
Trace Simplications preserving
Temporal Logic Formulae

with Case Study in a Coupled Model of
the Cell Cycle and the Circadian Clock

CMSB 2014

Pauline Traynard and Francois Fages
and Sylvain Soliman

Experimental observations on
periods and phases suggest
bidirectional influence between cell
divisions and the autonomous cellular
circadian clock

Modeling the coupling between
the cell cycle and the circadian clock

Bidirectional coupled model of the cell cycle
and the circadian clock

Model building assisted with
formal methods
(model calibration)

Predictions: mechanisms and
perturbations, optimization

Context: Optimizing cancer treatment with chronotherapy

What are the mechanisms behind these observations?

• Dynamical behaviors for oscillatory systems:
 - period, amplitude, phase

 - oscillations regularity

• Formalised with temporal logic:

 Ex: period

• Applications:
• Data analysis: extracting meaningful information from a trace

• Model checking: verifying that a model satisfies some constraints

• Model analysis: comparing how the properties of a model evolve when some parameters vary

• Parameter inference: continuous satisfaction degree of a temporal logic formula, powerful
optimization algorithm CMA-ES

Temporal logic specifications

http://lifeware.inria.fr/Biocham/

t1 t2 t3

diff

t

M

t

M M

t

A, B

t

Result:
-Possible values: p = 23 | p=24.5
- Satisfaction degree (with
objective p=24): 0.1

Generic algorithm:

• Decomposition of φ in sub-formulas

• For each constraint and each time point, computing of a domain of possible variables

• Combination of the subdomains with the logical operators :

• Domain for φ = combinated domain for the first point of the trace

Validation domain computing algorithm

Dφ = { s < max[A] }

φ = F([A] > s)

‒ Operator F (finally) → union:

‒ Operator G (globally) → intersection:

‒ Operator X (next) → next domain if valid:

‒ Operator U (until) → union of intersections:

Computational cost: up to O(nv)
(v = number of variables)

 How to find a simplified trace that will
keep the same validity domain?

Generic algorithm:

• Decomposition of φ in sub-formulas

• For each constraint and each time point, computing of a domain of possible variables

• Combination of the subdomains with the logical operators :

• Domain for φ = combinated domain for the first point of the trace

Validation domain computing algorithm

φ = F([A] > s)

‒ Operator F (finally) → union:

‒ Operator G (globally) → intersection:

‒ Operator X (next) → next domain if valid:

‒ Operator U (until) → union of intersections:

Dφ = { s < max[A] }

Computational cost: up to O(nv)
(v = number of variables)

 How to find a simplified trace that will
keep the same validity domain?

Generic algorithm:

• Decomposition of φ in sub-formulas

• For each constraint and each time point, computing of a domain of possible variables

• Combination of the subdomains with the logical operators :

• Domain for φ = combinated domain for the first point of the trace

Validation domain computing algorithm

φ = F([A] > s)

‒ Operator F (finally) → union:

‒ Operator G (globally) → intersection:

‒ Operator X (next) → next domain if valid:

‒ Operator U (until) → union of intersections:

Dφ = { s < max[A] }

Computational cost: up to O(nv)
(v = number of variables)

 How to find a simplified trace that will
keep the same validity domain?

Generic algorithm:

• Decomposition of φ in sub-formulas

• For each constraint and each time point, computing of a domain of possible variables

• Combination of the subdomains with the logical operators :

• Domain for φ = combinated domain for the first point of the trace

Validation domain computing algorithm

φ = F([A] > s)

‒ Operator F (finally) → union:

‒ Operator G (globally) → intersection:

‒ Operator X (next) → next domain if valid:

‒ Operator U (until) → union of intersections:

Dφ = { s < max[A] }

Computational cost: up to O(nv)
(v = number of variables)

 How to find a simplified trace that will
keep the same validity domain?

Generic algorithm:

• Decomposition of φ in sub-formulas

• For each constraint and each time point, computing of a domain of possible variables

• Combination of the subdomains with the logical operators :

• Domain for φ = combinated domain for the first point of the trace

Validation domain computing algorithm

φ = F([A] > s)

‒ Operator F (finally) → union:

‒ Operator G (globally) → intersection:

‒ Operator X (next) → next domain if valid:

‒ Operator U (until) → union of intersections:

Dφ = { s < max[A] }

Computational cost: up to O(nv)
(v = number of variables)

 How to find a simplified trace that will
keep the same validity domain?

Generic algorithm:

• Decomposition of φ in sub-formulas

• For each constraint and each time point, computing of a domain of possible variables

• Combination of the subdomains with the logical operators :

• Domain for φ = combinated domain for the first point of the trace

Validation domain computing algorithm

φ = F([A] > s)

‒ Operator F (finally) → union:

‒ Operator G (globally) → intersection:

‒ Operator X (next) → next domain if valid:

‒ Operator U (until) → union of intersections:

Dφ = { s < max[A] }

Computational cost: up to O(nv)
(v = number of variables)

 How to find a simplified trace that will
keep the same validity domain?

Generic algorithm:

• Decomposition of φ in sub-formulas

• For each constraint and each time point, computing of a domain of possible variables

• Combination of the subdomains with the logical operators :

• Domain for φ = combinated domain for the first point of the trace

Validation domain computing algorithm

φ = F([A] > s)

‒ Operator F (finally) → union:

‒ Operator G (globally) → intersection:

‒ Operator X (next) → next domain if valid:

‒ Operator U (until) → union of intersections:

Computational cost: up to O(nv)
(v = number of variables)

 How to find a simplified trace that will
keep the same validity domain?

Dφ = { s < max[A] }

Dedicated solvers:

• Specific function for a dynamical behavior

• Direct computing of the validity domain on the trace

Validation domain computing algorithm

Computational cost: O(n²) O(n)

distanceSuccPeaks(A,B,dist)

A

t

Result: p = 23 | p=24.5 p = 23 | p=24.5

Specification:

F. Fages, P. Traynard. Temporal Logic Modeling of Dynamical Behaviors: First-Order Patterns and
Solvers. In Logical Modeling of Biological Systems, pages 307–338. ISTE Ltd, Eds. L. Farinas del
Cerro et K. Inoue., 2014

Trace simplification

Under which condition on the constraints is it safe to use this
simplification ?

Trace simplification: local extrema

For the case when there is no dedicated solver, how to make the
generic algorithm more efficient?

t

A

Te
A

A,B

t

Te
A,B

Proof of validity: peak and period
Peak

Period

Same trace simplification
Formula:

TJ

Trace simplification:

The optimal trace simplification is TJ with

Te
A is a simplification of T for φ.

Trace simplification:

The optimal trace simplification is TJ with

Te
A is a simplification of T for φ.

Peak

Period

Same trace simplification
Formula:

Te
A

Proof of validity: peak and period

Trace simplification:

The optimal trace simplification is TJ with

Te
A,B is a simplification of T for φ.

Peak

Minimal amplitude

Proof of validity: phase and amplitude

A,B

t

Te
A,B

Formula:

Trace simplification:

The optimal trace simplification is TJ where

J = {minA, maxA}.

Te
A is a simplification of T for φ.

General Theorems

First theorem: If a simplification trace is correct for φ and ψ then it is correct for the
logical combinations of φ and ψ.

Proof:

Second theorem:

If a subtrace contains extreme domains, it is a simplification for F.

Proof: DT
φ = Ui Dsj,φ C Uj Dsj,φ

Similar result for G: A simplification trace of Gφ is the set of points sj whose Dsj,φ is
contained in all the Dsi,φ

Corollary: A simplified trace on T for can be found by discarding all the
points where c is false, if this defines a simplified trace on T for φ.

First theorem

Trace simplification:

The optimal trace simplification is TJ where

J = {minA, maxA}.

Te
A is a simplification of T for φ.

Minimal Amplitude

First theorem: If a simplification trace is correct for φ and ψ then it is correct for the
logical combinations of φ and ψ.

Proof:

Second theorem

Dφ = { s < max[A] }

φ = F([A] > s)

Second theorem:

If a subtrace contains extreme domains, it is a simplification for F.

Proof: DT
φ = Ui Dsj,φ C Uj Dsj,φ

Similar result for G: A simplification trace of Gφ is the set of points sj whose Dsj,φ is
contained in all the Dsi,φ

Second theorem

Dφ = { s < max[A] }

φ = F([A] > s)

Second theorem:

If a subtrace contains extreme domains, it is a simplification for F.

Proof: DT
φ = Ui Dsj,φ C Uj Dsj,φ

Similar result for G: A simplification trace of Gφ is the set of points sj whose Dsj,φ is
contained in all the Dsi,φ

Corolary

Time=20

v

Threshold

Trace simplification:
The single point sminA>20 defines an optimal
trace simplification of T for φ.
Te

A is not a simplification of T for φ unless it
does contain a local minimum such that
Time>20.

A

t

Corollary: A simplified trace on T for can be found by discarding all the
points where c is false, if this defines a simplified trace on T for φ.

Corolary

Time=20

v

Threshold

Trace simplification:
The single point sminA>20 defines an optimal
trace simplification of T for φ.
Te

A is not a simplification of T for φ unless it
does contain a local minimum such that
Time>20.

A

t

Corollary: A simplified trace on T for can be found by discarding all the
points where c is false, if this defines a simplified trace on T for φ.

Corolary

Time=20

v

Threshold

Trace simplification:
The single point sminA>20 defines an optimal
trace simplification of T for φ.
Te

A is not a simplification of T for φ unless it
does contain a local minimum such that
Time>20.

A

t

Corollary: A simplified trace on T for can be found by discarding all the
points where c is false, if this defines a simplified trace on T for φ.

Corolary

Threshold

Trace simplification:
The single point sminA>20 defines an optimal
trace simplification of T for φ.
Te

A is not a simplification of T for φ unless it
does contain a local minimum such that
Time>20.

A

t

Corollary: A simplified trace on T for can be found by discarding all the
points where c is false, if this defines a simplified trace on T for φ.

Time=20

v

sminA>20

Crossing

Here Te
A,B is NOT a simplification of T for φ.

Crossing

A,B

t

A simplification trace is defined by the points in:

Te
A,B

Crossing

Here Te
A,B is NOT a simplification of T for φ.

Crossing

A,B

t

A simplification trace is defined by the points in:

TJ

Evaluation on Oscillation Constraints
between the Cell Cycle and Circadian Clock

• The cell cycle and the circadian clock: two coupled

oscillators involving:

‒ qualitative properties: oscillations, stability

‒ quantitative properties: period of each oscillator,

phase

• Constraints on one molecule:

‒ Minimum ampitude

‒ Distance between successive peaks

‒ Regularity of the distances between peaks

‒ Regularity of the peak amplitudes

• Constraints on two molecules:

‒ Phase

Cell cycle: MPF, Wee1
Circadian clock: Bmal1, PerCry, Rev-erbα

Evaluation on Oscillation Constraints
between the Cell Cycle and Circadian Clock

Minimum ampitude of PerCry

Reachability of PerCry

Local maxima of PerCry

Distance betw. PerCry peaks

Distance betw. succ. PerCry peaks

Regularity of PerCry peaks

Phase betw. PerCry and MPF

Trace simplification:
- Extrema subtrace implemented in BIOCHAM
- Computing times:

• Rosenbrock’s variable step-size simulation: 8-16 ms
• 4th order Runge-Kutta fixed step-size simulation: 160-250 ms

• Validity domain computing time (in ms):

Conclusion

• Temporal logic patterns provide an elegant way to

o extract meaningful information on the periods and phases from numerical traces

o use these formulae as constraints for parameter search

• Simplifying the trace prior to the solving makes the generic solving algorithm more

efficient

• Under some general conditions on the syntax of the formulae given as theorems it

is correct to keep in the trace only the time points corresponding to

• the local extrema of the molecules

• or the crossing points between molecular concentrations

• On simulation traces, the speedup obtained in computation time was by several

orders of magnitude: up to 1000 fold.

• The trace simplifications described in this paper are implemented in Biocham release

3.6.

