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Experimental observations on 
periods and phases suggest 
bidirectional influence between cell 
divisions and the autonomous cellular 
circadian clock 
 

Modeling the coupling between 
the cell cycle and the circadian clock 

Bidirectional coupled model of the cell cycle 
and the circadian clock 

Model building assisted with 
formal methods  
(model calibration) 

Predictions: mechanisms and 
perturbations, optimization 
 

Context: Optimizing cancer treatment with chronotherapy 

What are the mechanisms behind these observations? 



• Dynamical behaviors for oscillatory systems: 
 - period, amplitude, phase 

 - oscillations regularity 

 

 

 

 
 

 

• Formalised with temporal logic: 

 Ex: period 
 

 

 

 

 

 

• Applications: 
• Data analysis: extracting meaningful information from a trace 

• Model checking: verifying that a model satisfies some constraints 

• Model analysis: comparing how the properties of a model evolve when some parameters vary 

• Parameter inference: continuous satisfaction degree of a temporal logic formula, powerful 
optimization algorithm CMA-ES 

 

Temporal logic specifications 

http://lifeware.inria.fr/Biocham/ 

t1 t2 t3 

diff 

t 

M 

t 

M M 

t 

A, B 

t 

Result: 
-Possible values: p = 23 | p=24.5 
- Satisfaction degree (with 
objective p=24): 0.1 



Generic algorithm: 

• Decomposition of φ in sub-formulas  

• For each constraint and each time point, computing of a domain of possible variables 

• Combination of the subdomains with the logical operators : 

 

 

 

 

 

 

 

• Domain for φ = combinated domain for the first point of the trace 

Validation domain computing algorithm 

Dφ = { s < max[A] } 

φ = F( [A] > s )  

‒ Operator F (finally) → union: 

 

‒ Operator G (globally) → intersection: 

 

‒ Operator X (next) → next domain if valid: 

 

‒ Operator U (until) → union of intersections: 

Computational cost: up to O(nv)  
(v = number of variables) 
 
 How to find a simplified trace that will 
keep the same validity domain? 
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Dedicated solvers: 

• Specific function for a dynamical behavior 

• Direct computing of the validity domain on the trace 

 

 

 

 

Validation domain computing algorithm 

Computational cost:  O(n²)     O(n) 

distanceSuccPeaks(A,B,dist) 
 

A 

t 

Result:   p = 23 | p=24.5            p = 23 | p=24.5 

Specification: 

F. Fages, P. Traynard. Temporal Logic Modeling of Dynamical Behaviors: First-Order Patterns and 
Solvers. In Logical Modeling of Biological Systems, pages 307–338. ISTE Ltd, Eds. L. Farinas del 
Cerro et K. Inoue., 2014 



Trace simplification 

Under which condition on the constraints is it safe to use this 
simplification ? 

Trace simplification: local extrema 

For the case when there is no dedicated solver, how to make the 
generic algorithm more efficient? 
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Proof of validity: peak and period 
Peak 

Period 

Same trace simplification 
Formula: 

TJ 

Trace simplification: 

The optimal trace simplification is TJ with 

 

 

 

Te
A is a simplification of T for φ.  



Trace simplification: 

The optimal trace simplification is TJ with 

 

 

 

Te
A is a simplification of T for φ.  

Peak 

Period 

Same trace simplification 
Formula: 

Te
A 

Proof of validity: peak and period 



Trace simplification: 

The optimal trace simplification is TJ with 

 

Te
A,B is a simplification of T for φ.  

Peak 

Minimal amplitude 

Proof of validity: phase and amplitude 
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Formula: 

Trace simplification: 

The optimal trace simplification is TJ where 

J = {minA, maxA}.  

Te
A is a simplification of T for φ.  



General Theorems 

First theorem: If a simplification trace is correct for φ and ψ then it is correct for the 
logical combinations of φ and ψ. 
 
Proof: 

Second theorem: 

If a subtrace contains extreme domains, it is a simplification for F. 

 

Proof: DT
φ = Ui Dsj,φ  C  Uj Dsj,φ 

 
Similar result for G: A simplification trace  of Gφ is the set of points sj whose Dsj,φ is 
contained in all the Dsi,φ 

Corollary: A simplified trace on T for                     can be found by discarding all the 
points where c is false, if this defines a simplified trace on T for φ. 



First theorem 

Trace simplification: 

The optimal trace simplification is TJ where 

J = {minA, maxA}.  

Te
A is a simplification of T for φ.  

Minimal Amplitude 

First theorem: If a simplification trace is correct for φ and ψ then it is correct for the 
logical combinations of φ and ψ. 
 
Proof: 



Second theorem 

Dφ = { s < max[A] } 

φ = F( [A] > s )  

Second theorem: 

If a subtrace contains extreme domains, it is a simplification for F. 

 

Proof: DT
φ = Ui Dsj,φ  C  Uj Dsj,φ 

 
Similar result for G: A simplification trace  of Gφ is the set of points sj whose Dsj,φ is 
contained in all the Dsi,φ 



Second theorem 
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Corolary 

Time=20 

v 

Threshold 

Trace simplification: 
The single point sminA>20 defines an optimal 
trace simplification of T for φ. 
Te

A  is not a simplification of T for φ unless it 
does contain a local minimum such that 
Time>20. 

A 

t 

Corollary: A simplified trace on T for                     can be found by discarding all the 
points where c is false, if this defines a simplified trace on T for φ. 
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Trace simplification: 
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Corollary: A simplified trace on T for                     can be found by discarding all the 
points where c is false, if this defines a simplified trace on T for φ. 
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Crossing 

Here Te
A,B is NOT a simplification of T for φ.  

Crossing 
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A simplification trace is defined by the points in: 

Te
A,B 
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A simplification trace is defined by the points in: 

TJ 



Evaluation on Oscillation Constraints 
between the Cell Cycle and Circadian Clock 

• The cell cycle and the circadian clock: two coupled 

oscillators involving: 

‒ qualitative properties: oscillations, stability 

‒ quantitative properties: period of each oscillator, 

phase 

 

• Constraints on one molecule: 

‒ Minimum ampitude 

‒ Distance between successive peaks 

‒ Regularity of the distances between peaks 

‒ Regularity of the peak amplitudes 

 

• Constraints on two molecules: 

‒ Phase 

 

Cell cycle: MPF, Wee1 
Circadian clock: Bmal1, PerCry, Rev-erbα 



Evaluation on Oscillation Constraints 
between the Cell Cycle and Circadian Clock 

Minimum ampitude of PerCry 

Reachability of PerCry 

Local maxima of PerCry 

Distance betw. PerCry peaks 

Distance betw. succ. PerCry peaks 

Regularity of PerCry peaks 

Phase betw. PerCry and MPF 

Trace simplification: 
- Extrema subtrace implemented in BIOCHAM 
- Computing times: 

• Rosenbrock’s variable step-size simulation: 8-16 ms 
• 4th order Runge-Kutta fixed step-size simulation: 160-250 ms 

 

• Validity domain computing time (in ms): 



Conclusion 

• Temporal logic patterns provide an elegant way to 

o  extract meaningful information on the periods and phases from numerical traces 

o  use these formulae as constraints for parameter search 

 

• Simplifying the trace prior to the solving makes the generic solving algorithm more 

efficient 

 

• Under some general conditions on the syntax of the formulae given as theorems it 

is correct to keep in the trace only the time points corresponding to 

• the local extrema of the molecules 

• or the crossing points between molecular concentrations 

 

• On simulation traces, the speedup obtained in computation time was by several 

orders of magnitude: up to 1000 fold. 

 

• The trace simplifications described in this paper are implemented in Biocham release 

3.6. 

 

 

 


