @ 1g.

p(X) :- X>3 @ 1, q(X).

q(1).

q(5).

So the solutions to p(X) are X=1 and X=5, and these solutions are not

comparable, because the theory presented in [1] and summarized above does

not make comparisons between solutions from di�erent constraint hierarchies.

We would like, however, to obtain as an answer only the second, because it

satis�es more constraints in its respective hierarchy than the �rst answer. These



sort of problems have led to an extension of the notion of comparators to allow

comparisons for solutions arising from di�erent constraint hierarchies. These

extended comparators were �rst presented in [17], and are called inter-hierarchy

comparators.

2.3 Inter-hierarchy comparators

In this extended model we consider not just one but several hierarchies, and

the de�nitions are simply extended to cover this more general case. The tree

of CSLD derivations associated for a given goal returns the set of constraint

hierarchies �. A valuation to a set of constraint hierarchies � is a mapping

of the free variables to values in the domains of the variables that satis�es all

the required constraints of at least one constraint hierarchy. A valuation � for

a constraint hierarchy H written �

H

, is globally-better than a valuation �

J

is

de�ned below, where H; J��

globally-better(�

H

; �

J

;�; g) �

9k > 0 such that

8i � 1; : : : ; k� 1 g(�;H

i

) = g(�;J

i

)

^ g(�;H

k

) < g(�;J

k

)

We remark that local comparators have not been extended to this framework,

because these comparators consider each constraint in the hierarchy individually.

2.4 Nonprimitive constraints

As stated in [17] conjunction and disjunction of constraints in HCLP, as op-

posed to CLP, cannot be accomplished without explicitly using disjunction and

conjunction connectives. [17] introduces nonprimitive constraints that allow con-

junction and disjunction of constraints by the explicit use of connectives. A non-

primitive constraint is a labelled constraint built from primitive constraints and

logical connectives.

So the previous example may be rewritten using a nonprimitive constraint

as shown below:

p(X) :- X>3 @ 1, (X=1 \/ X=5).}

This creates one constraint hierarchy fX=1_X=5,X>3 @ 1g which has solu-

tion X=5.

This allows us to achieve the e�ect of inter-hierarchy comparison by allowing

the disjunction of primitive constraints as illustrated in the previous example.

As indicated in [17], it is not always possible to avoid inter-hierarchy comparison

in this way. Consider the following example.

p(X) :- X=1, X=<0 @ 1.

p(X) :- X=2.



For this example, two constraint hierarchies are created: fX=1,X=<0 @ 1g

and fX=2g. A locally-predicate-better comparator will return X=1 and X=2 as

solutions. A global comparator will return only X=2.

If we try to apply a disjunction as in a previous example, the only possibility

is the following program:

p(X) :- (X=1 \/ X=2), X=<0 @ 1.}

This creates a constraint hierarchy f(X=1_X=2),X=<0 @ 1g. Unfortunately,

we obtain the same solutions X=1 and X=2 for a locally-predicate-better com-

parator. Worse still, certain global comparators (for example, weighted-sum-

better, see [17] for more details) will only return X=1, as a solution.

3 Optimization approach

We have seen how preferences are handled in HCLP . We now present the ap-

proach that we use for handling preferences as a CLP optimization problem.

This section relies on the branch and bound like procedures presented in [16]

and [12] for the optimization of an objective function in CLP, and generalized

in [5] in accordance with a logical semantics based on negation. We review these

results in the context of preference constraints, and extend them for the handling

of program-de�ned preference relations.

3.1 Syntax

The idea is to express the preference relation among solutions inside the lan-

guage, that is by a CLP program. For this we introduce an optimization higher-

order predicate, rel opt, whose �rst argument is a goal and whose second argu-

ment is a preference relation. Intuitively a higher-order atom of the form

rel_opt(goal(X),better)

is true if X is an optimal solution to goal(X), that is goal(X) is true and there

does not exist a Y such that goal(Y ) and better(Y;X) are true:

rel opt(goal(X); better) , goal(X) ^ :9Y (goal(Y ) ^ better(Y;X))

An OCLP program is a CLP program that may contain occurrences of the opti-

mization predicate in rule bodies.

The preference predicate better is supposed to be de�ned in the CLP program

by a set of rules which state when a solution X to goal(X) must be preferred to

a solution Y. It is in the better rules that all preference criteria are described.

Clearly the relation better should be anti-re
exive for the rel opt goals be satis-

�able. We shall assume also transitivity although this is not always necessary in

our framework. Note that in [2] the same question is discussed in the framework

of preference logic.

Going back to the example of the previous section:



p(X) :- X>3 @ 1, q(X).

q(1).

q(5).

The meaning of that HCLP program under the extended model with inter-

hierarchy comparisons is given by the set of derivations to the goal p(X) where

the derivations which satisfy X>3 subsume the others. This example can be ex-

pressed declaratively with an OCLP program:

better(X,Y) :- X > 3, Y =< 3.

p(X) :- rel_opt(q(X),better).

q(1).

q(5).

An important particular case is when it is de�ned by a primitive constraint

on a measure of satis�ability of preference constraints. In that case a preference

relation expresses an objective function. The underlying algebra is a strict total

order (A; <) and the de�nition of the preference relation is of the form

better(Y,X) :- f(Y)<f(X).

for some objective function f that acts as a measure of satis�ability of the pref-

erence constraints. The total order < can be the lexicographic or any extension

of total orders on preference criteria.

In general the predicate better need not be deterministic, it may be recursive.

Note also that relational optimization metapredicates allow to express prefer-

ences not only at top level but also inside a program. This is crucial for the han-

dling of composite systems with preference constraints de�ned locally for some

components of the system. Recursion through relational optimization predicates

is also supported by the syntax and the semantics presented here, but we shall

not investigate that case any further in this paper.

3.2 Declarative semantics

The simplest and most general way to provide a declarative semantics to CLP

programs with relational optimization is to read an atom

rel_opt(goal(X),better)

as an abbreviation for the formula

goal(X) ^ :(9Y goal(Y ) ^ better(Y;X))

and then take a suitable semantics for CLP programs with negation as the

semantics of the original program with preference constraints.

The natural semantics to employ in this context is the semantics of Kunen [9]

for normal logic programs, based on Fitting operator and generalized by Stuckey

[15] to CLP programs. That semantics is de�ned as the set of three-valued log-

ical consequences (denoted by j=

3

) of the Clark's completion of the program.



The usual strong 3-valued interpretations of the connectives and quanti�ers are

assumed, except for the connective a $ b which is two-valued: t if a and b

have the same truth value (ff; t; ug), and f otherwise. The Clark's completion,

comp(P;A), of a CLP program P over a structure A supposed to be presented by

a theory th(A), is de�ned as the conjunction of th(A) together with the formulae

of the form

8x

1

; :::; x

n

p(x

1

; :::; x

n

)$

_

i

9Y

i

(x

1

= t

i

1

^ :::^ x

n

= t

i

n

^B

i

)

obtained for each predicate symbol p (of arity n) by collecting the clauses headed

by p in P , fp(t

i

1

; :::; t

i

n

) B

i

g where the set of local variables is denoted by Y

i

,

or of the form

8x

1

; :::; x

n

:p(x

1

; :::; x

n

)

if p does not appear in any head in P .

Now a constraint c is a correct answer to a goal G if

comp(P;A) j=

3

8(c! G) ^ 9c

The answer no is correct if

comp(P;A) j=

3

:9(G):

Constructive negation, as introduced by Chan for logic programs, and gener-

alized by Stuckey to CLP programs, provides a correct and complete operational

semantics w.r.t. the declarative semantics [15]. In the following subsections we

examine simpler practical operational semantics by distinguishing the di�erent

cases where preferences are expressed either by an objective function or a pro-

gram de�ned predicate, and where preferences are handled either on the top

level goal only, or recursively in the subgoals of the CLP program.

3.3 Operational semantics for the optimization of an objective

function

Optimization of the top level goal In this section we examine the case stud-

ied in [12] where preferences on the solutions of the top level goal are encoded by

the minimization of an objective function. The underlying structure is a strict

total order (A; <) and the predicate better(X,Y) is a constraint of the form

f(Y ) < f(X) for some objective function f . We assume that the language of

constraints is closed by minimization of the objective function, that is we can

decide whether

min

c(X)

f(X)

has a solution or not for any constraint c of the language (or at least for those

constraints returned by the successful derivations of the top level goal to opti-

mize).

In this framework, preferences can be used actively to reduce the search space

by a simple pruning mechanism.



Procedure 1 The computation of the answers to the goal minimize(G(X); f(X))

proceeds as follows:

1. a CSLD derivation tree for G(X) is developed,

2. once a successful derivation is found, say with answer constraint c(X), then

the optimal cost

v = min

c(X)

f(X)

is computed. If v doesn't exist then return the answer no, otherwise the

derivation tree is pruned by adding the constraint

f(X) � v

to the nodes, the pruned tree is further developed by iterating step 2,

3. once the derivation tree gets �nite, the constraints on the successful deriva-

tions after pruning, if any, represent the optimal solutions to the goal, oth-

erwise the computed answer is no.

Proposition1. (Correctness and completeness) The answers computed by pro-

cedure 1 are correct. Furthermore, if c(X) is a correct answer to the goal G(X)^

:9Y (f(Y ) < f(X)^G(Y )) then there exist computed answers c

1

; :::; c

n

such that

A j= c! 9Y

1

c

1

_ :::_ 9Y

n

c

n

where the Y

i

's are the variables in c

i

not in c.

OCLP programs with objective functions When general OCLP programs

and goals are considered, preferences need be handled not only at top level but

also in recursive subgoals. Procedure 1 can be generalized to this purpose by

adding to the standard CSLD resolution rule a special rule for optimization

predicates based on pruning [5]:

Procedure 2 The computed answers to a goal G and an OCLP program P are

those de�ned by a CSLD derivation tree for G in which the successors of a node

labeled by a goal of the form

cjminimize(G(X); f(X)); A

1

; :::; A

n

where the optimization atom is the selected atom are formed by:

1. developing a CSLD derivation tree for minimize(cjG(X); f(X)) with proce-

dure 1, return no successor in case of failure, otherwise let v be the optimal

cost found on a successful derivation,

2. check that the goal f(Y ) < vjG(Y ) �nitely fails, otherwise return no succes-

sor,

3. return the successor goals c^ c

i

jA

1

; :::; A

n

for each successful derivation with

answer constraint c

i

obtained in step 1.

The rationale of procedure 2 is that a solution to a constraint c and an

atomminimize(G(X); f(X)) is a solution tominimize(cjG(X); f(X)) such that

:9Y (f(Y ) < f(X) ^ G(Y )). Note however that procedure 2 may loop forever

in step 1 trying to solve min(c|G(X),f(X)), whilst the optimiality condition for

the goal c|min(G(X),f(X)) is unsatis�able. This prevents a completeness result

for no answers. For instance with the program



p(0).

p(X) :- X>1, p(X).

and the goal X>1|minimize(p(X),X) the sequential pruning procedure loops

forever on the goal minimize(X>1|p(X), X), whilst

comp(P;A) j=

3

:9X(X > 1 ^ p(X) ^ :9Y (Y < X ^ p(Y )):

Completeness on success holds however for 2-level OCLP programs, i.e. for

programs such that there is no dependency between atoms through more than

one minimization predicate. Completeness holds also under �nite evaluation as-

sumptions w.r.t. the goal passed to optimization predicates. This is the case for

instance when these goals are de�ned by hierarchical programs.

Proposition2. The answers computed by procedure 2 are correct. Procedure 2

is complete on success for 2-level programs, and complete both on success and

failure for hierarchical programs.

Note that a concurrent pruning procedure complete both on success and

failures can be derived for OCLP programs from the scheme for constructive

negation based on pruning described in [6].

3.4 Operational semantics for relational optimization

The main di�culty with the previous scheme for handling preference constraints

is that all preferences need to be explicitly encoded by an objective function.

We show here how this di�culty can be overcomed by expressing the preference

among solutions with a CLP program and by generalizing the previous pruning

procedures to handle program-de�ned preference relations.

Ground answers In this subsection we assume that the goals passed as argu-

ments of optimization predicates return always ground answers. This is typically

the case in CLP(FD) applications where the solutions to a combinatorial problem

are naturally a valuation of the unknowns, and where enumeration is mixed with

constraint propagation in order to palliate the incompleteness of the constraint

solvers. However to be e�cient the optimization of the preference relation must

be performed by a pruning mechanism that cut the branches of the derivation

tree before the variables get instanciated.

This behavior can be achieved by a simple generalization of the previous

procedures. We assume that the program-de�ned preference relation better(X,Y)

is anti-re
exive and transitive, and that the complement relation notbetter(X,Y)

is also de�ned in the program. If the preference relation is total, notbetter(X,Y)

is simply the relation Y better or equal to X.

First procedure 1 is generalized by replacing the pruning based on cost con-

straints, by a pruning mechanism based on a better goal:

Procedure 3 The answers to the goal rel opt(G(X); better) are computed by:



1. developing a CSLD derivation tree for G(X),

2. once a successful derivation is found, say with (ground) answer substitution

X

i

, then the derivation tree is transformed by adding the goal

notbetter(X

i

; X)

to the nodes, the tree is further developed by iterating step 2,

3. once the derivation tree gets �nite, the constraints on the successful deriva-

tions after pruning, if any, represent the optimal solutions to the goal, oth-

erwise the computed answer is no.

Proposition3. Procedure 3 is correct and complete.

Procedure 2 can be generalized in the same way for solving recursively a goal

of the form

cjrel opt(G(X); better); A

1

; :::; A

n

by checking in step 2 for each successful answer X

i

to rel opt(cjG(X); better),

that the goal better(Y,Xi), G(Y) �nitely fails. The correctness and completeness

results generalize in a straightforward way to this scheme.

Procedure 3 is the procedure we use in the examples reported in the section

on performance evaluation.

General case The general case of relational optimization leads to the general

problem of constructive negation in CLP languages. The original scheme of [15]

for constructive negation is not practical as it necessitates taking the disjunctive

normal form of an entire frontier in the derivation tree of a negated subgoal, at

each resolution step with a negative subgoal. In [3] a new scheme called inten-

sional negation is proposed as a compiled version of constructive negation. In

that scheme the normalization process is done once and for all at compile time.

The idea is to derive from the de�nition of a predicate p in comp(P;A) a positive

program for :p that contains complex subgoals formed with universally quan-

ti�ed disjunctions. For instance the resulting program on the previous example

is:

better

:

(X,Y) :- X =< 3.

better

:

(X,Y) :- Y > 3.

q

:

(X) :- X 6= 1, X 6= 5.

p(X) :- q(X), 8Y (q

:

(Y) _ better

:

(Y,X)).

q(1).

q(5).

Complex subgoals involve universally quanti�ed disjunctions. The derivation

rule for complex subgoals is de�ned in a way similar to constructive negation

and requires generally to compute entire frontiers in a CSLD derivation trees. In

the previous example the absence of recursion makes it possible to perform these

resolution steps at compile time (by unfolding). The result for f is the clause

p(X) :- q(X), 8Y ((Y 6= 1, Y 6= 5) _ Y =< 3 _ X > 3). which simpli�es to

a simple form



p(X) :- q(X), X>3.

In general however the process of collecting a complete frontier in the derivation

tree of the selected subgoal must be performed at each resolution step with a

complex subgoal.

Finally note that the scheme for constructive negation based on pruning de-

scribed in [6], eliminates the need to consider complex subgoals with explicit

quanti�ers, and should be of practical value for handling program de�ned pref-

erences in a very general setting.

4 Comparison

We have presented two di�erent approaches for integrating preferences inside

the CLP framework. We now discuss and contrast the interesting aspects and

applications of the two approaches.

There is a fundamental di�erence between HCLP and relational optimiza-

tion. Relational optimization (RO) describes preferences on solutions to a goal

regardless of the derivations taken to �nd these solutions. HCLP attaches pref-

erence constraints to rules, so the criteria of preference among solutions may be

di�erent from one derivation to another.

We argue that RO re
ects the intended semantics of obtaining the best so-

lutions to a problem independently of the method used to calculate them. This

is re
ected by the straightforward declarative semantics of the relational opti-

mization schemes. One major inconvenience of previous optimization schemes

with objective functions is that in general there is no natural choice for such

a function. We have seen that RO allows the expression of the preference rela-

tion among solutions by a CLP program providing a greater 
exibility. In the

next section this is illustrated on a multicriteria frequency allocation problem.

Furthermore the ability to put the RO predicate inside rule bodies, allows the

handling of di�erent preference subproblems locally in the program.

On the other hand HCLP provides a way to express preferences locally in-

side rules without stating a global preference on solutions when this is still too

di�cult and unweildy to express easily.

For a given hierarchy of constraints there is an encoding of HC in RO and

vice versa. For instance the set of solutions to a constraint hierarchy H, de�ned

1

by:

S = f�j� 2 S

0

^ 8� 2 S

0

:(G([E(H

1

(�)); : : : ; E(H

n

(�))]) <

g

G([E(H

1

(�)); : : : ; E(H

n

(�))]))g

where S

0

= f�j8c 2 H

0

e(c�) = 0g, is the set of solutions to the required

constraints of H, can be de�ned as well as the set of X satisfying

s

0

(X) ^ 8Y s

0

(Y ) ! :(G([E(H

1

(Y )); : : : ; E(H

n

(Y ))]) <

g

G([E(H

1

(X));

: : : ; E(H

n

(X))]))

1

In this more general de�nition from [18], E applies e to every element in a set of

constraints and G is a generalization of g that is applied to error sequences.



where s

0

denotes the membership predicate in S

0

. So S can be de�ned by the

relational optimization goal rel opt(s0(X),better) with the program

better(X,Y) :- G([E(H1(X)),...,E(Hn(X))<g G([E(H1(Y)),...,E(Hn(Y))

s0(X) :- C(X)

where C(X) is the set of required constraints in H.

Implementing the relational optimization schemes can be e�ciently done by

writing a meta-interpreter on top of of CLP system. RO inherits on one hand

from the objective function schemes based on pruning, and on the other hand

from the work on negation in logic programming for which increasingly power-

ful inference rules have been given. This should be contrasted with the ad hoc

implementation of the HCLP scheme.

We have implemented the RO scheme on top of the CLP system Meta(F) [10,

4]. In the following section we evaluate the performance of relational optimization

to resolve preference problems.

5 Performance evaluation

This section is intended to show some performances of the the relational opti-

mization approach. More particularly, we have evaluated the relational optimiza-

tion on a time tabling problem and on an industrial frequency allocation problem

which has multiple preference criteria. The time tabling problem is taken from

[13].

5.1 A Time-tabling Problem

This problem is a typical resource allocation problem. There are the typical

required constraints, and there are four hierarchic levels of prefered criteria. The

most important prefered criterion (level 1) is that lessons of the same subject

should not be on consecutive days. The level 2 prefered criterion is that lessons of

the same subject should not be more than two days apart. The level 3 criterion

is that any subject with less than two lessons per week should not have any of

its lessons on a Monday. The �nal and weakest preference is that lessons of the

same subject should take place at the same hour in the week.

We have used the relational optimization scheme to state the same prefer-

ences among solutions as those described by the HCLP program presented in

[14] using the >

ucb

comparator which is de�ned earlier.

The �rst table presents a loose timetable problem and the second a compact

problem, which is more di�cult than the �rst because the number of hours

available per day is reduced by one hour. The �rst column of the tables indicates

the level of the preference that we try to satisfy, thus max level three means that

we try to maximize the number of preferences respected of level one, two and

three, but not four.



The cpu time in seconds required for the speci�c implementation of HCLP

(>

ucb

,FD) which has been developed on the Incremental Hierarchical Constraint

Solver (IHCS) [14]. These times are given for the prototype implementation writ-

ten in C using a YAP prolog software platform running on a NeXT Station 68040.

We present the cpu time given in seconds using our current relational optimiza-

tion implementation on a Sun Sparc Station IPX ( an IPX can be considered

30% faster than the NeXT for a standard integer performance test (MIPS)). We

also report the number of preferred constraints not respected by the solutions

found, indicates that the preference constraints of this level are not being used.

Max. Number of IHCS RO Not Respected

level constraints Time Time @1 @2 @3 @4

0 356 1.80s 0.78s

1 +21 = 377 1.86s 1.23s 2

2 +21 = 398 1.98s 1.38s 2 1

3 +11 = 409 1.98s 1.61s 2 1 1

4 +21 = 430 2.38s 2.12s 2 1 1 0

Table 1. results for loose time-tables

Max. Number of IHCS RO Not Respected

level constraints Time Time @1 @2 @3 @4

0 356 1.80s 0.75s

1 +21 = 377 1.86s 1.28s 2

2 +21 = 398 2.28s 1.51s 2 2

3 +11 = 409 4.63s 1.63s 2 2 2

4 +21 = 430 2m43.53s 2.05s 2 2 2 0

Table 2. results for compact time-tables

For both tables and both solvers we see that, as is expected, there is a deterio-

ration in performance with the introduction of supplementary levels of preferred

constraints. The deterioration in computation time for the relational optimiza-

tion approach is less sensitive to the number of levels of preferred constraints to

be treated and the number of constraints relaxed than the IHCS solver. These

timings show that our current RO implementation competes well with the HCLP

implementation of [14].

5.2 An application to multiple criteria preference problems

The comparative approach introduced by the use of rules to de�ne the relation-

ships between solutions (better), greatly enlarges the techniques that we may use

for multiple criteria optimization [7]. Sequential elimination methods [11] may

be used in this framework. Sequential elimination methods are based on com-

paring solutions on the basis of the values of their attributes and eliminating

inferior solutions. The comparative nature of these methods makes it easier to

represent expert knowledge and give a process account of expert reasoning.



We have applied these principles to the allocation of frequency bands from a

radio spectre to a group of networks. The radio spectre has two to three thousand

distinct frequencies. The system allocates frequency bands for several hundred

networks, by partitioning them into subsets containing about twenty networks,

and allocating frequencies to these subsets.

The allocation of frequencies to networks is constrained to respect forbid-

den frequency constraints, network frequency constraints, and interference con-

straints. In a typical problem for the current system about a thousand constraints

are required to state all the properties an allocation must respect.

{ Some of the frequencies of the radio spectre are forbidden to all networks,

in general this represents around thirty percent of the spectre.

{ The network frequency constraints limit the number of frequencies available

per network and their possible distributions. A network is constrained to

have between thirty and two hundred and �fty frequencies, which may be

split into at most two separate bands of frequencies.

{ The interference constraints guarantee that when two networks are close the

bands of frequencies that they are allocated will be su�ciently distant to

avoid interference. The separation of bands of frequencies for two networks

is a function of the degree of proximity and the frequencies allocated. Three

degrees of proximity are identi�ed: no interference, low interference and high

interference. The higher the frequency allocated the greater the distance that

must be respected to avoid interference.

The di�culty of the problem lies in the de�nition of what constitutes a good

placement for the bands of frequencies. Here several criteria were exposed as

important attributes of a possible frequency allocation:

{ the number of frequencies per network should be maximized (C1);

{ the number of networks with two frequency bands should be maximized

(C2);

{ the separation between frequency bands on the same network should be

maximized (C3);

{ the distribution of frequencies among networks should be equitable (C4).

A good allocation would have all networks with two well separated bands,

containing a large number of frequencies, and with all networks having a similar

number of frequencies.

A �rst approximation for multi-criteria optimization was to try a strict lex-

icographic order (C1,C2,C3,C4) among criteria. This was not satisfactory, ac-

cording to the experts, so we introduced thresholds, to modify the underlying

lexicographic order. Furhter we combined the criteria C1 and C4 to form a new

criterion C5 and similarly C2 and C3 to form C6.

The optimization relation we retained for the frequency allocation problem

is the following:

{ (C6,C5) is the lexicographic order until the two band threshold has been

reached for C6;



{ after the two band threshold has been reached the lexicographic order is

(C5,C6).

The rules we used to implement the allocation preferences in the frequency

allocation system are given below. The predicate solution_criteria mea-

sures the value of a solution on each of the four criteria de�ned above, and

lexicographic is a strict lexicographic order.

better(Sol1,Sol2):-

solution_info(Sol1,Sol2,C51,C61,C52,C62,TBT),

TBT > C62,

lexicographic([C61,C51],[C62,C52]).

better(Sol1,Sol2):-

solution_info(Sol1,Sol2,C51,C61,C52,C62,TBT),

C62 >= TBT,

C61 >= TBT,

lexicographic([C51,C61],[C52,C62]).

solution_info(Sol1,Sol2,C51,C61,C52,C62,TBT):-

two_band_threshold(TBT),

solution_criteria(Sol1,C11,C21,C31,C41),

solution_criteria(Sol2,C12,C22,C32,C42),

combine12(C11,C21,C51),

combine34(C31,C41,C61),

combine12(C11,C21,C51),

combine34(C31,C41,C61).

lexicographic([H0|_],[H1|_]):-

H0>H1,!.

lexicographic([H0|T0],[H1|T1]):-

H0=H1,

lexicographic(T0,T1).

In the current system the optimization process does not �nish but is stopped

when satisfactory solutions have been found. In fact good solutions, already

better than those found by experts, are found after one to two minutes.

6 Conclusion

Hierarchical constraints and relational optimization are two ways for stating pref-

erences inside a CLP framework. The relational optimization scheme is founded

on the semantics of negation in CLP languages, and provides a uniform treatment

of preference constraints and multi-criteria optimization. Our �rst experiments

have shown that this greater generality was not at the cost of e�ciency and

that real-life applications could be tackled with this approach. We are currently



exploring the integration of the scheme for constructive negation by pruning of

[6] in our implementation.
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