
Default Reasoning in CHR∨

Marcos Aurélio1,2, François Fages2, Jacques Robin1

1 Universidade Federal de Pernambuco, Recife, Brazil
2 INRIA, Rocquencourt, France

Abstract. CHR∨ has emerged as a versatile knowledge representation
language, usable for an unparalleled variety of automated reasoning
tasks: constraint solving, optimization, classification, subsumption, clas-
sical deduction, abduction, truth-maintenance, belief revision, belief up-
date and planning. In this paper, we add default reasoning to this list,
by showing how to represent default logic theories in CHR∨. We then
discuss how to leverage this representation together with the well-know
correspondence between default logic and Negation As Failure (NAF) in
logic programming, to propose an extension CHR∨,naf of CHR∨ allowing
NAF in the rule heads.

1 Introduction

CHR∨ [1] is a first-order, relational rule language that incorporates forward
chaining of conditional rewrite rules and guarded production rules, with logic
programming’s backtracking search of disjunctive alternatives in the rules’ right-
hand side (called “body” in CHR∨).

It was initially conceived to declaratively implement constraint solving tasks
by harmoniously integrating three techniques widely used for this task: (a) con-
straint simplification using conditional rewrite rules (called “simplification rules”
in CHR∨), (b) constraint propagation using guarded production rules (called
“propagation rules” in CHR∨), and (c) finite domain constraint search using
disjunctive rules (either simplification or propagation rules).

This integration turned out to be powerful enough to use CHR∨ for a surpris-
ingly wide variety of other reasoning tasks beyond constraint solving: classical
deduction [8], description logics, concept subsumption and individual classifica-
tion [7], abduction [2], truth-maintenance [15], belief revision [9], belief update
and planning [13].

In this paper, we first show how to add default reasoning to the list of au-
tomated reasoning tasks that can be performed by reusing a CHR∨ inference
engine. Our proposal is based on a mapping of a Default Logic Theory[12] into a
CHR∨ rule base. We then leverage this mapping, together with the well-known
correspondence between default reasoning and logic programming with Negation
As Failure (NAF) [6], to propose an extension CHR∨,naf of CHR∨ that allows
the naf connective in rule heads. We also explain how our CHR∨,naf proposal
semantically differs from the CHR¬ Negation As Absence (NAA) proposal [14]
and why we believe its applicability is wider.

The contributions of this paper are (a) mapping of default logic formulas
into CHR∨ bases, and (b) leveraging it to extend CHR∨ with NAF. This is
very significant due to (a) the pervasive utility of default reasoning and NAF in
artificial intelligence applications, and (b) their well-studied relations with other
forms of non-monotonic reasoning abduction [10], truth-maintenance [10], belief
revision [11] and inheritance with overriding [16]. Each of these reasoning tasks
must be carried out by any agent that acts in a partially observable environment,
the most common case in practical applications.

The rest of this paper is organized as follows. In the next sections, we briefly
review in turn the syntax and semantics of Default Logic and CHR∨. In section
four we present our mapping of the former to the latter. In section five, we show
how to leverage such mapping to extend CHR∨ with NAF. In section six, we
discuss related work in non-monotonic reasoning in CHR∨, before concluding in
section seven.

2 Default Logic

Default Logic [3][5][12] formalizes the reasoning of an agent in a partially observ-
able environment, where it misses some volatile knowledge, typically the truth
value of a fluent3, that is essential to choose its next action. In such situation,
the agent needs to base its choice on some default hypothesis about the truth
value of that fluent. While this hypothesis must be consistent with the agent’s
current volatile knowledge about the current state of the environment, it can
nevertheless be deductively unsound and thus subject to revision upon subse-
quent deduction from reliable new sensor information of contradictory volatile
knowledge.

Such reasoning cannot be appropriately formulated directly in Classical First-
Order Logic (CFOL) due to the knowledge monotonicity assumption of this
formalism. This is illustrated by the following example:

Example 1. Let us assume that we want to represent the following piece of knowl-
edge: Birds typically fly, Penguins and Albatrosses are birds, Penguins do not fly
and Tux is a Penguin.

The CFOL formula ∀x((Bird(x) → Flies(x)) ∧ (Penguin(x) → Bird(x)) ∧
Penguin(tux) ∧ (Penguin(x) → ¬Flies(x)) ∧ (Albatross(x) → Bird(x)) ∧
¬(Penguin(x)∧Albatross(x))) does not properly represent such knowledge be-
cause it entails ⊥ due to the inability of pure deduction in CFOL to retract
the conclusion Flies(tux) entailed by the first three clauses of the formula in
the light of the more specific conclusion ¬Flies(tux) entailed by the third and
fourth clauses. The core problem of CFOL is the inability to represent rules with
exceptions with the only two quantifiers of CFOL: universal and existential. De-
fault logic extends CFOL with default inference rules that capture such rules
with exception. It is formally defined below.
3 A property of the environment that changes over time or due to the actions executed

by the agent.

Definition 1 (Default Logic Theory). A Default Logic Theory is a tuple
〈D,W 〉 where D is the set of default rules and W is a set of CFOL formulas.
Each default rule assumes the following form:

α : β
γ

where α (prerequisite), β (justification) and γ (conclusion) are CFOL
formulas. The intended meaning of this default rule is:

If α is entailed by the current knowledge base (KB |= α) and β is consistent
with the current knowledge base (KB ∧ β 2 ⊥) then γ can be assumed.

The extension ε of a Default Theory is the maximal set of formulas that
can be derived and assumed by default from it. This concept is formally defined
in the Definition 3. Notice that a Default Theory may have one, many or no
extension at all.

Definition 2 (Deductive Closure). Let T be a set of CFOL formulas. The
Deductive Closure of T is a set Th(T) such that T ⊆ Th(T) and for each
p ∈ Th(T), if p |= q then q ∈ Th(T).

Definition 3 (Extension of a Default Theory). We define ε as an extension
for the default theory 〈D,W 〉 if and only if it satisfies the following equations:

E0 = W

and for i > 0,

Ei+1 = Th(Ei) ∪
{
γ|α : β

γ
∈ D,α ∈ Ei,¬β /∈ ε

}
and,

ε =
∞⋃
i=0

Ei

Example 2. Let us show how to model the knowledge in the Example 1 as a
Default Theory. At first, the default rules:

D =

{
Bird(x) : Flies(x)

Flies(x)
,
Bird(x) : Penguin(x)

Penguin(x)
,
Bird(x) : Albatross(x)

Albatross(x)

}

Notice that, when we state this knowledge as default rules, we emphasize
what is assumed by hypothesis. We are now going to represent the logical for-
mulas of our theory:

W = {Penguin(tux), P enguin(x)→ ¬Flies(x),¬(Penguin(x)∧Albatross(x))}

Two of the possible extensions for this theory are:

ε1 = W ∪ {Flies(x), Albatross(x)}

and,

ε2 = W ∪ {¬Flies(x), P enguin(x)}

2.1 NAF as Default Logics

In this section we show how to express NAF by means of Default Theories. This
negation is different from the usual CFOL one. In order to avoid misinterpre-
tations we utilize the symbol naf for negation as failure and cneg for classical
logical negation.

Take the following rules:

p← cneg(q).

p′ ← naf(q).

In the first case, p can be proved only if q can be proved to be false. In the
second one, p′ can be assumed to be true if q cannot be proved to be true. The
difference relies on the fact that q may be true, but unknown (i.e., it may not be
possible to deduce it). In the first example it is not possible to deduce p (because
it is not possible prove q false), but in the second example it is possible to deduce
p′ (because it is not possible to prove q true).

In [3], Grigoris Antoniou shows how to model NAF as Default Theories in
a natural way. The idea is to add a default rule like the following one for each
ground fact φ:

: nafφ
nafφ

This means that if the hypothesis nafφ is consistent (in other words, if φ
can’t be proved), nafφ can be assumed.

3 CHR∨

Constraint Handling Rules with Disjunction (CHR∨) [1] is a first-order, rela-
tional rule language for writing Constraint Solvers.

There are two kinds of constraints: the user defined and the built-ins. The
first set is formed by the constraints whose semantics is given by the set of rules

and the second set is formed by the constraints whose semantics is provided by
the inference engine.

There are three kinds of rules in CHR∨: simplification, propagation and sim-
pagation. They can be respectively described as follows:

r@Hr ⇔ G|B.

s@Hk ⇒ G|B.

t@Hk\Hr ⇔ G|B.

In this example, r, s and t are identifiers for the rules and can be omitted.
Hr and Hk are the heads of the rules. More specifically, Hk are the kept heads,
which are kept in the constraint store; and Hr are the removed heads, which are
removed from it. G is the guard and B is the body. If the guard is true, it can
be omitted.

The abstract operational semantics for CHR∨ is defined as a transition sys-
tem. A CHR∨ state is a disjunction of one of more subgoals which are conjunc-
tions of user defined constraints, built-ins or disjunctions. A state is called final
if no transition is applicable or all of its subgoals are inconsistent (in this case,
it is called failed). For more details see [1].

The following diagram presents the transition rules of CHR∨:

Solve
If CT |= ∀(S ⇔ S′) and S′ is the normal form of S
then S 7→P S

′

Propagate
If (H ⇒ G|B) is a fresh variant of a rule with variables x̄
and CT |= ∀(S → ∃x̄(H = H ′ ∧G)
then (H ′ ∧ S) 7→P (H = H ′ ∧B ∧G ∧H ′ ∧ S)

Simplify
If (H ⇔ G|B) is a fresh variant of a rule with variables x̄
and CT |= ∀(S → ∃x̄(H = H ′ ∧G)
then (H ′ ∧ S) 7→P (H = H ′ ∧B ∧G ∧ S)

Simpagate
If (Hk\HR ⇔ G|B) is a fresh variant of a rule with variables x̄
and CT |= ∀(S → ∃x̄(Hk = H ′k ∧HR = H ′R ∧G)
then (H ′k ∧H ′R ∧S) 7→P (Hk = H ′k ∧HR = H ′R ∧B ∧G∧H ′k ∧S)

Split
(S1 ∨ S2) ∧ S 7→P (S1 ∧ S) ∨ (S2 ∧ S)

4 Describing Default Logic Theories in CHR∨

In this Section we describe our approach to describing Default Theories as CHR∨

rule bases. It consists of mapping each default rule into two sets of propagation
rules. Let us take the following default rule:

α : β
γ

Without loss of generality, consider α and γ as being in the Conjunctive
Normal Form (CNF) and β as being in the Disjunctive Normal Form (DNF) 4:

α = (α1,1 ∧ . . . ∧ αn,1) ∨ . . . ∨ (α1,m ∧ . . . ∧ αn,m)

β = (β1,1 ∨ . . . ∨ βn,1) ∧ . . . ∧ (β1,m ∨ . . . ∨ βn,m)

γ = (γ1,1 ∧ . . . ∧ γn,1) ∨ . . . ∨ (γ1,m ∧ . . . ∧ γn,m)

Definition 4 (Search Rules). Given a default rule r as above, we define
search(r) as the set containing the following rules:

r1 @ α11, ..., αn1 ==> (r, γ) ; true.
...
rn @ α1m, ..., αnm ==> (r, γ) ; true.

The intended meaning of these rules is: if α, or any of its disjunctive compo-
nents, is in the Constraint Store (and is therefore entailed by it), we have two
options:

– assume β and add γ to the Constraint Store,
– do not assume β.

The new constraint r has exactly the meaning of β is assumed by default.
This can be accomplished by adding β to the constraint store. However, when
dealing with simplification and simpagation rules, part of β may be removed by
some simplification or simpagation rule and it might not be possible to prove its
falsehood in the future.

Definition 5 (Integrity Rules). Given a default rule r as above, we define
integrity(r) as the set containing the following rules:

s1 @ r, cneg_β11, ..., cneg_βn1 ==> false.
...
sn @ r, cneg_β1m, ..., cneg_βnm ==> false.

4 Notice that we employ Abdennadher’s notation for negation as defined in [2], in
which a negated constraint cneg(φ) is represented by a new constraint cneg φ and
a integrity constraint φ, cneg φ⇒ false.

The intended meaning of this set of rules is: if cneg β can be proved, or any
of its components, and β has been assumed, then the store is inconsistent.

The idea behind this solution is to use CHR∨ as a platform for searching for
an extension for the Default Theory. For example, let us return to the Example
1. The result of the application of the transformation to this problem is:

r1 @ bird(X) ==> (r1(X), flies(X)) ; true.
r2 @ bird(X) ==> (r2(X), penguin(X)) ; true.
r3 @ bird(X) ==> (r3(X), albatross(X)) ; true.

s1 @ r1(X), cneg_flies(X) ==> false.
s2 @ r2(X), cneg_penguin(X) ==> false.
s3 @ r3(X), cneg_albatross(X) ==> false.

Let us feed the CHR∨ engine with the following set of rules and initial con-
straint store:

penguin(X) ==> cneg_flies(X).
penguin(X), albatross(X) ==> false(X).

query: bird(tux).

The following set of final states is going to be obtained (omitting the new
constraints added by the transformation):

S1 = { bird(tux), albatross(tux), flies(tux) }

S2 = { bird(tux), albatross(tux) }

S3 = { bird(tux), penguin(tux), cneg_flies(tux) }

S4 = { bird(tux), flies(tux) }

S5 = { bird(tux) }

Notice that each store corresponds to a set of assumed hypotheses, ranging
from two hypotheses in S1 and S3 to no hypothesis in S5.

We are now going to demonstrate that our approach successfully computes all
correct extensions, at least for a restricted set of Default Theories. We call this
restricted set of Propositional CHR Propagation Restricted Default Theories.

Definition 6 (Propositional CHR Default Theory). A default theory
〈D,W 〉 is said to be a Propositional CHR Default Theory, if

– D is composed of default rules of the form, where α and γ are in the CNF
and β is in the DNF, and are propositional CFOL formulas:

α : β
γ

– W is composed of a conjunction of:
• A set of atomic constraints,
• A set of logical rules of the form H ∧G → B or G → (H ↔ B), equiv-

alent to CHR propagation and simplification rules without disjunctions,
respectively.

• For each constraint φ there is a rule of the form: φ ∧ cneg φ→ ⊥

Definition 7 (Propositional CHR Propagation Restricted Default
Theories). A default theory 〈D,W 〉 is said to be Propositional CHR Propa-
gation Restricted , if and only if it is a Propositional CHR Default Theory and
the rules in W are equivalent to non-disjunctive CHR propagation rules.

Our notion of equivalence of CHR states and Default Theories extensions
is outlined by the Definition 8. It captures the fact that the new constraints
introduced by our approach do not change the meaning of a state.

Definition 8 (Equivalence of States and Theories). Let 〈W,D〉 be a Propo-
sitional CHR Propagation Restricted Default Theory, and let W be the conjunc-
tion of the constraints in a CHR∨ state S and P a set of CHR rules. We say
that S is equivalent to W if W contains the logical meanings of the rules in P ,
the constraints in S and no other instance of a constraint appearing in P or in
S.

Theorem 1. Let 〈D,W 〉 be a Propositional CHR Propagation Restricted De-
fault Theory. Let W be the conjunction of the initial goal S and the set of CHR
rules P , and R the set obtained by transforming the default rules in D into CHR
rules. For every extension ε of 〈D,W 〉, if Ei is equivalent to a subgoal S′g of
some state S′ (such that S 7→P∪R . . . 7→P∪R S′ is a finite derivation), then
there exists an state S′′ such that Ei+1 is equivalent to a subgoal S′′g of S′′ and
S′ 7→P∪R . . . 7→P∪R S

′′ is a finite derivation for it.

Proof (Sketch). If ε is an extension and the default rule r = α:β
γ is applied

between the step Ei and Ei+1. Since the extension exists, β is consistent with
it. It’s easy to see that we can divide the derivation between S′ and S′′ into two
steps: (i) compute the deductive closure of S′g and (ii) execute some of the rules
in search(r). Applying all the derivation steps to the subgoal S′g will lead us to
a state S′′ containing a subgoal S′′g which is equivalent to Ei+1.

ut

Theorem 2 (Completeness). Let 〈D,W 〉 be a Propositional CHR Propaga-
tion Restricted Default Theory. Let W be the conjunction of the initial goal S
and the set of CHR rules P , and R the set obtained by transforming the de-
fault rules in D into CHR rules. For each non-failed derivation S 7→∗P∪R Sf , all
extensions ε of 〈D,W 〉 are subgoals of Sf .

Proof. By contradiction. Let us suppose there exists an extension ε which is not
a subgoal of Sf . By definition, ε =

⋃∞
i=0Ei. By Theorem 1, it follows easily that

every Ei should be equivalent to a subgoal of Sf , and thus ε should also be a
subgoal of Sf .

ut

Theorem 3 (Weak Correctness). Let 〈D,W 〉 be a Propositional CHR Prop-
agation Restricted Default Theory. Let W be the conjunction of the initial goal S
and the set of CHR rules P , and R the set obtained by transforming the default
rules in D into CHR rules. For each non-failed derivation S 7→∗P∪R Sf , every
non-failed subgoal of Sf is equivalent to a subset of an extension ε of 〈D,W 〉.

Proof (Sketch). By induction on the derivation length. The initial constraint
store is equivalent to a subset of every extension, by definition. By the proof of
the Theorem 1 it is easy to verify that each transition in S 7→∗P∪R Sf is one step
of the computation of a deductive closure or in the execution of a default rule
between some step Ei and Ei+1 in the derivation of an extension ε.

ut

If we try to extend these results to less restricted versions of the Theorems 2
and 3 we are going to see that both properties are going to be lost, mainly due
to the fact that the simpagation and simplification actually remove part of the
state. Therefore, the obtained subgoals are not going to be complete extensions
anymore.

Another possible extension is allowing disjunctive bodies. In this case, an
extension is not going to correspond to a subgoal, but to a set of subgoals,
which can be easily computed, each subgoal contains an extra constraints for the
assumed hypothesis: each explanation is the disjunction of the subgoals relying
on the same hypotheses.

5 CHR∨,naf : Extending CHR∨ with NAF in the rule
heads

In this Section, we are going to present CHR∨,naf , an extension for CHR with
negated rule heads. In this extension, there are three kinds of rules: simpagation,
propagation and simplification. The simpagation rules generalize all of them.
Their general syntax is:

r@Hk\Hr\\N1|G1\\ . . . \\Nn|Gn ⇔ G|B.

In this example, r is an identifier for the rule, which can be omitted. Hk are
the kept heads, which are kept in the constraint store when the rule fires. The
Hr are the removed heads, which are removed when the rule fires. Hk and Hr

are the positive heads of the rule, whereas N1, . . . , Nn are the negative heads. All
heads must contain only user defined constraints. G1, . . . , Gn are the negated
guards, and like the positive guard G, may be empty and in this case can be
omitted.

Any variable introduced in a guard cannot be used in another guard, i.e.,
the guards can only use the variables appearing in the positive heads and in
their corresponding negative head. The variables defined by the negative guards
cannot appear in the rule body and all guards are composed only of built-in
constraints.

If Hk is empty, it can be omitted (along with the following backslash) and the
rule is called a simplification rule. If Hr is empty, it can also be omitted (along
with the preceding backslash) and the sign⇔ is changed to⇒. This rule is called
propagation rule. The negative heads cannot be empty. A rule is authorized to
have from 0 to any number of negated heads.

Finally, B is the rule body, and is composed of a disjunction of conjunctions
of user defined and built-in constraints. No variable defined in a negative head
can appear in the rule body.

For now, let us consider the semantics of a rule such that as being:

∀G→ (Hk ∧Hr ∧ naf(∃((N1 ∧G1) ∧ . . . ∧ (Nn ∧Gn)))↔ B)

In other words: if the head is in the constraint store and there is no proof
that the negated head is inconsistent with it, we can assume it by hypothesis.

Example 3. Let us suppose we want to find the minimum value X for which there
exists a c(X) in the constraint store.

The common approach is to do something like:

c(X) \ getMin(Min) <=> current(X,Min).
c(X) \ current(Current,Min) <=> X<Current | current(X,Min).
current(Current, Min) <=> Min = Current.

Notice that this solution explores the refined operational semantics of CHR
and it is inherently not confluent. In a isolated piece of code like this these prop-
erties might not cause grave problems. However, in large rule bases, confluence
problems may be much harder to solve. We want, as much as possible, to find
confluent solutions to the problems.

In CHR∨,naf , this example is implemented much simply, by the means of
following rule:

getMin(M), c(X) \\ c(Y) | Y < X ==> M = X.

The logical reading of this rule is:

∀X,M(getMin(M) ∧ c(X) ∧ naf(∃Y (c(Y) ∧ Y < X))→ X = M)

5.1 Negation in Rule Heads as Default Reasoning

Now we show how to extract a Default Theory from a CHR∨,naf rule base. Let
us take the CHR∨,naf rule from the Example 3:

getMin(M), c(X) \\ c(Y) | Y < X ==> X = M.

It is possible to translate the logical reading of this rule in the following
default rule:

∀X,Y,M getMin(M), c(X) : ¬(c(Y) ∧ Y < X)
X = M

From this example, it is possible to infer that every CHR∨,naf propagation
rule can be naturally translated into a default rule. The general pattern is that
the following rule:

r@H\\N1|G1\\ . . . \\Nn|Gn ⇒ G|B.

generates the following default rule:

∀H ∧G : (¬(N1 ∧G1) ∧ . . . ∧ ¬(Nn ∧Gn))
B

Unfortunately, this translation does not account either for general simpaga-
tion rules or for simplification rules. What is missing is the capability of removing
the constraints in the head from the constraint store.

This can be easily accomplished by mapping each simpagation or simplifi-
cation rule into a pair of rules, one for propagating the body and another for
removing the head.

For example, let us take the following simpagation rule:

r @ a(X) \ b(Y) <=> g(Z) | c.

It is possible to rewrite it into an equivalent pair of rules:

r1 @ a(X), b(Y) ==> g(Z) | s(X,Y,Z).
r2 @ s(X,Y,Z), b(Y) <=> c.

This pair of rules is equivalent to former one (in the sense of the Definition
8). Since the negated heads in a CHR∨,naf rule base act like a precondition,
this strategy can be extended to CHR∨,naf programs. The idea is than translate
each simpagation rule of the form:

r@Hk\Hr\\N1|G1\\ . . . \\Nn|Gn ⇔ G|B.

to a pair of rules, a propagation and a simplification rule:

r1@Hk, Hr\\N1|G1\\ . . . \\Nn|Gn ⇒ G|s.

r2@s,Hr ⇔ B.

The next step is then, transforming the rule r1 into a default rule, the result
is:

∀Hk ∧Hr ∧G : ¬(N1 ∧G1) ∧ . . . ∧ ¬(Nn ∧Gn)
s

The following set of CHR∨ rules is obtained5.

r21 @ Hk, Hr ==> G | (r, s) ; true.
r22 @ r, N1 ==> G1 | false.
...
r2n @ r, Nn ==> Gn | false.

Let us return to the Example 3. The complete transformed rule base is as
follows:

r1 @ getMin(M), c(X) ==> (r(X,M), X = M) ; true.
r2 @ r(X,M), c(Y) ==> Y < X | false.

Let us suppose we feed the CHR∨ inference engine with the following goal:

c(3), c(9), getMin(M)

The two final Constraint Stores are:

S1 = { c(3), r(3,3), c(9), getMin(3) }
S2 = { c(3) , c(9), getMin(M) }

The first one is obtained by assuming c(3) as the minimum and the other
one is obtained by assuming no constraint as the minimum.

6 Related Work

6.1 Abduction in CHR∨

In [10], Kakas et al show that Default Logics is a special case of Abduction.
They say that the process of assuming hypotheses can be viewed as a form of
abduction, where instances of defaults are the candidate abducibles.

In [2], Abdennadher explains how to utilize CHR∨ as a platform for Ab-
ductive Reasoning and presents a method for expressing abductive problems as
CHR∨ rule bases.

In theory, it is possible to combine both approaches in order to reason about
Default Theories in CHR∨. The main advantage of our approach is that it allows
the addition of default rules to existing CHR∨ rule bases, while the hybrid ap-
proach combining [10] and [2] would require the translation of the existing rule
bases into abductive problems and then the translation of these problems into
CHR∨, which might not be trivial.

5 Notice that we map former guards into guards in the new rules.

6.2 Comparing CHR¬ and CHR∨,naf

Both CHR¬ and CHR∨,naf share the same syntax, but differ substantially in
their semantics. The semantics for CHR¬ was based on the refined operational
semantics for CHR defined in [4] and consisted of restricting the applicability
of CHR rules to situations where no negated head were present and adding the
notion of Triggering on removal, in which, a rule should also fire when a negated
constraint is removed from the constraint store.

That semantics presented some undesirable features, which this one aims to
overcome. The first of these effects is the lost logical reading, in the sense that,
because of its essentially operational semantics, it is not anymore possible to
map each rule into a logical formula. The present semantics brings back a logical
reading to rules with negative heads, in the sense that each rule can be read as
a default rule, where the pre-requisites are in the positive head, the justification
is the negative head and the conclusion is the body.

Another undesired feature is the unexpected behavior for some programs.
The operational semantics for CHR¬ turned out to lead to counter-intuitive
results for some simple programs, as the one described in the Example 4.

Example 4 (Order). Under CHR¬, negatively occurring constraints have to be
added in the right order. In the following rule base, everytime the first rule
fires, the child is declared an orphan. The reason for that is the fact that when
the constraint child(C) is added to the constraint store and the constraints
father(F,C) and mother(M,C) have not yet been added, and thus, the second
rule fires.

birth(C,F,M) <=> child(C), father(F,C), mother(M,C).
child(C) \\ father(_,C) \\ mother(_,C) ==> orphan(C).

To illustrate the difference between both semantics, let us suppose we try the
following initial constraint store:

birth(a, b,c), child(e).

In this example, a is not orphan, but we don’t know whether e is. We are
going to obtain two final constraint stores:

S1 = { child(a), father(b, a), mother(c, a), child(e), orphan(e) }
S2 = { child(a), father(b, a), mother(c, a), child(e) }

The first one, assumes e to be an orphan, and the second one does not assume
anything. In CHR¬, the final constraint store for this initial constraint store is:

S1 = { child(a), father(b, a),
mother(c, a), child(e),
orphan(a), orphan(e) }

This result is unexpected because a is clearly not orphan.

7 Conclusion

At this work, we confirmed the flexibility of the CHR∨ language by presenting
it as a platform for Default Reasoning services. We defined an approach that
permits us to rewrite Default Rules as CHR∨ propagation rules and reuse the
built-in search capabilities of CHR∨ in order to find consistent sets of hypotheses
that can be assumed in a given Default Theory.

We have also investigated how to leverage the correspondence between De-
fault Logic and Negation As Failure (NAF) in order to propose an extension
CHR∨,naf for CHR∨ allowing negated constraints and guards in the rule head.
We showed how this extension relate to CHR¬ [14], which employs an operational
concept of negation: Negation As Absence (NAA).

We propose the following future works:

– Triggering on Removal: This is an important feature of CHR¬ which
is not supported by CHR∨,naf because it is not declarative. In order to
allow this kind of reasoning we would need to employ some better-founded
semantics for removal, like the one employed by Adaptive CHR∨ [15].

– Complexity of Default Logics in CHR∨: As pointed out by [5], the
problem of enumerating all the extensions for a Default Theory has an
exponential time complexity. This is easily shown by the fact that each
possible hypothesis generates two possibilities: considering it and not con-
sidering it. Under this context, it is easy to notice that the number of states
computed by the CHR∨ machine increases exponentially with the input size.

In fact, only some of the returned states are complete extensions. For
example, in the list of final states presented at the example in the Section
4, only the first one was really an extension. One of the future works is
to develop an operational semantics taking a bias in the hypothesis into
accounts, making it possible to prioritize the returned solutions.

This new strategy will not be able to reduce its worst case complexity, but
will improve its average time complexity.

– Stronger Theoretical Results: the proofs presented at the Section 2.1
cover only a very limited range of Default Theories (the Propositional CHR
Propagation Restricted Default Theories). A future work is to extend this
results, initially to Default Theories with variables and quantifiers and then
to simpagation and simplification rules.

References

1. Slim Abdennadher. A Language for Experimenting with Declarative Paradigms.
Second Workshop on Rule-Based Constraint Reasoning and Programming, 2000.

2. Slim Abdennadher. Rule-Based Constraint Programming: Theory and Prac-
tice. Technical report, Institut für Informatik, Ludwig-Maximilians-Universität
München, July 2001.

3. Grigoris Antoniou. A tutorial on default logics. ACM Computing Surveys,
31(4):337–359, 1999.

4. Gregory J. Duck, Peter Stuckey, Maŕıa Garćıa de la Banda, and Christian
Holzbaur. The Refined Operational Semantics of Constraint Handling Rules. In
Proceedings of the 20th International Conference on Logic Programing (ICLP’04),
pages 90–104, Saint-Malo, France, 2004. Springer Berlin / Heidelberg.

5. Thomas Eiter and George Gottlob. Semantics and complexity of abduction from
default theories. In Chris Mellish, editor, Proceedings of the Fourteenth Interna-
tional Joint Conference on Artificial Intelligence, pages 870–877, San Francisco,
1995. Morgan Kaufmann.

6. François Fages. Consistency of Clark’s Completion and Existence of Stable Models.
Methods of Logic in Computer Science, pages 1:51–60, 1994.

7. Thom Frühwirt. Description Logic and Rules the CHR Way. Fourth Workshop on
Constraint Handling Rules, pages 49–62, 2007.

8. Thom Frühwirt and Slim Abdennadher. Essentials of Constraint Programming.
Springer-Verlag, 2003.

9. Yi Jin and Michael Thielscher. Representing beliefs in the fluent calculus. In
ECAI, pages 823–827, 2004.

10. Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni. Abductive logic pro-
gramming. Journal of Logic and Computation, 2(6):719–770, 1992.

11. Maurice Pagnucco. The Role of Abductive Reasoning within the Process of Belief
revision. Technical report, University of Sydney, 1996.

12. Raymond Reiter. Readings in nonmonotonic reasoning. Morgan Kaufmann Pub-
lishers Inc., 1980.

13. Michael Thielscher. Reasoning Robots: The Art and Science of Programming Rea-
soning Agents. Applied Logic Series 5. Kluwer, 2005.

14. Peter Van Weert, John Sneyers, Tom Schrijvers, and Bart Demoen. Extending
CHR with Negation as Absence. Third Workshop on Constraint Handling Rules,
pages 125–140, 2006.

15. Armin Wolf, Jacques Robin, and Jairson Vitorino. Adaptive CHR meets CHR∨:
An Extended Refined Operational Semantics for CHR∨ based on Justifications. In
Proceedings of the Fourth Workshop on Constraint Handling Rules (CHR 2007),
pages 1–15, Porto, Portugal, 2007.

16. Guizhen Yang and Michael Kifer. Inheritance in Rule-Based Frame Systems: Se-
mantics and Inference. Journal on Data Semantics (JoDS), II:79–135, 2006.

