
A Reactive Constraint Logic Pro-

gramming Scheme

F. Fages

1;2

, J. Fowler

2

and T. Sola

2

LIENS, CNRS

1

Ecole Normale Sup�erieure

45, rue d'Ulm

75005 Paris, France

fages@dmi.ens.fr

LCR Thomson-CSF

2

Domaine de Corbeville

91404 Orsay cedex, France.

fjulian,solag@thomson-lcr.fr

Abstract

In this paper we present a constraint logic programming scheme for reactive systems.

A formal framework is developed to de�ne the scheme's operational model and to

prove its completeness. A prototype implementation of a simpli�ed version of this

model is described and then evaluated on two applications.

1 Introduction

The integration of constraint programming and logic programming resulted in a

powerful model of computation that is conceptually simple and semantically ele-

gant [6]. Constraint logic programming (CLP) systems have been proved successful

in complex system modeling and combinatorial optimization problems. A variety of

applications have been developed over the last decade across various application do-

mains, ranging from options trading and �nancial planning to job-shop scheduling,

crew management, etc. [7].

A promising way to enlarge these domains of application is to generalize the CLP

paradigm for dealing e�ciently with open systems whose objective is not to produce

a single input-output relation but to maintain an interaction with the environment.

This class of systems has been called reactive systems by Harel and Pnueli who

identi�ed them as being particularly di�cult systems. The reactive CLP systems

we consider may not have severe response time requirements but we do want to

model their behavior over time, and provide them with an e�cient incremental

execution model.

The capacity to interact with the environment is indispensable in any system,

whether this interaction is with users, sensors or e�ectors. This capacity may be-

come preponderant in some domains. Our experience concerns the domains below.

� Decision support systems where the interaction with the user is a fundamental

property. Interactive decision support systems allow a much more powerful form of

problem solving than their non-interactive counterparts. The solution presented by

the system is just a reference point in the interactive elaboration of a �nal decision.

The user can thus continue to interact in order to de�ne his requirements by suc-

cessive approximation. This is especially pertinent for multi-criteria optimization

where the knowledge on the combination of criteria which constitutes a good solu-

tion is necessarily partial and context-dependent.

� On-line planning, scheduling and resource allocation problems where it is nec-

essary to modify the solution to account for new information. For example whilst

executing a schedule a problem such as machine failure may arise, thus requiring

the adaptation of the current schedule.

The realisation of reactive and interactive systems within the CLP framework

requires that the model of execution be extended with a mechanism to capture

external events. One possible choice is to consider external events as query modi�-

cation commands. Maher and Stuckey [11] de�ned an incremental execution model

only for the addition of atoms and constraints to the query. Van Hentenryck [13]

described methods of re-execution by oracle for the addition and deletion of con-

straints to a query. Neither of these methods, however, o�ers all the possibilities of

incremental addition and deletion of both constraints and atoms to the query.

In this paper we study a reactive execution model for CLP, which allows all

query manipulation commands. The reactive CLP scheme relies both on a system

of transformation of SLD derivations and on the capability of the constraint solver

to e�ciently deal with addition and deletion of constraints. Such algorithms have

already been proposed for dynamic constraint satisfaction problems [1] [4] [15]. In

this paper we present a generic incremental constraint solver with addition and

deletion of constraints in an abstract framework where constraints are identi�ed to

closure operators [12]. This presentation allows a simple proof of correctness of the

incremental constraint solver.

The plan of the paper is the following. The next section �xes notations on CLP

languages. Section 3 presents the hypotheses under which our scheme is applicable

to reactive systems. The formal model of execution is de�ned in section 4 where it

is shown to be correct and complete w.r.t. the declarative semantics. The base of

our current implementation is then described in section 5, and evaluated in section

6 on two applications: an interactive decision support system for frequency band

allocation, and an on-line aircraft sequencing problem in a simulated environment.

2 Preliminaries and notations on CLP languages

A language of constraints is de�ned on a signature � of constants, functions and

predicate symbols (containing true, false and =), and on a countably in�nite set V

of variables. An atomic constraint, noted b

1

; b

2

:::, has the form p(t

1

; : : : ; t

n

) where

p is a predicate symbol in � and the t

i

's are �,V-terms. A constraint, noted c,

d..., is a conjunction of atomic constraints. The set of variables of a constraint c

is noted V(c). Syntactically constraints will be seen also as �nite multisets, where

the multiset union of constraints c and d noted c; d denotes the conjunction of

constraints, and multiset di�erence is noted cnd (true denotes the emptyset multiset

of constraints).

A mathematical structure presented by a theory D is assumed to �x the interpre-

tation of constraints. The D-satis�ability of constraints is assumed to be decidable,

i.e. one can decide whether D j= 9X c or D j= :9X c where X = V(c).

CLP (D) programs are de�ned with an extra signature � of predicate symbols

disjoint from �. An atom has the form p(t

1

; : : : ; t

n

) where p is a predicate symbol

in � and the t

i

's are �,V-terms. A de�nite CLP program is a �nite set of clauses

of the form A c j �, where A is an atom, c is a constraint, and � is a �nite

multiset of atoms (2 denotes the empty multiset of atoms). A goal is noted cj�

where c is a constraint and � a multiset of atoms. In the rest of the paper we assume

without loss of generality that the programs and goals are in canonical form, that

is the atoms are formed with variables only, constant and function symbols appear

exclusively in constraints.

CLP(D) programs are interpreted operationally by a simple transition system

de�ned by the CSLD resolution rule. For our purpose it is convenient to represent

explicitly failed goals with an inconsistent constraint. Therefore the test of satis�-

ability of the constraints is on the goal to rewrite, not on the resulting goal which

may be inconsistent.

CSLD

(A dj�) 2 P D j= 9c

cjA;�

A dj�

�! c; dj�; �

The atom A in the transition is called the selected atom. A CSLD derivation

is a sequence of CSLD transitions written G

0

A

1

 c

1

j�

1

�! G

1

A

2

 c

2

j�

2

�! :::, or simply

G

0

�!G

1

�!::: when the rules applied are clear from the context. A derivation is

successful with answer constraint c if it is �nite and ends with a goal of the form cj2

where c is D-satis�able. A derivation is �nitely failed if it is �nite and ends with a

goal with a D-unsatis�able constraint. A CSLD tree for a goal G is the tree of all

derivations from G obtained by �xing a selected atom in each node.

Theorem 2.1 (Soundness and Completeness of CSLD resolution) [6] [10]

Let P be a CLP (D) program and G a goal. Let T be a CSLD tree for G. If T

contains a successful derivation with answer constraint c then P;D j= c ! G. If

P;D j= c ! G then there exist successful derivations in T with answer constraints

c

1

; :::; c

n

such that D j= c! 9Y

1

c

1

_ ::: _ 9Y

n

c

n

where Y

i

= V(c

i

) n V(c).

3 Hypotheses for a reactive CLP scheme

In this section the hypotheses underlying and justifying our approach are presented.

The explication of these hypotheses serves as an informal description of the execu-

tion model presented in the next section.

Hypothesis 1 Interactions from the environment only modify the top-level goal.

The principle hypothesis (hypothesis 1) is that interactions with the environment

go through the top-level goal and computed answer constraints. The four basic goal

transformation commands are the addition and removal of a constraint or an atom.

The syntax of these commands is given in table 1). The novelty with the primitives

of Maher and Stuckey for query manipulation [11] is the deletion of constraints and

atoms, not supported in their scheme.

del constraint(c)

add constraint(c)

del atom(A)

add atom(A)

Table 1: Syntax of basic goal manipulation commands

A consequence of hypothesis 1 is that the data that is subject to change must be

contained in the goal, not the program clauses. Here we do not distinguish between

a modi�cation due to the interaction of a user (interactive system) or of an arbitrary

external agent (reactive system). We shall see that the interactions are allowed at

any point in the CSLD resolution process.

The basis of the procedure is to use information from the CSLD tree for the

precedent goal to reduce the computation required for the modi�ed goal. When

an interaction modi�es the goal the associated CSLD tree is transformed into a

new partial CSLD tree for the new goal. Of course certain parts of the precedent

partial CSLD tree are removed in this transformation but others remain valid.

This operational intuition forms the basis of previous schemes for goal modi�cation

presented in [2, 11, 13]. We insist, however, that the space complexity of the

information we retain is independent of the number of interactions.

Hypothesis 2 Space complexity is independent of the number of interactions.

Unlike [13], our execution model thus conserves only the information contained

in the partially constructed CSLD tree of the precedent goal. Furthermore the

transformation of the CSLD tree is based on a single derivation for the precedent

goal, unlike [11]. This choice leads to a new execution model for constraint logic

programming instead of a purely meta-level extension.

The CSLD tree transformations try to preserve as many steps of the previous

derivation as possible. This has a double e�ect. It minimizes the re-execution

necessary to search for new solutions, and the scheme is more likely to enumerate

solutions which are close in some sense to the solution found precedently. However

for sparse problems in which all subproblems are strongly connected the search for

a new solution may necessitate the revision of the totality of a derivation. In that

case re-execution from scratch may be more e�cient than an incremental scheme.

Therefore our last hypothesis is about the structure of the problems that the scheme

is best suited to solve.

Hypothesis 3 Dense problems are considered such that few changes in the goal

amount to revise a few number of steps in the derivation of a new solution.

Therefore the capability of the scheme to re-order the selected atoms in a CSLD

derivation makes it possible to re-use a large part of the previously successful deriva-

tion and to limit the search space for new solutions to few subgoals. We shall see

that this capability can also be used to de�ne new search procedures for static CLP

problems.

4 Reactive execution model

The execution model of the reactive constraint logic programming scheme is pre-

sented in two parts. The �rst part de�nes the transformations of CSLD trees after

an interaction. A discussion of the associated search procedures will be given in the

next section on implementation. The second part presents a generic incremental

constraint solver with addition and deletion of constraints.

4.1 Transformation of CSLD trees

When an interaction occurs the CSLD tree for the current goal has been searched up

to a certain point de�ned by a single derivation. The transformation of the CSLD

tree for the modi�ed goal is based solely on the transformation of that derivation.

Two basic operations are de�ned on CSLD derivations: the pruning of a deriva-

tion by a constraint (i.e. the addition of the constraint to the goals of the derivation)

and its complement the lifting of a derivation (the deletion of a constraint from the

goals of the derivation). Similar operations are de�ned for atoms: the addition of a

multiset of atoms to the initial goal of a CSLD derivation, and its somewhat more

complex counterpart, the removal of a multiset of atoms from the initial goal of a

derivation.

De�nition 1 The pruning of a CSLD derivation � by a constraint c is the deriva-

tion, noted �
 c, obtained by adding c to the goals in � up to inconsistency:

(dj�)
 c = (c; dj�),

(dj��!�

0

)
 c = (c; dj�)�!(�

0

 c) if c ^ d is satis�able,

(c; dj�) otherwise.

The lifting of a CSLD derivation � by a constraint c supposed to occur in the ini-

tial goal is the derivation, noted � � c, obtained by deleting c in the derivation:

(c; dj�)� c = (dj�),

(c; dj��!�

0

)� c = (dj��!(�

0

� c)).

The addition of atoms is de�ned similarly. The deletion of atoms in a derivation

must take care of the dependencies between atoms in the CSLD derivation.

De�nition 2 The addition of atoms � to a CSLD derivation �, is the derivation,

noted �� �, obtained by adding atoms � to the goals in �:

(cj�)� � = (cj�; �),

(cj��!�

0

)� � = (cj�; ��!(�

0

� �)).

The deletion of atoms � in a CSLD derivation � whose initial goal contains atoms

�, is the CSLD derivation, noted �	 �, de�ned by:

(cj�; �) 	 � = (cj�),

(cj�; �

A dj

�! �

0

)	 � = (cj�

A dj

�! (�

0

	 �)) if A 62 �,

= �

0

� d	 �

0

if A 2 � and �

0

= (� n fAg) [
.

Note that the operation of pruning by a constraint does not change the order

of selected atoms along the derivation. In order to preserve a maximum number of

deductions from the previous CSLD derivation it is possible to delay the selection

of an atom which introduces an inconsistency, instead of cutting the derivation at

the �rst encountered inconsistency. The following operation formalises this idea,

it marks the di�erence of our method with the methods of [11] and [13] for the

constraint addition command.

De�nition 3 The delaying of the resolution steps which introduce a constraint c

in a derivation � is the derivation, noted �� c, de�ned recursively by:

(dj�) � c = (dj�),

(dj�

A ej�

�! �

0

� c = (dj�

A ej�

�! (�

0

� c)) if e 6= c,

= (�

0

� c	 � � fAg)� c if e = c.

Now the goal manipulation commands can be de�ned formally by transforma-

tions over goals and derivations.

De�nition 4 Let G be a goal and � be a CSLD derivation from G. The goal

manipulation commands are de�ned by the following transformations

1

:

1

Note that the addition of constraints may result in di�erent transformations depending on the

choice of a satis�able subset of constraints. The choice of a satis�able subset of constraints can be

based on the dependency informations used by the incremental constraint solver presented in the

next section. In our context a notion of maximally satis�able subset should take into account the

dependencies between resolution steps in the derivation.

< c; dj�; � > del�constraint(c) < dj�; �� c >

< dj�; � > add�constraint(c) < c; dj�; �
 c > if e ^ c is satis�able

where ej
 is the �nal goal in �

< c; dj�; �� c

1

:::� c

n

 c >

if fc

1

; :::; c

n

g is a set of constraints

introduced by resolution steps in �

s.t. (c; e n c

1

::: n c

n

) is satis�able

< cj�; �; � > del�atoms(�) < cj�; �	 � >

< cj�; � > add�atoms(�) < cj�; �; �� � >

One can easily check that the transformations de�ne correct CSLD derivations

for the transformed goals. The execution model consists of developing a CSLD tree

for the modi�ed goal containing the transformed derivation. The completeness of

the scheme is a corollary of the following:

Proposition 4.1 (Soundness of the transformations) Let � be a CSLD deriva-

tion for a goal G, and < G

0

; �

0

> be the transformed goal and derivation obtained

by some goal manipulation command. Then �

0

is a CSLD derivation for G

0

.

Example 1 The transformation for the addition of a constraint can be illustrated

by the following typical disjunctive scheduling CLP program over natural integers:

disj(X,Y,DX,DY):-Y >= X + DX.

disj(X,Y,DX,DY):-X >= Y + DY.

The following goal has a successful derivation:

m � x;m � y;m � z j disj(y; z; 2; 1); disj(x; z; 1; 1); disj(x; y; 1; 2)

! m � x;m � y;m � z; z � y + 2 j disj(x; z; 1; 1); disj(x; y; 1; 2)

! m � x;m � y;m � z; z � y + 2; z � x+ 1 j disj(x; y; 1; 2)

! m � x;m � y;m � z; z � y + 2; z � x+ 1; y � x+ 1 j 2

Now the addition of the constraint 2 � m to the goal causes an inconsistency in

the derivation. The command add constraint(2 � m) can compute the following

transformed derivation by delaying the �rst resolution step.

2 � m;m � x;m � y;m � z j disj(y; z; 2; 1); disj(x; z; 1; 1); disj(x; y; 1; 2)

! m � x;m � y;m � z; z � y + 2 j disj(y; z; 2; 1); disj(x; y; 1; 2)

! 2 � m;m � x;m � y;m � z; z � x+ 1; y � x+ 1 j disj(y; z; 2; 1)

The search continues from that derivation giving a success in one transition.

4.2 Incremental constraint solving with addition and dele-

tion of constraints

The practicality of the previous CSLD tree transformation system depends on the

ability of the constraint solver to e�ciently deal with addition and deletion of con-

straints. In this section, we present in an abstract way a general scheme for dynamic

constraint solving, and illustrate the kind of algorithm obtained with an example

over �nite domains.

In this section we shall identify a constraint solver with a closure operator over a

structure of domain variables. We introduce a labelled transition system where each

transition is labelled by an atomic constraint. The solving of a system of atomic

constraints is then de�ned by the derivations obtained in this system.

An environment E : V !2

D

associates a domain of possible values to each vari-

able. Environments form a lattice structure (E ;v) for the information ordering

de�ned by E v E

0

i� 8x 2 V E(x) � E

0

(x). Note the duality between the infor-

mation ordering and the domain ordering, the union of information corresponds to

the intersection of domains.

Now let C be the set of atomic constraints fb

i

g

1�i�n

. The semantics of each

atomic constraint b is supposed to be de�ned as a closure operator over E [12], noted

b, i.e. satisfying

i) (extensivity) E v b(E),

ii) (monotonicity) if E v E

0

then b(E) v b(E

0

)

iii) (idempotence) b(b(E)) = b(E).

As is well known the union of closure operators is not a closure operator, however

one can de�ne for a constraint c (i.e. a system of atomic constraints) the closure

operator

c = fix(�E:E t

G

b2c

b(E))

which models the conjunction of atomic constraints in c. Now the method of ap-

proximating c by iterating the atomic constraint operators b for b 2 c is faithful to

constraint propagation algorithms for solving systems of constraints (note however

that termination is not assumed at this stage).

Proposition 4.2 (Correctness of constraint propagation) Let c be a system

of atomic constraints b

1

; :::; b

n

. Let E be an environment. Then c(E) is the limit of

any fair iteration of closure operators b

1

; :::; b

n

from E.

Incremental constraint solving can thus be modeled as a transition system de-

�ned by atomic constraints. A labelled transition system < �;�!> is de�ned

where � is the set of con�gurations and �!� � � C � � is the transition relation

labelled by atomic constraints. For dealing moreover with deletion of constraints,

informations about dependencies need be maintained. Consequently a con�guration

will be a triple

< E : V ! 2

D

; P : C � V ! 2

D

; C : V ! 2

C

>

composed of an environment E, a producer function P which associates with an

atomic constraint and a variable the set of domain values removed by the constraint

from the domain of the variable, and a consumer function C which associates with a

variable the set of basic constraints which use the domain of this variable to reduce

other domains

2

.

The transition system is de�ned by the following constraint propagation rule

(CP):

CP

b

i

2 C E

0

= b

i

(E) E

0

6= E

< E;P;C >

b

i

�!< E

0

; P

0

; C

0

>

where P

0

(b

i

; x) = P (b

i

; x) [(E(x) n E

0

(x)), and C

0

(x) = C(x) [fb

i

g if x 2 V(b

i

)

and E

0

(y) 6= E(y) for some variable y 2 V(b

i

) n fxg, C

0

(x) = C(x) otherwise.

2

Note that this de�nition does not preclude an explicit representation of domains in the

implementation.

As a corollary of proposition 4.2 we get that for a system of constraints c, a

terminating sequence of transitions labelled by atomic constraints in c from an

initial environment E ends with �nal environment c(E)

3

.

The labelled transition system de�nes a generic dependency graph structure.

This structure can be used to build a graph for intelligent backtracking [3]. In that

case, only the constraints responsible for the insatis�ability need to be determined,

so only the producer function is required. The structure can be useful also for a

debugging environment. For our purpose we shall use the constraint dependency

graph of a con�guration < E;P;C > de�ned as the graph of atomic constraints

such that there is an arc from b to b

0

if and only if there exists a variable x 2 V(b)

such that P (b; x) 6= ; and b

0

2 C(x).

In the incremental constraint solver the operation of addition of a constraint,

noted add(c), simply adds c to the system of constraints and applies the transitions

up to a �xed point. The operation of deletion of an atomic constraint, noted del(b),

deletes b from the system of constraints, and applies the transitions up to a �xpoint

from the environment obtained by the operation of constraint relaxation relax(b)

de�ned formally as follows:

< c; E; P; C > relax(b) < c n b; E

0

; P

0

; C

0

> where

E

0

(x) = E(x) [

S

b

0

2S

P (b

0

; x),

P

0

(b

0

; x) = ; if b

0

2 S, otherwise P

0

(b

0

; x) = P (b

0

; x),

C

0

(x) = C(x) n S if x 2 V(S), otherwise C

0

(x) = C(x),

S is the set of constraints b

0

such that there exists a path from b to b

0

in the

constraint dependency graph of < c;E; P; C >.

The environment obtained by relaxation may not be attainable by constraint

propagation. However an immediate consequence of the fact that a constraint is a

closure operator is that:

Proposition 4.3 Let c be a constraint. If E v E

0

v c(E) then c(E) = c(E

0

).

Soundness of constraint relaxation can thus be established simply by showing

that the environment obtained by the relaxation of some atomic constraint is com-

prised between the initial environment and its �xed point for the constraint system

without the deleted atomic constraint.

Lemma 4.4 Let < E

0

; P

0

; C

0

>

b

1

�! :::

b

n

�! < E

n

; P

n

; C

n

> be a �nite tran-

sition sequence with constraint system c. Let < c; E

n

; P

n

; C

n

> relax(b) <

c n b; E; P; C > be the con�guration obtained after the deletion of atomic con-

straint b. Then E

0

v E v c n b(E

0

).

Proposition 4.3 and lemma 4.4 together show the soundness of the incremental

constraint solver with addition and deletion of constraints

4

.

Theorem 4.5 Let E

0

be an environment obtained by the incremental constraint

solver from an initial environment E, by applying a sequence of addition and dele-

tions of constraints resulting in a constraint system c. Then E

0

= c(E).

3

For the sake of brevity the failure environments which assign an empty domain to a variable

are not distinguished. Unsatis�able systems of constraints could be detected earlier in that case

by de�ning the transition to a fail con�guration.

4

Note that unless constraint propagation may be interrupted by constraint deletion commands,

in the use of theorem 4.5 E

0

is a �xed point of c. In this case not all atomic constraints in c

0

= cnb

need be propagated after the relaxation of b. The information contained in the producers and

consumers of the con�guration can be used to determine a subset of constraints in c

0

which are

necessary to propagate.

Example 2 We give an example of a constraint system on interval arithmetic. We

consider the transition rule associated to the constraints of the form x � y + cst,

where x; y 2 V, and cst is an integer, that models interval propagation.

Consider the system of three constraints : y � z + 1, y � x + 1 and t � z + 1

noted b

1

; b

2

and b

3

respectively. Let < E

0

; P

0

; C

0

> be the initial con�guration

with E

0

(x) = [1; 10], E

0

(y) = [2; 10], E

0

(z) = [1; 10], E

0

(t) = [1; 9], P

0

= ; and

C

0

= ;.

We consider a transition sequence < E

0

; P

0

; C

0

>

�

�!

b

1

;b

2

;b

3

< E

3

; P

3

; C

3

> where

E

3

(x) = [1; 9]; E

3

(y) = [2; 10]; E

3

(z) = [1; 8]; E

3

(t) = [2; 9]

P

3

(b

2

; x) = f10g; P

3

(b

1

; z) = f10g; P

3

(b

3

; z) = f9g; P

3

(b

3

; t) = f1g

C

3

(y) = fb

1

; b

2

g; C

3

(z) = fb

3

g; C

3

(t) = fb

3

g.

Now if the constraint b

1

is deleted we obtain

< c; E

3

; P

3

; C

3

> relax(b

1

) < c n b

1

; E; P; C >

where E(x) = [1; 9]; E(y) = [2; 10]; E(z) = [1; 10]; E(t) = [1; 9], P (b

2

; x) = f10g

and C(y) = fb

2

g.

The constraint solver then terminates in a single transition

< E; P; C >

b

3

�!< E

4

; P

4

; C

4

> with

E

4

(x) = [1; 9]; E

4

(y) = [2; 10]; E

4

(z) = [1; 8]; E

4

(t) = [2; 9]

P

4

(b

2

; x) = f10g; P

4

(b

3

; z) = f9; 10g; P

4

(b

3

; t) = f1g

C

4

(y) = fb

2

g; C

4

(z) = fb

3

g; C

4

(t) = fb

3

g.

5 Implementation

5.1 Simplifying hypothesis on non-determinism

In our current implementation with Meta(F) [3] the constraint solvers are written

in C and interfaced with Sicstus Prolog through the standard e�cient interface.

The constraint dependencies are fully managed by the constraint solvers whilst the

dependencies among atoms are eliminated by a last simplifying hypothesis.

Hypothesis 4 Deletable atoms are supposed to be de�ned by clauses whose body

contains no atom only constraints.

Deletable atoms are thus supposed to be de�ned by a set of program clauses

of the form fA c

1

j 2; :::; A c

n

j 2g. This form is typical of disjunctive

constraints that represent the combinatorial aspects of the problem. This hypothesis

simpli�es the deletion of atoms, because the resolution of an atom does not introduce

supplementary atoms.

5.2 Reactive search procedure

We consider the possible strategies a reactive constraint logic programming scheme

might adopt in its search of a CSLD tree. We recall that a derivation of the CSLD

tree is transformed by a goal manipulation to give a new derivation, which is the

point of departure for the development of a CSLD tree for the new goal. A reactive

search procedure explores an entire CSLD tree from an initial derivation, which is

the result of the goal manipulation. The incremental constraint solver with addition

and deletion of constraints allows us to implement such reactive search procedures

with a simple meta-interpreter.

5.2.1 Iterative search vs backtracking for static CLP problems

Before considering the reactive search procedure we illustrate the
exibility acquired

by the presence of an explicit operation for removing a constraint from the store

(operation del). The iterative search procedure traverses a CSLD tree in a depth

�rst, left to right order without backtracking. Figure 1 presents a Prolog meta-

interpreter for iterative search.

search([]):-success.

search([(A<-c,A<-d)|Goal]):-

(add(c)->search(Goal),del(c);true),

(add(d)->search(Goal),del(d);true).

Figure 1: Prolog Meta-Interpreter for iterative search

The meta-interpreter is called with the predicate search. The argument is a

goal given as a list of deletable atoms written with the clauses de�ning them. Here

we only consider deletable atoms with two rules A<-c, A<-d. If the derivation is

successful the predicate success is called, otherwise the search continues through

del and add operations. Note that iterative search need not be limited to the

simple simulation of backtracking search procedures for static CLP programs. It is

possible to implement in this way heuristic driven search procedures which may be

non-exhaustive, based on solution repair, simulated annealing, etc.

5.2.2 Reactive search for dynamic CLP problems

The reactive search procedure takes into account interactions and combines the

iterative search procedure (�gure 1) with the derivation transformations presented

in section 4. The reactive search meta-interpreter given in �gure 2 is called by the

predicate react which takes two arguments. The �rst argument, G, is the goal given

as a list of atoms written with the clauses de�ning them. The second argument, D,

is the current derivation given in the same form. The predicate goal modification

react(G,D):-

(goal modification(M)->

transformation(M,G,D,G1,D1),

search(G1,D1),

back search(G1,D1);

search(G,D)).

search([],Der):-success(Der).

search([(A<-C,A<-D)|G],Der):-

(add(C)->react(G,[(A<-C,A<-D)|Der]),del(C);true),

(add(D)->react(G,[(A<-D,A<-C)|Der]),del(D);true).

back search(G,[]):-failed(G).

back search(G,[(A<-C,A<-D)|Der]):-

del(C),

(add(D)->search(G,[(A<-D,A<-C)|Der]),del(D);true),

back search([(A<-C,A<-D)|G],Der).

Figure 2: Prolog Meta-interpreter for reactive search

takes into account interactions. The predicate transformation transforms the goal

and the derivation as described in section 4.

After a goal modi�cation react �rst searches for a successful derivation from

the current derivation using the predicate search which is similar to the one de�ned

in the previous subsection. If a successful derivation is found then the predicate

success is called to signal the success and wait for interactions.

After the search from the transformed derivation is exhausted, the reactive

search procedure to be complete has to explore the rest of the CSLD derivation

tree. The predicate back search explores the other portions of the CSLD tree by

remounting the derivation.

Note that at any point the search process may be interrupted and the goal

modi�ed, starting a new search from the transformed derivation. For the sake of

simplicity this meta-interpreter guards continuations which may be abandonned.

6 Evaluation

6.1 Multi-Frequency Allocation

We have used the model in an application to the allocation of frequency bands from

a radio spectrum to a group of networks. The radio spectrum has two to three

thousand distinct frequencies. The system allocates frequency bands for several

hundred networks, by partitioning them into strongly connected subsets containing

about twenty networks, and allocating frequencies to these subsets. The allocation

of frequencies to networks is constrained to respect forbidden frequency constraints,

network capacity constraints, and interference constraints that guarantee that when

two networks are close the bands of frequencies that they are allocated will be

su�ciently distant to avoid interference. The separation of bands of frequencies

for two networks is a function of the degree of proximity and of the frequencies

allocated. The higher the frequency allocated the greater the separation.

A typical allocation is presented in the �gure 3. In this image the spectrum

associated with a network is represented in light grey. The spectrum corresponds

to the range of all the frequencies available for allocation to the networks. The

forbidden frequencies of the spectrum and the frequencies allocated to the network

are illustrated by the dark blocks and the white blocks respectively.

The major di�culty of the problem lies in the de�nition of what constitutes a

good placement for the bands of frequencies because several criteria contribute to

the quality of a good frequency allocation. In addition to the multi-criteria opti-

mization techniques described in [5] the capability of the system to react to the

interactions of the user to skip from one solution to another is of prime importance.

The operator may interact with the problem in any one of the following ways. The

interactions are the composition of several goal manipulations.

� Increase the number of frequencies NFj of a selected network j (the interaction

\better freq" of �gure 3). The basic idea is to add the constraint, add constraint(

NFj > cj), to the goal stating that frequencies for the new allocation on the selected

network must be superior to the number available in the present allocation. This

constraint is not compatible with the current derivation and thus the transformation

of the derivation solicits the del operation to remove a subset of constraints that

are unsatis�able with introduction of this constraint from the solver. The choice of

such a subset is controlled by �rst adding compatible constraints add constraint

NFi>=ci to force the number of frequencies allocated to each of the networks after

Figure 3: Multi-frequency allocation screen dump

the interaction will be superior or equal to the number of frequencies allocated before

the interaction. Similar constraints are added for the separation of frequencies.

The meta-interpreter then updates the derivation and the reactive search pro-

cedure commences its exploration for a new successful derivation with the hard

constraint of not decreasing the quality of the allocation to the other networks.

The operator sees only the modi�cation of frequency allocation of certain networks.

In fact these networks correspond to the constraints removed to \cure" the insatis-

�ability of the derivation.

� Increase the separation of the two bands of a selected network j the interaction

\better sep". This is similar to the interaction \better freq".

�Modify the forbidden frequency bands. This interaction deletes the constraints

in the goal (by del constraint) due to the modi�ed forbidden frequencies and adds

the new forbidden frequencies constraints to all networks (add constraint).

In a typical scenario an initial allocation is progressively improved by repeatedly

selecting a network and improving the number of frequencies it has been allocated,

or by increasing the separation of its frequency bands. The operational model

has for e�ect to perturb a solution in such a way that the solution found after an

interaction is \close" to the solution before the interaction. This process continues

until a good allocation is found, this allocation is then updated when the forbidden

frequencies change and the new allocation is re�ned if necessary.

6.2 Aircraft sequencing

The terminal zone aircraft sequencing problem (ASP) represents today an impor-

tant bottleneck of air tra�c
ow management. Its statement might be summarized

as follows: given a set of aircraft entering in the terminal area (e.g. 30 mn from

the airport) determine an optimal sequence, according to aircraft capacities, proce-

dural safety constraints, terminal con�gurations, and expected schedule. The usual

optimal criteria is the completion time of the sequence. In addition dynamic as-

pects of the problem must be accounted for such as the arrival of new
ights in the

terminal area, the temporal evolution of the problem and unexpected events such

as the rerouting of
ights.

The problem is modeled as a disjunctive scheduling problem with variable du-

ration tasks. The starting date of the tasks are represented by the scheduled time

of arrival variables STA

x

for each
ight x. These variables are constrained by the

expected time of arrival ETA

x

. The duration of the task models the safety distance

between
ights that is a function of the particular aircrafts in the sequence. The

possible permutations of the
ights are constrained by the position of the
ights in

the air corridors. The details of the modelization can be found in [8]. Here we focus

on the possible interactions supported by the system in terms of goal manipulation

operations.

� The addition of a
ight. This interaction creates a new variable for the sched-

uled time of arrival of the new
ight, and requires the addition of precedence con-

straints with other non permutable
ights with add constraint operations. It re-

quires also the addition of a disjunctive constraint atom (add atom(disj(STAx,STAy

,Dx,Dy)))

5

to the goal for each
ight in the terminal zone which can be permuted

with the added
ight.

� The removal of a
ight is the complement of the addition of a
ight. It consists

of removing the constraints (del constraint) and atoms (del atom) introduced by

the presence of the
ight.

� The landing of a
ight. This interaction requires a careful management of

the temporal evolution of the problem. All the
ight plans of the airplanes must

be updated by the time it takes the �rst
ight in the sequence to land. This is

translated as the addition of constraints to the goal, because the safety distances

to be respected by the
ights are increasingly severe as they approach the runway.

� The optimization of the landing sequence. Optimization in this framework

is modeled as a particular case of interaction with an agent which repeatedly con-

straints the �nal scheduled time of arrival of the sequence.

Table 2 presents the computation times for �nding a solution to the sequencing

problem subject to typical interactions. The interactions on the problem are the

following. The initial problem is to schedule 20
ights in two corridors (pb 1), then

the �rst
ight lands (pb 2), a new
ight enters the terminal zone (pb 3), a second

ight enters the terminal zone (pb 4), a
ight is rerouted (pb 5), a second
ight

lands (pb 6), a third
ight arrives in the terminal zone (pb 7), a third
ight lands

(pb 8), and �nally a fourth
ight arrives in the terminal zone (pb 9). The times

given for S and R represent the computation time required to �nd a solution for the

problem using static resolution by reexecution and reactive resolution respectively.

Times are also presented for �nding an optimal sequence after each evolution of

5

The predicate disj could be de�ned as in example 1 but for e�ciency reasons it is actually

de�ned by constructive disjunction [9] [14].

pb S R S

opt

R

opt

S/R S

opt

/R

opt

1 99 110 2909 3257 0.90 0.89

2 160 10 3448 40 16.0 86.2

3 149 20 3839 10 7.45 384

4 160 10 10050 88 16.0 114

5 140 1510 3949 4380 0.09 0.90

6 129 20 3907 60 6.45 65.1

7 99 20 9425 528 4.95 17.9

8 99 10 8050 60 12.0 134

9 99 10 5179 10 14.0 518

Table 2: Computation times in milliseconds for aircraft sequencing

the problem w.r.t. the static approach (S

opt

) and the reactive one (R

opt

). Meta(F)

was used for the static problem solving and its reactive experimental extension for

the reactive resolution. Note that an intermediate model of execution using oracles

based on the previous solution and reexecution could be evaluated with the static

resolution. This has not been experienced in this application.

The evaluation shows that the operational model we propose for constraint logic

programming is e�cient w.r.t. the normal execution model. It achieves a speed up

of one order of magnitude for non-optimized landing sequences and of two orders

of magnitude for optimized landing sequences. The exception to this rule being the

�fth interaction, that is the rerouting of an airplane. The slow down for this inter-

action is caused by the current implementation of the deletion of atomic constraints

and atoms one by one instead of in one single operation.

7 Conclusion

In the constraint logic programming scheme we have proposed for reactive systems

the possible interactions are de�ned through goal manipulation commands. The

operational model of execution is based on transformations of CSLD derivations

and on the concept of reactive search. Our scheme supports all goal manipulations,

whilst [11] supports only addition of constraints and atoms. The capability of

deleting constraints and atoms in a derivation is used also to de�ne a new scheme

for the addition of constraint to a query which in contrast to [13], preserves the

maximum information of a derivation by delaying derivation steps.

The reactive CLP execution model is based on an incremental constraint solver

with addition and deletion of constraints. We have shown that the presentation of

this solver in the abstract framework of constraints as closure operators is faithful

to constraint propagation algorithms and gives a simple proof of correctness of

constraint relaxation.

The reactive CLP scheme has been evaluated on two di�erent applications. The

multi-frequency allocation problem illustrates the pertinence of the goal manipula-

tion primitives to develop complex decision support systems. The on-line aircraft

sequencing problem underlines the e�ciency of the operational model we propose.

Note �nally that the operations on CSLD derivations we have de�ned may also

serve as a general framework to de�ne non-backtracking search procedures for static

CLP, such as solution repair, simulated annealing, tabu search, etc. This will be

the matter for future experiments.

Acknowledgements: This research was supported in part by the French Ministry

of Defence under contract DRET 91 34 402.

References

[1] C. Bessi�ere. Arc-consistency in dynamic constraint satisfaction problems. In

AAAI, 1991.

[2] Philippe Chatalic. Incremental techniques and prolog. Technical Report TR-

LP-23, ECRC GmbH, Arabellastr. 17, D-8000 Muenchen 81, Germany, 1987.

[3] P. Codognet, F. Fages, and T. Sola. A metalevel compiler of clp(FD) and its

combination with intelligent backtracking. In F. Benhamou and A. Colmer-

auer, editors, Constraint Logic Programming Selected Research, pages 437{456.

MIT Press, 1993.

[4] Rina Dechter and Avi Dechter. Belief maintenance in dynamic constraint net-

works. In AAAI, pages 37{42, 1988.

[5] Fran�cois Fages, Julian Fowler, and Thierry Sola. Handling preferences in con-

straint logic programming with relational optimization. In PLILP94, Madrid,

Spain, September 1994.

[6] Joxan Ja�ar and Jean-Louis Lassez. Constraint logic programming. In

POPL'87, pages 111{119, Munich, January 1987. ACM.

[7] Joxan Ja�ar and Michael J. Maher. Constraint logic programming: A survey.

JLP, 19-20:503{581, May-July 1994.

[8] J. Jourdan. Modelisation of terminal zone aircraft sequencing in clp. Technical

Report LACS-92-6, LCR Thomson-CSF, Oct 1992.

[9] J. Jourdan and T. Sola. The versatility of handling disjunctions as constraints.

In PLILP'93, pages 60{74, Tallinn, Estonia, August 1993.

[10] M.J. Maher. A logical semantics for a class of comitted choice languages. In

J.L. Lassez, editor, ICLP 87, pages 858{876. MIT Press, may 1987.

[11] M.J. Maher and P.J. Stuckey. Expanding query power in constraint logic pro-

gramming languages. In E. Lusk and R. Overbeek, editors, NACLP89, pages

20{36. MITP, oct 1989.

[12] Vijay A. Saraswat. Concurrent constraint programming. In POPL'91: Pro-

ceedings 18th ACM Symposium on Principles of Programming Languages, 1991.

[13] P. Van Hentenryck. Incremental constraint satisfaction in logic programming.

In David H. D. Warren and Piter Szeredi, editors, ICLP'90, pages 189{202,

Jerusalem, 1990. The MIT Press.

[14] P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementations,

and evaluation of the constraint language cc(FD). Technical Report CS-93-02,

Brown University, January 1993.

[15] G. Verfaillie and T. Schiex. Solution reuse in dynamic CSPS. In Proceedings

AAAI, 1994.

