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EXPERIMENTS IN REACTIVE CONSTRAINT

LOGIC PROGRAMMING

FRANCOIS FAGES, JULIAN FOWLER and THIERRY

SOLA

� In this paper we study a reactive extension of constraint logic program-

ming. Our primary concerns are search problems in a dynamic environ-

ment, where interactions with the user (e.g. in interactive multi-criteria

optimization problems) or interactions with the physical world (e.g. in time

evolving problems) can be modeled and solved e�ciently. Our approach is

based on a complete set of query manipulation commands for both the ad-

dition and the deletion of constraints and atoms in the query. We de�ne

a fully incremental model of execution which, contrary to other proposals,

retains as much information as possible from the last derivation preceding

a query manipulation command. The completeness of the execution model

is proved in a simple framework of transformations for CSLD derivations,

and of constraint propagation seen as chaotic iteration of closure opera-

tors. A prototype implementation of this execution model is described and

evaluated on two applications. �

1. INTRODUCTION

The integration of constraint programming and logic programming resulted in a

powerful model of computation that is conceptually simple and semantically elegant

[16]. Constraint logic programming (CLP) systems have been proved successful in a

wide variety of complex system modeling and combinatorial optimization problems.

Numerous applications have been developed over the last decade across various
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application domains, ranging from options trading and �nancial planning to job-

shop scheduling, crew management, etc. [17].

A promising way to enlarge these domains of application is to generalize the CLP

paradigm for dealing e�ciently with open systems whose objective is not to produce

a single input-output relation but to maintain an interaction with the environment.

This class of systems has been called reactive systems by Harel and Pnueli [15]. The

reactive CLP systems we consider may not have strong response time requirements

but we do want to model their behavior over time, and provide them with an e�cient

incremental execution model.

The capacity to interact with the environment is indispensable in any system,

whether this interaction is with users, sensors or e�ectors. This capacity may be-

come preponderant in some domains. Our experience concerns search problems in

a dynamic environment, more especially of one or both of the following kinds:

� Decision support systems where the interaction with the user is a funda-

mental property. Interactive decision support systems allow a much more

powerful form of problem solving than their non-interactive counterparts.

The solution presented by the system is just a reference point in the inter-

active elaboration of a �nal decision. The user can thus continue to interact

in order to de�ne his requirements by successive approximation. This is

especially pertinent for multi-criteria optimization where the knowledge on

the combination of criteria which constitutes a good solution is necessarily

partial and context-dependent.

� On-line planning, scheduling and resource allocation problems where it is

necessary to modify the solution to account for new information. For example

while executing a schedule, a problem such as machine failure may arise, thus

requiring the revision of the current schedule.

The realization of reactive and interactive systems within the CLP framework

requires that the model of execution be extended with a mechanism to capture

external events. Concurrent constraint (CC) programming [26] extends CLP with

one form of communication, synchronization and data-driven computations, based

on constraint entailment (ask operation). However, the monotonicity hypothesis

(i.e. information is accumulated in the store of constraints but never removed) does

not �t well with open systems. Recent proposals have been made to palliate this

drawback, by considering timed CC programs [25], non-monotonic and linear CC

programs [10] [6]. Our work belongs to a similar line of research, with a strong

emphasis on the practicality of the scheme and its evaluation on some real-world

applications, but with a di�erent focus on search problems in a dynamic environ-

ment, whereas in the CC approaches to reactive systems, non-determinism is usually

replaced by committed-choice indeterminism. Also we shall not consider ask oper-

ations and will stick to the CLP scheme.

In CLP, one possible choice is to consider external events as query modi�cation

commands. Maher and Stuckey [22] de�ned an incremental execution model only

for the addition of atoms and constraints to the query. Van Hentenryck [29] de-

scribed methods of re-execution by oracle for both the addition and the deletion of

constraints to a query. Neither of these methods, however, o�ers all the possibilities

of incremental addition and deletion of constraints and atoms to the query.

In this paper we study a reactive execution model for CLP which allows all

query manipulation commands. Contrary to the re-execution models where several

derivations are memorized, our model only retains the last derivation preceding a
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query manipulation command. After an interaction, the resolution of atoms causing

a failure together with a newly added constraint are delayed in such a way that as

much information as possible from the previous derivation is retained. The method

relies both on a system of transformations of CSLD derivations and on the capability

of the constraint solver to e�ciently deal with addition and deletion of constraints.

We present a generic incremental constraint propagation algorithm in an abstract

framework where constraints are identi�ed with closure operators in a lattice of

variable environments. This presentation allows a simple proof of correctness of the

incremental constraint solver.

The plan of the paper is the following. The next section �xes preliminaries and

notations on CLP languages. Section 3 presents the hypotheses under which our

scheme is applicable to reactive systems, followed by the formal de�nition of the

system of transformations of CSLD derivations. A general incremental constraint

propagation algorithm that supports arbitrary addition and deletion of constraints

is presented in section 4. The base of our implementation is then described in section

5 with a meta-interpreter which combines the incremental constraint propagation

algorithm with a reactive search procedure. Sections 6 and 7 present evaluation re-

sults on two applications: an interactive decision support system for frequency band

allocation, and an on-line aircraft sequencing problem in a simulated environment.

Section 8 gives some comparisons with other works.

2. PRELIMINARIES AND NOTATIONS ON CLP LANGUAGES

This presentation conforms where possible to [17] [16]. A constraint language is

de�ned on a signature � of constants, functions and predicate symbols (containing

true, false and =), and on a countably in�nite set V of variables. An atomic con-

straint, noted a

1

; a

2

:::, has the form p(t

1

; : : : ; t

n

) where p is a predicate symbol in

� and the t

i

's are �,V-terms. A constraint, noted c, d..., is a conjunction of atomic

constraints. The set of variables of a constraint c is noted V(c). Syntactically con-

straints will also be seen as �nite multisets of atomic constraints, where the multiset

union of constraints c and d noted c; d denotes the conjunction of constraints, and

multiset di�erence

1

is noted c n d (true denotes the empty multiset of constraints).

A mathematical structure D is assumed to �x the interpretation of constraints.

The D-satis�ability of constraints is assumed to be decidable, i.e. one can decide

for any constraint c whether D j= 9X c or D j= :9X c where X = V(c).

CLP (D) programs are de�ned with an extra signature � of predicate symbols

disjoint from �. An atom has the form p(t

1

; : : : ; t

n

) where p is a predicate symbol

in � and the t

i

's are �,V-terms. A de�nite CLP program is a �nite set of clauses

of the form (A  c j �), where A is an atom, c is a constraint, and � is a �nite

multiset of atoms (2 denotes the empty multiset of atoms). A goal is noted cj�

where c is a constraint and � a multiset of atoms. In the rest of the paper we assume

without loss of generality that the programs and goals are in canonical form, where

the atoms are formed with variables only, constant and function symbols appear

exclusively in constraints. For example the program clause p(X + 1) p(X � 1)

should be written in canonical form p(Y ) Y = X + 1; Z = X � 1jp(Z).

1

Formally, a multiset c (a constraint here) of elements from some universeA (the set of atomic

constraints here), is an application from A to N, that indicates the number of occurrences in c of

each element a 2 A. Multiset union is de�ned by (c; d)a = c(a) + d(a). The multiset di�erence

considered here is de�ned by (c n d)a = maxf0; c(a)� d(a)g.
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Operationaly, CLP(D) programs are interpreted by a simple transition system

de�ned by the CSLD resolution rule. For our purpose it is convenient to represent

explicitly failed goals with an inconsistent constraint. Therefore the test of satis�-

ability of the constraints is on the goal to rewrite, not on the resulting goal which

may be inconsistent.

CSLD

(A dj�) 2 P D j= 9c

cjA;�

A dj�

�! c; dj�; �

The atom A in the transition is called the selected atom. A CSLD derivation

is a sequence of CSLD transitions written G

0

A

1

 c

1

j�

1

�! G

1

A

2

 c

2

j�

2

�! :::, or simply

G

0

�!G

1

�!::: when the rules applied are clear from the context. A derivation is

successful with answer constraint c if it is �nite and ends with a goal of the form cj2

where c is D-satis�able. A derivation is �nitely failed if it is �nite and ends with a

goal with a D-unsatis�able constraint. A CSLD tree for a goal G is the tree of all

derivations from G obtained by �xing a selected atom in each node.

Theorem 2.1 (Soundness and Completeness of CSLD resolution). [16] [23]

Let P be a CLP (D) program and G a goal. Let T be a CSLD tree for G. If T

contains a successful derivation with answer constraint c then P;D j= c! G. If

P;D j= c! G then there exist successful derivations in T with answer constraints

c

1

; :::; c

n

such that D j= c! 9Y

1

c

1

_ :::_ 9Y

n

c

n

where Y

i

= V(c

i

) n V(c).

3. AN INCREMENTAL EXECUTION MODEL FOR REACTIVE CLP

3.1. Hypotheses for Reactive Constraint Logic Programming

In this section the hypotheses underlying and justifying our approach are presented.

The explication of these hypotheses serves as an informal description of the execu-

tion model presented in the next section.

Hypothesis 1. Interactions from the environment only modify the top-level goal.

This principle hypothesis states that all interactions with the environment go

through the top-level goal and computed answer constraints. The four basic goal

transformation commands are the addition and removal of a constraint or an atom.

The syntax of these commands is given in table 1). The novelty with the primitives

of Maher and Stuckey for query manipulation [22] is the deletion of constraints and

atoms.

del constraint(c)

add constraint(c)

del atom(A)

add atom(A)

Table 1. Syntax of basic goal manipulation commands

A consequence of hypothesis 1 is that the data that is subject to change must be

contained in the goal, not the program clauses. Here we do not distinguish between
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a modi�cation due to the interaction of a user (interactive system) or of an arbitrary

external agent (reactive system). We shall see that the interactions are allowed at

any point in the CSLD resolution process.

The basis of the procedure is to use the information contained in the CSLD tree

for the preceding goal to reduce the computation required for the modi�ed goal.

When an interaction modi�es the goal, the associated CSLD tree is transformed into

a new partial CSLD tree for the new goal. Of course certain parts of the preceding

partial CSLD tree are removed in this transformation but others remain valid.

This operational intuition forms the basis of previous schemes for goal modi�cation

presented in [3, 22, 29]. We insist, however, that the space complexity of the

information we retain is independent of the number of interactions.

Hypothesis 2. Space complexity is independent of the number of interactions.

Unlike [29], our execution model thus conserves only the information contained

in the partially constructed CSLD tree of the preceding goal. Furthermore, unlike

[22], the transformation of the CSLD tree is based on a single derivation for the

preceding goal. This choice leads to a new execution model for constraint logic

programming instead of a purely meta-level extension.

The CSLD tree transformations try to preserve as many steps of the previous

derivation as possible. This has a double e�ect. It minimizes the re-execution

necessary to search for new solutions, and the scheme is more likely to enumerate

solutions which are close in some sense to the solution found previously. However

for sparse problems in which all subproblems are strongly connected the search for

a new solution may necessitate the revision of the totality of a derivation. In that

case re-execution from scratch may be more e�cient than an incremental scheme.

Therefore our last (loose) hypothesis is about the structure of the problems that

the scheme is best suited to solve.

Hypothesis 3. Dense problems are considered, so that small changes in a goal result in

revising only a few number of steps in the derivation for a new solution.

We shall see that this hypothesis can be made technically more precise in terms

of the number of connected components in the dynamic dependency graph of con-

straints. The capability of the scheme to re-order the selected atoms in a CSLD

derivation makes it possible to re-use a large part of the previously successful deriva-

tion and to limit the search space for new solutions to few subgoals. This capability

will also be used to de�ne new search procedures for static CLP problems.

The execution model of the reactive constraint logic programming scheme is

presented in two parts. The �rst part de�nes the transformations of CSLD trees

after an interaction. The second part presents the requirements for the constraint

solver, which is described in details in the next section. Then a discussion of the

associated search procedures is given in the following section on implementation.

3.2. Transformations of CSLD Trees

When an interaction occurs, the CSLD tree for the current goal has been searched

up to a certain point de�ned by a single derivation. The transformation of the

CSLD tree for the modi�ed goal is based on the transformation of that derivation.
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derivation D derivation D’

Transformation of the derivation D to D’

CSLD tree for query G
Query manipulation

CSLD tree for modified query G’

Figure 1. Transformation of a CSLD tree based on one derivation.

Two basic operations are de�ned on CSLD derivations: the pruning of a deriva-

tion by a constraint (i.e. the addition of the constraint to the goals of the derivation)

and its complement the lifting of a derivation (the deletion of a constraint from the

goals of the derivation). Similar operations are de�ned for atoms: the addition of a

multiset of atoms to the initial goal of a CSLD derivation, and its somewhat more

complex counterpart, the removal of a multiset of atoms from the initial goal of a

derivation.

De�nition 3.1. The pruning of a CSLD derivation � by a constraint c is the deriva-

tion, noted � 
 c, obtained by adding c to the goals in � up to inconsistency:

(dj�)
 c = (c; dj�),

(dj��!�

0

) 
 c = (c; dj�)�!(�

0


 c) if c ^ d is satis�able,

(c; dj�) otherwise.

The lifting of a CSLD derivation � by a constraint c supposed to occur in the

initial goal is the derivation, noted ��c, obtained by deleting c in the derivation:

(c; dj�)� c = (dj�),

(c; dj��!�

0

)� c = (dj��!(�

0

� c)).

The addition of atoms is de�ned similarly. The deletion of atoms in a derivation

must take care of the dependencies between atoms in the CSLD derivation.

De�nition 3.2. The addition of atoms � to a CSLD derivation �, is the derivation,

noted �� �, obtained by adding atoms � to the goals in �:

(cj�) � � = (cj�; �),

(cj��!�

0

)� � = (cj�; ��!(�

0

� �)).

The deletion of atoms � in a CSLD derivation � whose initial goal contains

atoms �, is the CSLD derivation, noted �	 �, de�ned by:

(cj�; �)	 � = (cj�),

(cj�; �

A dj

�! �

0

) 	 � = (cj�

A dj

�! (�

0

	 �)) if A 62 �,

= �

0

� d	 �

0

if A 2 � and �

0

= (� n fAg) [ .

Note that the operation of pruning by a constraint does not change the order of

selected atoms along the derivation. In order to preserve a maximum number of

deductions from the previous CSLD derivation it is possible to delay the selection
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of an atom which introduces an inconsistency, instead of cutting the derivation at

the �rst encountered inconsistency. The following operation formalizes this idea, it

marks the fundamental di�erence between our method and the methods of [22] and

[29] for the constraint addition command de�ned below.

De�nition 3.3. The delaying of the resolution steps which introduce a constraint c in

a derivation � is the derivation, noted �� c, de�ned recursively by:

(dj�)� c = (dj�),

(dj�

A ej�

�! �

0

) � c = (dj�

A ej�

�! (�

0

� c)) if e 6= c,

= (�

0

� c	 � � fAg)� c if e = c.

Now the goal manipulation commands can be de�ned formally as operators acting

on couples noted between angle brackets < G ; � >, formed of a goal and a

derivation.

De�nition 3.4. Let G be a goal and � be a CSLD derivation from G. The goal ma-

nipulation commands are de�ned by the following transformations:

< c; dj� ; � > del�constraint(c) < dj� ; �� c >

< dj� ; � > add�constraint(c) < c; dj� ; �
 c > if e ^ c is satis�able

where ej is the �nal goal in �

< c; dj� ; �� c

1

:::� c

n


 c >

if fc

1

; :::; c

n

g is a set of constraints

introduced by resolution steps in �

s.t. (c; e n c

1

::: n c

n

) is satis�able

< cj�; � ; � > del�atoms(�) < cj� ; �	 � >

< cj� ; � > add�atoms(�) < cj�; � ; �� � >

Here the addition of a constraint is a complex operation which, in case of incon-

sistency, restores consistency by �rst removing a subset of unsatis�able constraints

from the derivation, and then by delaying the corresponding resolution step. In this

operation, the choice of a precise subset of satis�able constraints in the derivation is

left unspeci�ed. In our implementation this choice is based on the dependency in-

formations used by the incremental constraint solver presented in the next section

2

.

One can easily check that the transformations de�ne correct CSLD derivations

for the transformed goals.

Lemma 3.5 (Soundness of the transformations). Let � be a CSLD derivation for a

goal G, and < G

0

; �

0

> be the transformed goal and derivation obtained by

some goal manipulation command. Then �

0

is a CSLD derivation for G

0

.

Example 3.6. The transformation for the addition of a constraint can be illustrated by

the following typical disjunctive scheduling CLP program over natural numbers:

disj(X,Y,DX,DY):-Y >= X + DX.

2

Note that in our context a notion of maximally satis�able subset should take into account the

dependencies between resolution steps in the derivation.
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disj(X,Y,DX,DY):-X >= Y + DY.

Let us consider the following successful derivation:

m � x;m � y;m � z j disj(y; z; 2; 1); disj(x; z; 1; 1); disj(x; y; 1; 2)

! m � x;m � y;m � z; z � y + 2 j disj(x; z; 1; 1); disj(x; y; 1; 2)

! m � x;m � y;m � z; z � y + 2; z � x+ 1 j disj(x; y; 1; 2)

! m � x;m � y;m � z; z � y + 2; z � x+ 1; y � x+ 1 j 2

Now the addition of the constraint 2 � m to the goal causes an inconsistency in

the derivation, more precisely with the constraint z � y+2 introduced in the �rst

resolution step.

The e�ect of the command add constraint(2 � m) is to restore consistency by

removing the constraint introduced by the �rst resolution step. The transformed

derivation is thus obtained simply by delaying the �rst resolution step:

2 � m;m � x;m � y;m � z j disj(y; z; 2;1); disj(x; z; 1;1); disj(x; y; 1; 2)

! m � x;m � y; m � z; z � y + 2 j disj(y; z; 2; 1); disj(x; y; 1;2)

! 2 � m;m � x;m � y;m � z; z � x+ 1; y � x+ 1 j disj(y; z; 2;1).

Then the search continues from that derivation, giving here a success immediately

in one resolution step:

! 2 � m;m � x;m � y;m � z; z � x+ 1; y � x+ 1; y � z + 1 j 2.

Now the execution model consists of developing a new CSLD tree containing the

transformed derivation for the modi�ed goal. As any CSLD derivation for a goal G

can be completed in a CSLD tree for G, the completeness of the execution model

for reactive CLP trivially follows from lemma 3.5.

3.3. Requirements for the Constraint Solver

The operations on CSLD derivations described in the previous section suppose that

the constraint solver can

1. add or delete a constraint from a system of constraints and check its satis�-

ability incrementally (operations add(c) and del(c)).

2. given a consistent system of constraints c and an atomic constraint a such

that a[ c is inconsistent, identify a (minimal) subset d � c such that a[ cnd

is consistent (cf. transformation add-constraint(a)).

The existence of an incremental constraint solver for checking the satis�ability of

a stack of constraints is a standard assumption in CLP, but here we do not assume

any longer that the system of constraints is a stack: any constraint can be deleted

by a del operation, not necessarily the last added constraint as in a stack. We

thus assume full incrementality of the constraint solver w.r.t. the set operations of

addition and deletion.

The possibility to delete any constraint from the store imposes to carefully re-

vise some optimizations of the constraint solver such as the removal of redundant

constraints, as the deletion of a constraint can obviously change the status of a con-

straint from redundant to active. In CLP(R), the Simplex algorithm can be made
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fully incremental as long as all constraints remain in the tableau. In CLP(FD), the

situation is more complex as the reductions of domains appear as redundant con-

straints whose dependency need be handled appropriately. Some algorithms have

already been proposed for dynamic constraint satisfaction problems [2] [11] [31]. In

the next section we describe a generic fully incremental constraint propagation al-

gorithm, and prove its completeness in a simple framework of constraints as closure

operators.

The second requirement concerns the capability of the constraint solver to iden-

tify the causes of an inconsistency. This problem has been well studied in the

context of intelligent backtracking for Prolog [7], CLP(R) [9] and CLP(FD) [5].

For CLP(R), it is shown in [9] that the Quasi-Dual algorithm of Lassez [20] pro-

vides in fact a minimal conict. For CLP(FD), we show in the next section how

the dependency graph provides also a solution to this requirement.

4. INCREMENTAL CONSTRAINT PROPAGATION ALGORITHMS

In this section, we present the dynamic constraint solver used in our implementation

of CLP(FD) with reactive capabilities. The algorithm is presented in an abstract

framework, and illustrated with examples over �nite domains. The algorithm basi-

cally combines the standard constraint propagation algorithm of CLP(FD) [28] to

a deduction maintenance method which keeps track of all dependencies needed for

the deletion of constraints, in a way similar to Doyle's Truth Maintenance Systems

[12].

For the sake of simplicity and generality, the correctness of the algorithm is

proved in an abstract setting where constraints are identi�ed with closure operators

in a lattice of environments. This setting is presented �rst.

4.1. Constraint Propagation as Chaotic Iteration of Closure Operators.

An environment E : V !2

D

associates a domain of possible values to each variable.

The set of environments forms a lattice structure, (E ;v), for the information order-

ing de�ned by E v E

0

if and only if 8x 2 V E(x) � E

0

(x). Note the duality between

the information ordering and the domain inclusion ordering: the union (i.e. least

upper bound) of information in two environments corresponds to the intersection

of domains.

Now the semantics of an atomic constraint b can be de�ned as a closure operator

over E , noted b, i.e. a mapping E ! E satisfying

i) (extensivity) E v b(E),

ii) (monotonicity) if E v E

0

then b(E) v b(E

0

)

iii) (idempotence) b(b(E)) = b(E).

In [26], this approach is developed in the lattice of constraint stores, and is gen-

eralized to the semantics of concurrent constraint programs. Here our purpose is

di�erent, we want to analyze constraint propagation algorithms in this abstract

framework, in order to use the abstract properties of constraint propagation algo-

rithms for giving a simple proof of correctness of the constraint retraction algorithm.

As is well known the union of closure operators is not a closure operator, the

semantics of a system of constraints c is thus not simply the union of the closure
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operators of the atomic constraints in c, but the closure operator

c = fix(�E:E t

G

b2c

b(E)):

Example 4.1. Let us consider the inconsistent system of constraints in CLP(FD) com-

posed of two constraints, b : x > y and c : y > x.

In an initial environment E(x) = [1; 10], E(y) = [1; 10], we have bE(x) = [2; 10],

cE(x) = [1; 9], thus (b t c)E(x) = [2; 9], whereas the closure operator b; c asso-

ciated to the conjunction of constraints b; c gives the intended semantics of the

conjunction of constraints: b; cE(x) = ;.

Now the method of approximating c by iterating the closure operators associated

to the atomic constraints in c is faithful to constraint propagation algorithms for

solving systems of constraints (note however that termination is not assumed at

this stage). This method is a particular case of the very general chaotic iteration

method for solving a system of �xed point equations in a lattice [8].

Let L(v;?;>;t;u) be a complete lattice, n an integer strictly positive, and

F : L

n

! L

n

a monotone operator over L

n

, where F

i

: L

n

! L denotes the

projection of the function on its ith component. The chaotic iteration of F from

D 2 L

n

for a trans�nite choice sequence

3

< J

�

: � 2 Ord > of parts of f1; :::; ng

satisfying f8� 2 Ord; 8i 2 f1; :::; ng; 9� � � : i 2 J

�

g, is the trans�nite sequence

< X

�

: � 2 card(L) > of elements in L

n

de�ned by:

X

0

= D,

X

i

�+1

= F

i

(X

�

) if i 2 J

�

, X

i

�+1

= X

i

�

otherwise,

X

i

�

=

F

�<�

X

i

�

for any limit ordinal �.

Theorem 4.2 ([8]). Let L(v;?;>;t;u) be a complete lattice, n an integer strictly pos-

itive, F : L

n

! L

n

a monotone operator over L

n

, and D 2 L

n

a pre �xpoint of F

(i.e. D v F (D)). Then any chaotic iteration of F starting from D is increasing

and has for limit the least �xed point of F greater than D.

Corollary 4.3 (Correctness of constraint propagation). Let c be a system of atomic con-

straints a

1

; :::; a

n

. Let E be an environment. Then c(E) is the limit of any fair

iteration of closure operators a

1

; :::; a

n

from E.

Proof:

Consider the following system of n + 1 �xed point equations, and the function

F : L

n+1

! L

n+1

de�ned by its projections, F

1

; :::F

n+1

:

8

>

>

>

>

<

>

>

>

>

:

E

1

= a

1

(E) = F

1

(E

1

; : : : ; E

n

; E)

E

2

= a

2

(E) = F

2

(E

1

; : : : ; E

n

; E)

: : :

E

n

= a

n

(E) = F

n

(E

1

; : : : ; E

n

; E)

E = E

1

\ � � � \E

n

= F

n+1

(E

1

; : : : ; E

n

; E)

3

In our use of chaotic iteration for modeling constraint propagation, trans�nite sequences need

not be considered as termination is ensured in our case, nevertheless we express the soundness

theorem in its general form.
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The functions F

i

's are obviously monotonic, any fair iteration of closure opera-

tors a

1

; :::; a

n

is thus a chaotic iteration of F

1

; :::; F

n+1

(with F

n+1

applied in the

even indices of the sequence

4

), therefore its limit is equal to the least �xed point

greater than E: c(E). 2

Note that in [1], a more general theorem is proved where the idempotency as-

sumption of the closure operators is relaxed. In [26], a similar approach is used for

the semantic foundation of concurrent constraint programming, where the denota-

tion of an agent is a closure operator in the (dual) lattice of constraint stores.

4.2. Incremental Constraint Propagation Algorithm with addition and

deletion of constraints

According to the previous section, incremental constraint propagation can be mod-

eled by a transition system (�;=)) where � is a set of con�gurations and =)�

� � C � � is the transition relation labeled by atomic constraints.

For dealing with deletion of constraints, information about dependencies must

be maintained. Consequently a con�guration will be a triple

< E : V ! 2

D

; P : C � V ! 2

D

; C : V ! 2

C

>

composed of an environment E, a producer

5

function P which associates with an

atomic constraint and a variable, the set of domain values removed by the constraint

from the domain of that variable, and a consumer function C which associates with

a variable the set of atomic constraints which have used the domain of the variable

to reduce other domains.

De�nition 4.4. Let C be a system of constraints a

1

; : : : ; a

n

. The transition relation

for constraint propagation is de�ned as the least relation over con�gurations =)

satisfying the following rules:

Fail

a

i

2 C x 2 V(a

i

) a

i

E(x) = ;

< E;P;C >

a

i

=) fail

CP

a

i

2 C E

0

= a

i

(E) E

0

6= E E

0

6= ;

< E;P;C >

a

i

=)< E

0

; P

0

; C

0

>

where P

0

(a

i

; x) = P (a

i

; x) [ (E(x) nE

0

(x)) for all x 2 V (a

i

),

P

0

(a

i

; x) = P (a

i

; x) for all x 62 V (a

i

),

C

0

(x) = C(x) [ fa

i

g for every x 2 V(a

i

) such that E

0

(y) 6= E(y) for some

y 2 V(a

i

) n fxg,

C

0

(x) = C(x) otherwise.

4

One can remark in the proof that the propagation of atomic constraints need not be synchro-

nized, constraint propagation can be done in parallel, provided that the synchronization equation

F

n

+ 1 is not discarded inde�nitely.

5

The term producer originates from the Herbrand constraint systemwhere the e�ect of equality

constraints is to produce substitutions, whereas in FD the e�ect of constraints is to produce domain

restrictions.
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As a consequence of proposition 4.3, we get that for a constraint system c, any

terminating sequence of transitions labeled by atomic constraints in c, starting from

an initial environment E, ends with �nal environment c(E). Hence the operation

of addition of a constraint, add(c), can simply add c to the system of constraints

and apply the transitions up to a �xed point.

But the maintenance of producers and consumers gives much more and allows

to implement the other operation of deletion of constraints del(c). That opera-

tion deletes the constraint c from the system of constraints, restores a consistent

environment obtained by an operation of constraint relaxation called relax(c), and

then applies the transitions up to a �xed point. In order to de�ne the operation

relax(c), let us remark that the labeled transition system de�nes a complex depen-

dency graph between constraints variables and values. A simpler graph was used

for intelligent backtracking in [5]. In that case, only the constraints responsible

for the unsatis�ability needed to be determined, so only the producer function was

required. Here for the operation of constraint relaxation we shall make use of a

di�erent subgraph which traces the e�ects of constraint propagation:

De�nition 4.5. The constraint dependency graph in a con�guration < E;P;C > is the

graph of atomic constraints such that there is an arc from a to a

0

if and only if

there exists a variable x 2 V(a) such that P (a; x) 6= ; and a

0

2 C(x).

This graph is a subgraph of the graph of constraints containing an arc between

each pair of constraints having a variable in common. Informally, there is an arc

from a to a

0

in the constraint dependency graph, if a has reduced the domain of

some variable checked by the constraint a

0

. Note that the constraint dependency

graph is not optimal in the sense that it forgets which constraints removed which

value from a variable domain. For practical e�ciency reasons we chose to consider

only the dependency information between constraints.

De�nition 4.6. The operation of constraint relaxation is de�ned formally as a trans-

formation of both the constraint system c and the con�guration < E;P;C >

by

[c; < E; P; C >] relax(a) [c n a; < E

0

; P

0

; C

0

>]

where E

0

(x) = E(x) [

S

a

0

2S

P (a

0

; x),

P

0

(a

0

; x) = ; if a

0

2 S, otherwise P

0

(a

0

; x) = P (a

0

; x),

C

0

(x) = C(x) n S if x 2 V(S), otherwise C

0

(x) = C(x),

S is the set of constraints a

0

such that there exists a path from a to a

0

in the

constraint dependency graph of < E;P;C >.

One di�culty in proving the correctness of dynamic constraint solvers is that the

environment obtained by constraint relaxation may be not reachable by constraint

propagation. An immediate consequence of the fact that a constraint is a closure

operator gives however a simple correctness criterion:

Proposition 4.7. Let c be a constraint. If E v E

0

v c(E), then c(E) = c(E

0

).

Soundness of constraint relaxation can thus be established simply by showing that

the environment obtained by the relaxation of some atomic constraint lies between

the initial environment and its �xed point for the constraint system without the

deleted atomic constraint.
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Lemma 4.8. Let < E

0

; P

0

; C

0

>

a

1

=) :::

a

n

=) < E

n

; P

n

; C

n

> be a �nite transition

sequence with constraint system c. Let [c; < E

n

; P

n

; C

n

>] relax(a) [c n a; <

E; P; C >] be the con�guration obtained after the deletion of atomic constraint

a. Then E

0

v E v c n a(E

0

).

Proof: By induction on n and a simple case analysis. 2

Proposition 4.7 and lemma 4.8 together show the soundness of the incremental

constraint solver with addition and deletion of constraints.

Theorem 4.9. Let E be an initial environment and c an initial constraint system. Let

E

0

be an environment obtained by the incremental constraint solver from E and

c, by applying a sequence of addition and deletions of constraints resulting in a

constraint system d. Then E

0

= d(E).

Proof: By recurrence on the length of the sequence of operations. 2

It is worth noting that, unless the process of constraint propagation itself can be

interrupted by constraint deletion commands, in the use of theorem 4.9 the initial

environment E is a �xed point of c. In this case not all atomic constraints in

d = c n a need be propagated after the relaxation of a. The information contained

in the producers and consumers of the con�guration allows to determine the subset

of constraints in d which have to be repropagated.

Example 4.10. Let us consider the following system of constraints over integers: y �

z + 1, y � x+ 1 and t � z + 1 noted a

1

; a

2

and a

3

respectively.

Let < E

0

; P

0

; C

0

> be the initial con�guration with E

0

(x) = [1; 10], E

0

(y) =

[2; 10], E

0

(z) = [1; 10], E

0

(t) = [1; 9], P

0

= ; and C

0

= ;.

We have a transition sequence < E

0

; P

0

; C

0

>

a

1

;a

2

;a

3

=) < E

3

; P

3

; C

3

> where

E

3

(x) = [1; 9], E

3

(y) = [2; 10], E

3

(z) = [1; 8], E

3

(t) = [2; 9]

P

3

(a

2

; x) = f10g, P

3

(a

1

; z) = f10g, P

3

(a

3

; z) = f9g, P

3

(a

3

; t) = f1g

C

3

(y) = fa

1

; a

2

g, C

3

(z) = fa

3

g, C

3

(t) = fa

3

g.

Now if the constraint a

1

is deleted we obtain by constraint relaxation the state:

[c; < E

3

; P

3

; C

3

>] relax(a

1

) [c n a

1

; < E; P; C >]

where E(x) = [1; 9], E(y) = [2; 10], E(z) = [1; 10], E(t) = [1; 9], P (a

2

; x) = f10g

and C(y) = fa

2

g.

From this state, constraint propagation terminates :with a single transition

< E; P; C >

a

3

=)< E

4

; P

4

; C

4

> with

E

4

(x) = [1; 9], E

4

(y) = [2; 10], E

4

(z) = [1; 8], E

4

(t) = [2; 9]

P

4

(a

2

; x) = f10g, P

4

(a

3

; z) = f9; 10g, P

4

(a

3

; t) = f1g

C

4

(y) = fa

2

g, C

4

(z) = fa

3

g, C

4

(t) = fa

3

g.

Note that similar algorithms have been proposed in the literature on dynamic

constraint solving [2] [11] [31]. In particular [2] proposes a similar trade-o� between

precision and e�ciency of constraint relaxation, obtained by not tracing the removed

values, but only the variables touched by a constraint.
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4.3. Causes of inconsistency

The second requirement of the constraint solver is, given a consistent system of

constraints c and an atomic constraint a such that (c; a) is inconsistent, to choose

a subset d � c such that (a; c) n d is consistent.

We have adopted a simple strategy based on the information contained in the

producers. The system simply adds and propagates constraint a and puts repeatedly

in d any constraint b such that P (b; x) 6= ; for some variable x in V(a), until a

becomes consistent with c n d.

Of course, this strategy still leaves some choices unspeci�ed and does not com-

pute an optimal subset, but it does have the e�ect of localizing the conicts to

a subset of constraints easily determined by the dependency information on con-

straint propagation. On the other hand it is worth noting that because of the

dependencies between atoms, computing an optimal subset of constraints, that is

a satis�able subset of constraints of maximal cardinality, does not necessarily lead

to a minimal revision of the derivation. Therefore the right notion of optimality

is rather complex and although of theoretical interest, seems hardly amenable to

e�cient implementation.

5. IMPLEMENTATION

Our implementation of CLP(FD) called Meta(F) [21] [5] is based on SICStus Prolog

[27]. The constraint solvers are written in C and interfaced with SICStus Prolog

through the standard interface. The performances of Meta(F) are comparable to

the state-of-the-art implementations of CLP(FD) (typically 7 times as fast as the

previous version written completely in Prolog reported in [5], or the CLP(FD)

library in [27]).

In the reactive version of Meta(F), the constraint dependencies de�ned in the

previous section are fully managed by the constraint solver in C. This is responsible

for a time overhead of less than 15% w.r.t. constraint propagation in the standard

version of Meta(F).

On the other hand, the dependencies among atoms and the reactive search pro-

cedure are managed by a meta-interpreter. For these reasons the initial overhead of

the reactive version w.r.t. the standard version can be more important depending

on the trade-o� between backtracking and constraint propagation. Our experi-

ments with scheduling problems showed that the time overhead ranged from 10%

to twofold in some proofs of optimality. In the applications reported in the fol-

lowing sections, we shall see that this overhead is acceptable and that the bene�t

of incrementality pays o� in these applications where the speed-up can attain two

orders of magnitude. The next section describes the reactive search procedure.

5.1. Reactive search procedure

We recall that a derivation of a CSLD tree is transformed by a goal manipulation

command to give a new derivation, which is the point of departure for the develop-

ment of a CSLD tree for the new goal (see �gure 1). A reactive search procedure has

to explore an entire CSLD tree from an internal node, that is from the transformed

(partial) derivation resulting from the goal manipulation command. The subtree

below the internal node is searched �rst, then the other portions of the CSLD tree

are searched by remounting the derivation to the root.
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The incremental constraint solver with addition and deletion of constraints makes

it possible to implement such a reactive search procedure with a simple meta-

interpreter.

5.1.1. Simulating Backtracking with Iterative Search. In order to present the

reactive search procedure we �rst illustrate the exibility acquired by the presence

of an explicit operation for removing a constraint from the store (operation del(c)).

The iterative search procedure traverses a CSLD tree in a depth �rst, left to right

order, simulating backtracking by add(c) and del(c) operations.

For the sake of simplicity, the following meta-interpreter assumes (without loss of

generality) that each predicate is either unde�ned or de�ned by exactly two clauses.

The predicate clauses(A,[C1|B1],[C2|B2]) states that the atom A is de�ned by

the rules A c

1

j�

1

and A c

2

j�

2

where �

1

and �

2

are represented by lists of atoms

B1, B2.

search([]) :- success.

search([A|G]) :-

( clauses(A,[C1|B1],[C2|B2]) ->

( add(C1) ->

append(B1,G,G1),

search(G1),

del(C1)

; true

),

( add(C2) ->

append(B2,G,G2),

search(G2),

del(C2)

; true

),

; true

).

The meta-interpreter is called with the predicate search. The argument is a

goal given as a list of atoms. If the derivation is successful the predicate success

is called, otherwise the search continues through del and add operations.

5.1.2. Reactive Search for Dynamic CLP Problems. The reactive search proce-

dure takes into account interactions and combines the iterative search procedure

with the derivation transformations presented in section 3.

The reactive search meta-interpreter given in table 2 is called by the predicate

search with one argument: the goal given as a list of atoms. The predicate search

with two arguments keeps track of the derivation in its second argument . The

derivation is represented as a list of tuples, formed with the clause body used in each

derivation step together with the alternative clause body and the father goal. The

predicate querymodification takes into account the interactions. The predicate

transformation transforms the goal and the derivation as described in section 3.

After a modi�cation of the query, react �rst searches for a successful derivation

from the current derivation using the predicate search. If a successful derivation

is found then the predicate success is called to signal the success and wait for

interactions.
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search(G) :- search(G,[]).

search([],Der) :- success(Der).

search([A|G],Der) :-

( clauses(A,[C1|B1],[C2|B2]) ->

( add(C1) ->

append(B1,G,G1),

react(G1,[(choice1(C1,B1),choice2(C2,B2),goals(G))|Der]),

del(C1)

; true

),

( add(C2) ->

append(B2,G,G2),

react(G2,[(choice1(C2,B2),choice2(C1,B1),goals(G))|Der]),

del(C2)

; true

)

; true

).

react(G,D) :-

( querymodification(G,D,M) ->

transformation(M,G,D,G1,D1),

search(G1,D1),

backsearch(D1)

; search(G,D)

).

backsearch([]) :- abort.

backsearch([(choice1(C1,B1),choice2(C2,B2),goals(G))|Der]) :-

del(C1),

( add(C2) ->

append(B2,G,G2),

search(G2,[(choice1(C2,B2),choice2(C1,B1),goals(G))|Der]),

del(C2)

; true

),

backsearch(Der).

Table 2. Meta-interpreter for Reactive Search
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After the search from the transformed derivation is exhausted, the reactive search

procedure to be complete has to explore the rest of the CSLD derivation tree. The

predicate backsearch explores the other portions of the CSLD tree by remounting

the derivation.

Note that in this version, at any point the search process may be interrupted and

the goal modi�ed, starting a new search from the transformed derivation. Note also

that for the sake of simplicity, this meta-interpreter keeps continuations which may

be abandoned. After backsearch is exhausted the process aborts, with no need

to execute the continuations attached before the last query manipulation. This

defect can be �xed however to �t hypothesis 2 on the independence of the space

complexity on the number of interactions. In the applications described in the

following sections, the dependencies between atoms are in fact handled in an ad

hoc fashion for e�ciency reasons w.r.t. both memory and time.

6. EVALUATION ON A MULTI-FREQUENCY ALLOCATION PROBLEM

We have applied the reactive CLP scheme to the allocation of frequency bands

from a radio spectrum to a group of networks. The radio spectrum has two to three

thousand distinct frequencies. The system allocates frequency bands for several

hundred networks, by partitioning them into strongly connected subsets containing

about twenty networks, and allocating frequencies to these subsets. The allocation

of frequencies to networks is constrained to respect forbidden frequency constraints,

network capacity constraints, and interference constraints that guarantee that when

two networks are close, the bands of frequencies that they are allocated will be

su�ciently distant to avoid interference. The separation of bands of frequencies

for two networks is a function of the degree of proximity and of the frequencies

allocated. The higher the frequency allocated the greater the separation.

A typical allocation is presented in the �gure 2. In this image the spectrum

associated with a network is represented in light grey. The spectrum corresponds

to the range of all the frequencies available for allocation to the networks. The

forbidden frequencies of the spectrum and the frequencies allocated to the network

are illustrated by the dark blocks and the white blocks respectively.

The major di�culty of the problem lies in the de�nition of what constitutes a

good placement for the bands of frequencies because several criteria contribute to

the quality of a good frequency allocation. Let us examine the following criteria

for improving the resistance to interference and interception: the maximization

of the number of frequencies allocated per network, and the maximization of the

separation between the two bands on the same network. Consider for example

two networks i and j which are close. If the separation between the two bands

of network i is increased, the frequencies available to network j are reduced. This

in turn reduces the possibility of maximizing the number of frequencies for the

network j. In addition to the multi-criteria optimization techniques described in

[13] the capability of the system to react to the interactions of the user to skip from

one solution to another is of prime importance. The interactions are the composition

of several goal manipulations. The operator may interact with the problem in any

one of the following ways :

1. Increase the number of frequencies NFj of a selected network j (the inter-

action \better freq" in �gure 2). The basic idea is to add the constraint,

add constraint(NFj > cj), to the goal stating that the number of allo-

cated frequencies to the selected network must be gretaer than the number
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Figure 2. A sample of multi-frequency allocation screen dump

available in the present allocation. This constraint is not compatible with

the current derivation and thus the transformation of the derivation solicits

the del operation to remove a subset of constraints that are unsatis�able

with the introduction of this constraint to the solver. The choice of such a

subset is controlled by �rst adding compatible constraints add constraint

NFi>=ci to force the number of frequencies allocated to each of the networks

after the interaction will be greater than or equal to the number of frequen-

cies allocated before the interaction. Similar constraints are added for the

separation of frequencies.

The meta-interpreter then updates the derivation and the reactive search

procedure begins its exploration for a new successful derivation with the

hard constraint of not decreasing the quality of the allocation to the other

networks. The frequency allocation of some networks is then modi�ed, in

fact the modi�ed networks correspond to the constraints removed to \cure"

the unsatis�ability of the previous derivation.

An example of selective optimization is shown in �gure 2. The user chooses

to increase the separation between the frequency bands of the network 13.

The modi�cations with respect to the preceding solution are colored with a

darker grey (cf �gure 3). Notice that network 13 is not the only network

that has changed. The networks 14, 15, 16, 17 have also been modi�ed.

This is explained by the fact that these di�erent networks are related by

non-interference constraints. All the networks have a separation between

their bands of frequencies which is better or equal than before. It happens

that the 15th network has also an increase in the number of frequencies

allocated. This result is obtained by the constraints that are added during

the interaction which impose that the solution is not degraded.

2. Increase the separation of the two bands of a selected network j the interac-
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Figure 3. Modi�ed solution after asking to increase separation in network 13.

tion \better sep". This is similar to the interaction \better freq".

3. Modify the forbidden frequency bands. In this problem, the forbidden fre-

quency bands change over time, certain become available while others be-

come forbidden. This interaction deletes the constraints in the goal (by

del constraint) due to the modi�ed forbidden frequencies and adds the

new forbidden frequencies constraints to all networks (add constraint).

The evolution over time of a problem and its description in terms of goal

manipulation commands is described in greater detail in the following appli-

cation.

In a typical scenario an initial allocation is found automaticallywith some heuris-

tics and a �xed optimization criterion. The solution is then progressively improved

by repeatedly selecting a network and improving the number of frequencies it has

been allocated, or by increasing the separation of its frequency bands. The oper-

ational model in e�ect has to perturb a solution in such a way that the solution

found after an interaction improves a criterion, without departing too much from

the solution before the interaction.

The incremental search strategy is well-suited to this application because the

dynamic dependency graph of constraints contains several connected components.

The e�ect of a goal manipulation command is thus localized to a subgraph of con-

straints and resolution steps. A new solution is found incrementally by revising a

subset of choices for the previous solution. Only some parameters of the previous

solution are thus revised and the incremental search strategy allows to converge

towards better solutions in an interactive manner.
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7. EVALUATION ON AN AIRCRAFT SEQUENCING PROBLEM

The time speed-up obtained with our incremental execution model has been eval-

uated in another application of dynamic rescheduling in air tra�c control. The

terminal zone aircraft sequencing problem (ASP) represents an important bottle-

neck of air tra�c ow management. Its statement can be summarized as follows:

given a set of aircraft entering in the terminal area (e.g. 30 min from the airport)

determine an optimal sequence, according to terminal con�gurations, procedural

safety constraints, aircraft capacities and expected schedule. The usual optimal

criteria is the completion time of the sequence. In addition dynamic aspects of the

problem must be accounted for, such as: the arrival of new ights in the terminal

area, the temporal evolution of the problem and unexpected events such as the

rerouting of ights.

The optimal resolution of this task using manual techniques has become impos-

sible because of increase in the number of ights. In fact peek tra�c can be as high

as a ight a minute. The strategy adopted in most airports is that of �rst come �rst

served (FCFS). This strategy is easy to implement but can create delays. Our goal

is to �nd a sequencing strategy capable of producing better sequences and main-

taining them while taking into account the interactions of the environment with the

system.

7.1. Static scheduling

Figure 4 shows the graphical user interface (GUI) of the application that sequences

ights in the terminal zone. In the �gure, the ight sequence shown in the lower

part of the GUI is obtained using the FCFS strategy. The ights are represented

by circles. The sequence shown in the upper part of the GUI is found using our

sequencing program. The lower and upper sequences are di�erent. The FCFS

strategy sequences ights in the order 1..20. The system �nds an optimal solution

which in this example simply inverts the order of ights 19 and 20.

Not all sequences of ights are possible because aircrafts must respect procedural

constraints in the terminal zone. The terminal zone is composed of three zones: the

critical zone, the regulated zone and the non-regulated zone. In each part of the

terminal zone corresponds a ight time from the zone to the runway. In this image

the zones are from left to right: the critical zone in dark grey (5min from runway),

the regulated zone in light grey (5min to 20min from runway), and the non-regulated

zone in dark grey (20min to 35min from runway).

� Each ight must follow a pre-established route, an air corridor. The air

corridors are separated by the white lines in �gure 4. For example ights 10

and 12 are in di�erent air corridors.

� Each ight has a predicted arrival time. The predicted arrival time deter-

mines the zone in which the ight is located. For example ight 1 has a

predicted arrival time which is less than 5 minutes and therefore is in the

critical zone. In the �gure 4 the zone in which the ight is a�ected can be

seen in the lower half of the screen.

� The scheduled arrival time. The arrival time of each ight is limited around

the predicted arrival time by an advance factor and a delay factor. In the

following, we call arrival time the scheduled arrival time, not to be confused

with predicted arrival time.
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Figure 4. A sample of aircraft sequencing solutions.

� The order of ights in the critical zone is �xed. For example ights 1 and 2

are in the critical zone. Flight 1 has an earlier predicted arrival time than

that of ight 2. So ight 1 always preeceds ight 2.

� The order of ights in the regulated zone and in the same air corridor is

�xed. For example ights 7 and 12 are in the same air corridor. Flight 7

has an earlier predicted arrival time than that of ight 12. So ight 7 always

preeceds ight 12. Flights 7 and 8, however, can be sequenced in the order

7,8 or 8,7.

� A safety time must be respected between the arrivals of ights. The time to

be respected is a function of the couple class of ight on the runway and the

class if next ight to land. For example if ight 13 follows ight 12 it must

be at least 3 minutes later but if ight 12 follows ight 13 it need only be 1

minute later.

Finally the objective is to minimize the completion time of the sequence.

The problem is modeled as a disjunctive scheduling problem with variable dura-

tion tasks. The starting date of the tasks are represented by the Scheduled Time

of Arrival variables STAx for each ight x.

The procedural constraints and objective function are modeled as follows.

� Let the advance factor and the delay factor around the predicted arrival time

(pt) be af and df respectively.

8xmax(0; pt� af) � STAx � pt+ df

� Let ights x and y be ordered such that x is before y.

STAx < STAy
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� Flights x and y must respect the safety distance ofDxy andDyx respectively.

The following clauses introduce a disjunction which establishes the fact that

the ight x and y can not take place at the same time.

disj(STAx,STAy,Dxy,Dyx) :- STAx + Dxy <= STAy

disj(STAx,STAy,Dxy,Dyx) :- STAy + Dyx <= STAx

For e�ciency reasons however a constructive disjunction constraint [18] [30]

is in fact used here.

� Finally the objective function Cost can be modeled as a variable which is

greater than the scheduled arrival time of all variables.

Cost <= STAx

7.2. Dynamic rescheduling

The interactions supported by the system are described in terms of goal manipula-

tion operations.

� The addition of a ight. This interaction creates a new variable for the sched-

uled time of arrival of the new ight, and requires the addition of precedence

constraints with other non permutable ights with add constraint opera-

tions. It also requires the addition of a disjunctive atom

add atom(disj(STAx,STAy,Dxy,Dxy))

to the goal for each ight in the terminal zone which can be permuted with

the added ight.

� The removal of a ight consists of removing the constraints (del constraint)

and atoms (del atom) introduced by the presence of the ight.

� The landing of a ight. This interaction requires a careful management of the

temporal evolution of the problem. All the ight plans of the airplanes must

be updated by the time it takes the �rst ight in the sequence to land. This

is translated as add constraint commands, because the safety distances to

be respected by the ights are increasingly severe as they approach the

runway.

� The optimization of the landing sequence. Optimization by branch and

bound can be modeled in this framework as a particular case of interac-

tion with an agent which repeatedly constraints the �nal scheduled time of

arrival of the sequence (add constraint).

7.3. Performance results

Table 3 presents the computation times for �nding a solution to the sequencing

problem subject to typical interactions. The interactions on the problem are the

following. The initial problem is to schedule 20 ights in two corridors (pb 1), then

the �rst ight lands (pb 2), a new ight enters the terminal zone (pb 3), a second

ight enters the terminal zone (pb 4), a ight is rerouted (pb 5), a second ight

lands (pb 6), a third ight arrives in the terminal zone (pb 7), a third ight lands

(pb 8), and �nally a fourth ight arrives in the terminal zone (pb 9).
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pb S R S

opt

R

opt

S/R S

opt

/R

opt

1 99 110 2909 3257 0.90 0.89

2 160 10 3448 40 16.00 86.20

3 149 20 3839 10 7.45 384.00

4 160 10 10050 88 16.00 114.00

5 140 1510 3949 4380 0.09 0.90

6 129 20 3907 60 6.45 65.10

7 99 20 9425 528 4.95 17.90

8 99 10 8050 60 12.00 134.00

9 99 10 5179 10 14.00 518.00

Table 3. Computation times ratio between static and reactive resolution.

The times given for S and R represent the computation time required to �nd

a solution for the problem using static resolution by reexecution and reactive in-

cremental resolution respectively. Times are also presented for �nding an optimal

sequence after each evolution of the problem w.r.t. the static approach (S

opt

) and

the reactive one (R

opt

). The standard version Meta(F) was used for the static

problem solving and its reactive experimental extension for the reactive resolution.

Note that an intermediate model of execution using oracles based on the previous

solution and reexecution could be evaluated with the static resolution. This has not

been experienced in this application.

The evaluation shows that the operational model we propose for constraint logic

programming is e�cient w.r.t. the normal execution model. It achieves a speed up

of one order of magnitude for non-optimized landing sequences and of two orders

of magnitude for optimized landing sequences. The exception to this rule being the

�fth interaction, that is the rerouting of an airplane. The slow down for this inter-

action is caused by the current implementation of the deletion of atomic constraints

and atoms one by one instead of in one single operation.

Here again, the application is well-suited to the incremental search strategy be-

cause the dynamic dependency graph of constraints contains several connected com-

ponents. Solutions can be found by permuting ights incrementally without chang-

ing the other ights. This is detected automatically by the incremental constraint

solver and exploited in the derivation transformation system of the reactive search

procedure.

8. COMPARISON WITH OTHER WORK

The CLP reactive execution model is a very general model of execution and it is

possible to compare it to methods based on re-execution with oracles [29], and to

Maher and Stuckey's method [22] for the addition of constraints and atoms to the

goal. In this section, we present these methods in terms of operations on derivations

and compare them.

8.1. Re-execution with oracles

Van Hentenryck [29] proposes a method for re-executing a goal with an oracle, after

the addition or removal of constraints in the goal. The oracle is used to develop a
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CSLD tree for the modi�ed goal and to explore �rst of all the branch of the CSLD

tree described by the oracle. It is possible to analyze this model very simply in

terms of operations on derivations.

De�nition 8.1. An oracle for a goal G and a program P, noted �, is a successful

derivation for P,G.

The transformation used to add a constraint to a goal is expressed in terms of

the operation of pruning the derivation of the oracle.

De�nition 8.2. Let � a successful oracle for the goal d j � and the program P. The

transformation for the addition of a constraint c is de�ned by the command:

< d j �;� > oracle � add� constraint < c; d j �;�
 c > :

As a consequence all the information in the derivation after the �rst resolution

step which is unsatis�able with the added constraint is lost. In our model the

addition of a constraint allows to use more of the resolution steps in the oracle

because the unsatis�able resolution steps are delayed.

In [29], two proposals are made for the transformation for the removal of a con-

straint. The �rst uses an oracle for a less constrained goal stocked in the system, to

which the supplementary constraints are added with the pruning operator. The de-

fault of this method is that a large search space can be explored before the previous

solution is recovered, although it clearly provides a solution to the less constrained

query. The second method is based on the oracle given by the previous derivation

obtained before the removal of the constraint. This operation is formalized by the

lifting operation.

De�nition 8.3. Let � a successful oracle for a goal c; d j � and a program P. The

transformation for the removal of the constraint c with heuristic is de�ned by the

command:

< c; d j �;� > oracle� del � constraint� heuristic < d j �;�� c > :

With this method the lifted solution is immediately found. According to our

search procedure however, all the alternatives to the choice points of the lifted

derivation ��c are explored by remounting the derivation (by predicate backsearch).

In [29], an optimization is proposed based on a combination with the �rst method:

the alternatives of the �rst choice points from the root are not explored if they have

been pruned by an oracle for a less constrained goal (�rst method), then when the

choice points of the preceding derivation di�er from the oracle, the previous deriva-

tion is used only as a heuristic and all the other alternatives at the choice points are

explored, like in our search procedure. For example, when the search is from left

to right, all the derivations at the left of the �rst successful derivation are �nitely

failed, consequently these alternatives can be discarded for a less constrained goal.

These optimizations can be integrated in our reactive search procedure with similar

restrictions on the class of CSLD trees considered. They were not implemented

however in the system that served to the evaluation.



25

8.2. The Maher-Stuckey Method

Maher and Stuckey [22] propose an execution model based on query manipulation

commands. The deletion of constraints or atoms in the query is not considered,

only addition and search of optimal solutions.

The Maher-Stuckey method is applicable to CSLD trees formed with the left

to right selection strategy of Prolog. The addition of an atom to a goal cj�; �

can be made between � and �. The transformation of the CSLD tree consists of

cutting the derivations at the point which corresponds to the goal cj� and to insert

a derivation for A and to graft the derivation tree for �. The �gure 5 illustrates

this transformation.

CSLD tree

successful derivation

Cut the

Figure 5. CSLD tree transformation and search procedure

The search procedure for this method is based on the exploration of the trans-

formed tree. The procedure can be optimized to avoid the exploration of �nitely

failed derivations that have already been discovered. The gray part of the CSLD

tree in �gure 5 corresponds to the part of the CSLD tree that it is not necessary to

re-explore.

Our execution model does not privilege a particular selection strategy, the op-

eration of the addition of an atom in the middle of the goal does not a�ect the

transformation which will always add the atom to the end of the derivation. The

operation of atom addition in the Maher-Stuckey method thus corresponds to an-

other derivation transformation that preserves the selection strategy and that can

be formalized as follows:

De�nition 8.4. Let G = cj�; � be a goal, and A an atom to add to the goal between �

and �. Let � be a �nite derivation for G of the form � = �

0

�!(dj�)�!�

00

.

Let �

1

be a derivation for djA. The transformed derivation for the goal cj�;A; �

is the derivation:

�

0

�!(�

1

� �)�!(�

00


 e) if �

1

is a successful derivation with computed

answer e,

�

0

�!(�

1

� �) if �

1

is a failed derivation for A.

8.3. Discussion

Neither of the two methods above proposes an execution model for the complete set

of goal manipulation commands. This reduces the interactions that it is possible to

use on an application with these models. Consider the case of a scheduling problem
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with disjunctive constraints, such as the aircraft sequencing problem (cf section 7).

For this class of problems, we associate a variable with a task. Through a goal

manipulation command we can add or remove a constraint to advance or delay

the starting date of a task. Of course other interactions are possible with these

manipulations, for example : the minimization or maximization of cost functions

on solutions. If we wish to add a new task to the problem we must be able to

add atoms to the problem to add disjunctive constraints to the goal. Similarly the

removal of tasks from the problem necessitates to remove atoms from the query.

The transformations for the addition of the constraint mark also a fundamental

di�erence between the schemes. The transformation in de�nition 8.2 does not use

delay operations. So in the derivation, all the CSLD resolution steps following

the �rst resolution step which introduces a constraint inconsistent with the added

constraint are lost. The worst case for this transformation is when the �rst step of

the transformation is unsatis�able with the new constraint added. In this case all

the information of the derivation is lost. On the other hand, Maher and Stuckey's

method can address several derivations at a time. In our case, the resolution steps

causing an inconsistency are delayed.

Whether incremental revision, backtracking or re-execution from scratch upon

the addition of a constraint is a better strategy depends on the kind of applications

considered. Our experiments with the application described in the previous section

have shown a better behavior of the system under our incremental revision strategy,

but it is clear that di�erent conclusions can be drawn on di�erent classes of appli-

cations. A key feature in our approach is the number of connected components in

the constraint dependency graph which represents the dynamic interaction between

constraints, and determines the impact of a revision.

9. CONCLUSION AND PERSPECTIVES

In the reactive constraint logic programming scheme we have proposed the pos-

sible interactions with the external world are de�ned through goal manipulation

commands. The operational model of execution is based on a simple set of trans-

formations of CSLD derivations and on a reactive search procedure. The capability

of deleting constraints and atoms in a derivation has been used to de�ne a new

scheme for the addition of constraint to a query which, in contrast to other pro-

posals, preserves the maximum information of a derivation by delaying derivation

steps.

These operations have been implemented in our prototype reactive CLP(FD)

system and have been evaluated on two di�erent applications. The multi-frequency

allocation problem illustrates the pertinence of the goal manipulation primitives to

develop complex decision support systems. The on-line aircraft sequencing problem

underlines the e�ciency of the operational model. In the context of these appli-

cations, our incremental execution model has revealed better performances than

re-execution from scratch, as well as its ability to localize revisions and to generate

incrementally solutions which are close to the one preceding an interaction.

It is worth noting in this respect that the operations de�ned on CSLD derivations

could also be useful for de�ning, in a general framework, non-backtracking search

procedures for static CLP, such as solution repair, simulated annealing, tabu search,

etc. The combination of these other search procedures with CLP is a major subject

for extending the applicability of CLP to large scale combinatorial optimization

problems.
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The reactive CLP execution model is based on an incremental constraint solver

with addition and deletion of constraints. We have shown that the presentation of

this solver in the abstract framework of constraints as closure operators is faithful

to constraint propagation algorithms and gives a simple proof of correctness of

constraint relaxation.

Recent work on concurrent constraint programming (CC) such as on timed CC

[25] or non-monotonic CC [10] [6] belongs to a similar line of research aiming at

providing constraint programming with full reactive programming capabilities. One

di�erence is that we have considered search problems, whereas in the CC approach

for reactive systems, non-determinism is usually replaced by committed-choice in-

determinism. On the other hand one simpli�cation in our setting was the absence

of dependencies due to constraint entailment checks [6].

Similar constraint retraction strategies have also been studied recently to handle

over-constrained systems in [19] [24] [4]. In [4] a proposal is made to reduce the

forward overhead of dependency maintenance, by choosing a di�erent trade-o� be-

tween e�ciency and precision. Clearly the evaluation of these algorithms is delicate

as the performances may vary a lot according to the characteristics of the problem

at hand. Small benchmarks are thus not very conclusive in this domain, and more

programming experiments on real problems will be needed to compare the choices

of language constructs and the performances of their respective execution models.
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