
A Hierarchy of Semantics for Normal Constraint

Logic Programs

Fran�cois FAGES

1

and Roberta GORI

2

1

LIENS CNRS, Ecole Normale Sup�erieure, 45 rue d'Ulm, 75005 Paris, France,

fages@dmi.ens.fr

2

Dip. di Informatica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy,

gori@di.unipi.it

Abstract. The di�erent properties characterizing the operational be-

havior of logic programs can be organized in a hierarchy of �xpoint se-

mantics related by Galois insertions, having the least Herbrand model

as most abstract semantics, and the SLD operational semantics as most

concrete semantics. The choice of a semantics in the hierarchy allows to

model precisely the program properties of interest while getting rid of

useless details of too concrete semantics, which is crucial for the devel-

opment of e�cient program analysis tools.

The aim of this paper is to push forward these methods by making

them apply to normal (constraint) logic programs, that is full �rst-order

(non Horn) programs. The �xpoint semantics de�ned by the �rst author

for the rule of constructive negation by pruning is at the center of the

hierarchy developed in this paper. We show that that semantics can be

obtained by concretization of Kunen's semantics de�ned as a �xpoint,

taken as the most abstract semantics of the hierarchy, and that by further

concretization it leads to a new operational semantics for normal CLP

programs. The di�erent observable properties of the program, such as

successful derivations, �nite failure, set of computed answer constraints,

etc. are modeled by precise semantics in the hierarchy.

1 Introduction

One of the striking features of constraint logic programming (CLP) languages

is the existence of abstract model-theoretic semantics that allow powerful forms

of reasoning about CLP programs at a high level of abstraction. Some program

properties of interest may necessitate however the de�nition of appropriate more

concrete semantics allowing for semantic-based data-
ow analysis, error diagno-

sis, abstract interpretation. While the concrete operational semantics should

contain all the relevant details, being the most concrete semantics of the pro-

gram, there is still a need to use more abstract semantics in order to get rid

of useless details. The collecting semantics approach was originally intended to

give a solution to this problem, and the theory of abstract interpretation [2] [3]

provides order-theoretic tools to model abstraction operators. In logic program-

ming, we shall impose also that a collecting semantics includes the standard least

Herbrand model. This gives rise to a hierarchy of �xpoint semantics related by

Galois insertions, having the least Herbrand model as most abstract semantics,

and the SLD operational semantics as most concrete semantics. This approach

has been progressively undertaken for the semantics of de�nite (constraint) logic

programs [18, 1, 10] and is now well understood [5, 12, 11]. In particular the

main observable properties of a program can be modeled by both operational

(top-down) and denotational (bottom-up) abstract semantics in the hierarchy.

The aim of this paper is to push forward these methods by making them

apply to normal CLP programs, that is full �rst-order (non Horn) CLP. We shall

limit ourselves in this paper to the necessary basic contributions. The lifting of

the results obtained for de�nite CLP programs to normal CLP programs raises

indeed a lot of di�culties.

First, the abstract logical semantics of normal CLP programs has been con-

troversial for a long time. One can say that it has now stabilized on Kunen's

three-valued logical consequences of the program's completion

3

[16]. Kunen's

semantics enjoys the main desirable properties, in particular it is recursively

enumerable, general (i.e. de�ned for the whole class of normal CLP programs),

compatible with negation as failure [17], and faithful to constructive negation

[20]. Kunen's semantics is not de�ned as a �xpoint however. It can be charac-

terized by the �nite powers of Fitting's operator whose least �xpoint gives a

di�erent, highly non e�ective semantics [9].

Second, the negation as failure rule is a sound but incomplete inference rule

for normal CLP programs. The constructive negation by pruning rule introduced

by Chan [4] provides normal CLP programs with a complete operational seman-

tics w.r.t. Kunen's semantics [20]. However that scheme has not received yet a

fully abstract �xpoint semantics characterizing the computed answer constraints

for instance. In [8] such a �xpoint semantics has been given for a variant of the

constructive negation rule, called constructive negation by pruning. That se-

mantics generalizes the S-semantics of de�nite logic programs [1] to normal CLP

programs.

In this paper we show that the di�erent properties characterizing the oper-

ational behavior of a normal CLP program can be organized in a hierarchy of

�xpoint semantics related by Galois insertions, corresponding to a hierarchy of

observable properties and program equivalences (see �gure 1). The S-semantics

and the �xpoint operator T

S

P

de�ned in [8] are at the center of the hierarchy

developed in this paper.

In section 3 we de�ne the most abstract Kunen's semantics, as a �xpoint

semantics and de�ne a collecting semantics as being a pair (C; T) where C is a

semantic domain, and T a monotone operator on C. The other semantics of the

hierarchy will be obtained by a concretization.

Section 4 de�nes the s-collecting semantics based on operator T

S

P

. It is related

to the top of the hierarchy through an analogue to Clark's semantics de�ned in

3

Note that in absence of function symbols, as it is the case in deductive databases,

a di�erent choice can be made. Van Gelder's well-founded semantics is often viewed

as the standard semantics in such a context. Nevertheless in presence of function

symbols the well-founded semantics is highly non e�ective and is thus inappropriate.

u u

u

u

u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

�

�

�

�

�

�

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

S

S

S

S

S

S

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S Heyting's

Clark's

Kunen's

T

P

-trees

Fig. 1. A hierarchy of semantics for normal CLP languages.

section 5.

In section 6 we obtain by a pure concretization of the s-collecting semantics,

a new operational semantics for normal CLP programs, based on a rewriting

system on T

S

P

-trees. We take it as the most concrete operational semantics in

the hierarchy.

In this approach the operational semantics based on the constructive negation

by pruning rule [8] is not a collecting semantics w.r.t. the s-collecting semantics

and is thus not in this hierarchy. The reason is that, despite the full-abstraction

theorem of the S-semantics w.r.t. constructive negation by pruning [8], one step

of application of operator T

S

P

doesn't correspond to one derivation step under

the constructive negation by pruning rule. That operational semantics thus can-

not be obtained as a systematic concretization process, a di�erent operational

semantics more faithful to the operator T

S

P

is obtained instead.

The results of this paper show that in this approach the operational behavior

of normal CLP programs can be described at di�erent levels of abstraction inside

a hierarchy of semantics similarly to the Horn fragment. The hierarchy can be

used to systematically design appropriate or optimal semantics w.r.t. the observ-

able properties of interest. The S-semantics characterizes exactly those programs

having the same set of computed answer constraints (c.a.c.). The Clark's seman-

tics characterizes those programs having the same set of queries with true as

c.a.c.. The Kunen's semantics characterizes those programs having the same set

of successful queries.

The main theoretical tools used in this paper are on the one hand the recourse

to recursively saturated models for the abstract semantics, and on the other hand

the de�nition of several continuous �nitary versions of Fitting's operator.

2 Preliminaries

2.1 The language of constraints

The �rst-order language of constraints is de�ned on a countable in�nite set

of variables V and on a signature � composed of a set of predicate symbols

containing true and =, and of sets of n-place function symbols for each arity

n (constants are functions with arity 0). A primitive constraint is an atomic

proposition of the form p(t

1

; :::; t

n

), where p is a predicate symbol in � and the

t

i

's are �; V -terms. A constraint is a well-formed �rst-order �; V -formula. The

set of free variables in an expression e is denoted by V (e). Sets of variables will

be denoted by X;Y; :::. For a constraint c, we shall use the notation 9c (resp.

8c) to represent the closed constraint 9X c (resp. 8X c) where X = V (c).

The intended interpretation of constraints is de�ned by �xing a �-structure

A. An A-valuation for a �; V -expression is a mapping � : V ! A which ex-

tends by morphism to terms and primitive constraints. Logical connectives and

quanti�ers are interpreted as usual, a constraint c is A-solvable i� A j= 9c.

The only property that we require on A is that constraints are decidable

in A, so that A can be presented by a decidable �rst-order theory th(A), i.e.

satisfying:

1. (soundness) A j= th(A),

2. (satisfaction completeness) either th(A) j= 9c or th(A) j= :9c, for any con-

straint c.

As a constraint is any �; V -formula, these conditions are equivalent to say

that th(A) is a complete �rst-order theory, and thus that all models of th(A) are

elementary equivalent. For example, Clark's equational theory CET (augmented

with the domain closure axiom DCA if the signature is �nite) provides such a

complete decidable theory for the Herbrand universe with �rst-order equality

constraints [16].

2.2 CLP (A) programs

CLP (A) programs are de�ned using an extra �nite set of predicate symbols �

disjoint from �. An atom has the form p(t

1

; :::; t

n

) where p 2 � and the t

i

's are

�; V -terms. A literal is either an atom (positive literal) or a negated atom :A

(negative literal).

A de�nite (resp. normal) CLP (A) program is a �nite set of clauses of the form

A cjL

1

; :::; L

n

where n � 0, A is an atom, called the head, c is a constraint,

and L

1

; :::; L

n

are atoms (resp. literals). The local variables of a program clause

is the set of free variables in the clause which do not occur in the head.

In order to characterize precise operational aspects of CLP programs, such as

sets of computed anser constraints, the formal semantics of CLP (A) programs

will be de�ned by sets of constrained atoms. A constrained atom is a couple

cjA where c is an A-solvable constraint such that V (c) � V (A). The set of

constrained atoms is denoted by B. A constrained interpretation is a subset of

B. The set of ground instances of a constrained atom over A is de�ned by:

[cjA]

A

= fA� j � : V !A; A j= c�g

We denote also by [I]

A

the set of ground instances of a constrained interpretation

I. The set of ground atoms is denoted by B

A

. A ground atom A� is true (resp.

false) in I if A� 2 [I]

A

(resp. A� 62 [I]

A

).

The logical semantics of normal CLP (A) programs is de�ned via the Clark's

completion of the program, that is the the conjunction of th(A) with a formula

P

�

obtained from P by putting in a conjunction the following formulae:

8X p(X)$

n

_

i=1

9Y

i

c

i

^ �

i

for each predicate symbol p de�ned in P by a set of clauses fp(X) c

i

j�

i

g

1�i�n

,

where Y

i

= V (c

i

j�

i

) n X, and the formula 8X :p(X) for the other predicate

symbols which don't appear in any head in P .

The completion of a normal program can be inconsistent, e.g. with the pro-

gram P = fp ! :pg, P

�

= (p $:p), in that case any constraint should be a

correct answer constraint for any goal. In order to de�ne a faithful logical se-

mantics for normal programs, the solution proposed by Kunen is to consider the

3-valued logical consequences of P

�

; th(A). The usual strong 3-valued interpre-

tations of the connectives and quanti�ers are assumed, except for the connective

a$ b which is interpreted as t if a and b have the same truth value (f , t or u),

and f otherwise (i.e. Lukasiewicz's 2-valued interpretation of $).

Intuitively, the semantics of a normal CLP program is the pair of true and

false consequences similarly to a three-valued model. The formal semantics of

normal CLP (A) programs will be thus de�ned by partial interpretations. A

partial constrained interpretation for a CLP (A) program is a couple of sets of

constrained atoms, I =< I

+

; I

�

>, satisfying the following consistency condi-

tion: [I

+

]

A

\ [I

�

]

A

= ;. The set of partial interpretations forms a semi-lattice

for set inclusion on true and false constrained atoms, we denote it by (I;�

3

). It

is not a lattice as the union of two partial interpretations may not be a partial

interpretation due to the consistency condition.

The (Kunen's) logical semantics of a normal CLP (A) program P can be

de�ned by the following partial interpretation:

L(P) =< L

+

(P);L

�

(P) > where

L

+

(P) = fcjp(X) 2 B : P

�

; th(A) j=

3

c! p(X)g,

L

�

(P) = fcjp(X) 2 B : P

�

; th(A) j=

3

c! :p(X)g.

2.3 Other preliminary notions

In the following, we shall also assume familiarity with the standard notion of

abstract interpretation [2].

Given two posets (D

a

;�

a

) and (D

c

;�

c

), A Galois insertion is a quadruple

(C

a

; �; C

c

;
) where (C

a

;�

a

) and (C

c

;�

c

) are posets, and � : C

c

! C

a

,
 : C

c

! C

a

are maps such that:

{ � and
 are monotone.

{ 8 x; x 2 C

a

� �
(x) = x

{ 8 y y 2 C

c

 � �(y) �

c

y

Let A be a set, the powerset of of A is denoted by P(A). A equipped with a

partial order v is denoted by A

v

. We write f : A! B to mean that f is a total

function of A into B.

The set of �xpoints of a function f is denoted by fp(f), and the least �xpoint,

if it exists, is denoted by lfp(f).

3 Kunen's semantics and collecting semantics

A semantics de�nition for a normal CLP program is a pair < D; T >, where

the domain D = D

+

�D

�

forms a semi-lattice D

v

(the semantics domain) and

T : Program � D ! D is such that given a program P , T is a monotone

operator on D.

For technical reasons T is not supposed to be continuous, however the se-

mantics will be identi�ed to the least �xpoint of T which will be always reached

at ordinal omega in the following.

We consider as reference semantics for normal CLP (A) programs, Kunen's

semantics, i.e. the set of formulas �, such that � is a three-valued logical con-

sequences of the program completion P

�

and Th(A). Kunen's semantics can be

characterized by the �nite powers of Fitting's operator over the algebra A [16],

but this is not a �xpoint in general, as the closure ordinal of Fitting's opera-

tor can be far beyond ordinal omega, in fact it can be larger than all recursive

ordinals [9]. We recall the de�nition of the Fitting's operator:

De�nition1. Let P be a CLP (A) program. The immediate consequence oper-

ator �

A

P

: P(B

A

)! P(B

A

) is de�ned by:

�

A

+

P

(I) = f A 2 B

A

: there exist a clause in P ; p(X) �; and a valuation #

such that A = p(X)# and I(�#) = trueg

�

A

�

P

(I) = f A 2 B

A

: for any clause in P ; p(X) � and any valuation #

such that A = p(X)# then I(�#) = falseg

Next theorem gives a characterization of Kunen's semantics in terms of the

�nite powers of Fitting's operator.

Theorem2 [16][20]. Let P be a normal CLP (A) program and � be a �;�; V -

formula, then P

�

; th(A) j=

3

� i� � is true in �

A

P

" n for some integer n.

In [8] Kunen's semantics is characterized as the least �xed point of a non-

ground immediate consequence operator. It is also possible however to give a

di�erent �x point characterization based on a ground operator. We make this

choice here as it allows to de�ne a canonical (three-valued) model in the usual

sense for the program.

Such a �xpoint characterization has been given in [6] by considering the

Fitting's operator de�ned on a particular structure that is a saturated model of

the constraint language.

De�nition3. Let � = (�

i

j i 2 N) be a sequence of formulas �

i

in �nitely many

free variables x

1

; : : : ; x

k

; y

1

; : : : ; y

m

and let J be a model.

J is called �-saturated if for all assignments � : fy

1

; : : : ; y

m

g ! J , either some

� � � exists such that for all i, J j= �

i

�, or there exists N 2 N such that for

no � � � , J j=

V

i<N

�

i

�:

J is saturated if it is �-saturated for every sequence �. J is recursively saturated

if it is �-saturated for every computable sequence �.

It is well-known that every model in �rst-order logic has a saturated el-

ementary extension. The following results due to Doets provide the �xpoint

characterization of the Kunen's semantics.

Lemma4 [6]. If a Th(A)-algebra J is recursively saturated then, for every J -

sentence � (not containing $): if � is true (resp. false) in �

J

P

" !, then for

some n 2 N , � is true (resp. false) in �

J

P

" n.

Theorem5 [6]. If a Th(A)-algebra J is recursively saturated then, for every

program P :

�

J

P

" ! = lfp(�

J

P

)

Now we are ready to de�ne our core semantics:

De�nition6. Let P be a CLP (A) normal program, let J be a saturated

model of Th(A) the three-valued logical core semantics of P (let us call it

TLC(P

�

; Th(A))) is the pair < D

G

; �

J

P

> where D

G

= P([B

J

) � P(B

J

) and

�

J

P

is the Fitting's operator on the algebra J .

A collecting semantics is intended to provide a precise (concrete) description

of those program properties of interest. As [12] we shall use the standard frame-

work of abstract interpretation [2] in terms of Galois insertions, and shall obtain

the other semantics of the hierarchy by a pure concretization process.

De�nition7. A collecting semantics (with respect to TLC(P

�

; Th(A))) is a

semantics < C; T > such that there exists � and
 where: (C; �;D

G

;
) is a Galois

insertion and for any P 2 Program : �

J

P

= � � T �
.

Then the core semantics is an abstract interpretation of any collecting semantics.

In the following< C; T >

*

)

�

< C

0

; T

0

> will denote a Galois insertion (C; �; C

0

;
)

such that T = � � T

0

�
, i.e., < C

0

; T

0

> is a collecting semantics with respect to

< C; T >. When it will be not speci�ed otherwise a collecting semantics will be

always with respect to TLC(P

�

; Th(A)). In this case, when the abstraction �

and the concretization
 are given, a collecting semantics will be simply denoted

< C; T >

�

:

Proposition8. Let < C; T >

�

be a collecting semantics and let < C

0

; T

0

> such

that

< C; T >

0

*

)

�

0

< C

0

; T

0

>. Then < C

0

; T

0

>

0

�

���

0

is a collecting semantics.

4 S-semantics for normal CLP programs

The aim of the S-semantics is to provide a collecting semantics capable to char-

acterize the equivalence of normal CLP (A) programs based on the observation

of the set of computed answer constraints.

In this section we consider the �xpoint semantics introduced in [8] in con-

nection to the operational principle of constructive negation by pruning. That

semantics generalizes to normal programs the S-semantics given in [10] for def-

inite logic programs, but it is worth noting that when restricted to de�nite

programs that semantics also models �nite failures an observable that was out

of the scope of the original S-semantics approach. We shall show in the following

that the S-semantics is a collecting semantics in the hierarchy. We recall here

the de�nition of the �x point operator.

The S-semantics of a normal CLP program will be de�ned as a partial con-

strained interpretation, i.e. a subset of the non-ground base B. The �xpoint

operator T

S

P

has thus to be a non-ground version of Fitting's operator �

A

P

. The

non-ground version de�ned in [20] is not convenient as its closure ordinal can be

far beyond ordinal !, just as Fitting's operator over a non-saturated model.

The idea underlying the de�nition of the operator T

S

P

in [8] is to obtain a

continuous non-ground operator, simply by taking a �nitary version of Fitting's

operator

4

. Thus in this approach, a constrained atom (resp. literal) is true in

4

An operator f over a powerset is �nitary if 8x; y x 2 f(y)) 9y

0

� y �nite s.t.

x 2 f(y

0

). One can easily check that a �nitary operator which is monotonic w.r.t.

set inclusion, is necessarily continuous.

T

S

P

+

(I) (resp. T

S

P

�

(I)) if it is an immediate consequence of the program clauses

and of a �nite part of the constrained interpretation I. This leads to the following:

De�nition9 [8]. Let P be a CLP (A) program. T

S

P

is an operator over P(B)�

P(B) de�ned by

T

S

P

+

(I) = fcjp(X) 2 B : there exist a clause in P with local variables Y ,

p(X) djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

:

c

1

jA

1

; :::; c

m

jA

m

2 I

+

; c

m+1

jA

m+1

; :::; c

n

jA

n

2 I

�

such that c = 9Y d ^

V

n

i=1

c

i

is A-satis�ableg

T

S

P

�

(I) = fcjp(X) 2 B : for each clause de�ning p in P with local variables Y

k

,

p(X) d

k

jA

k;1

; :::; A

k;m

k

; �

k

:

there exist e

k;1

jA

k;1

; :::; e

k;m

k

jA

k;m

k

2 I

�

,

e

k;m

k

+1

jA

k;m

k

+1

; :::; e

k;n

k

jA

k;n

k

2 I

+

, n

k

� m

k

where for m

k

+ 1 � j � n

k

, :A

k;j

occurs in �

k

,

such that c =

V

k

8Y

k

(:d

k

_

W

n

k

i=1

e

k;i

) is A-satis�ableg.

Being monotone and �nitary, T

S

P

is continuous in the semi-lattice (S;�

3

).

De�nition10. The S-semantics is the pair < S; T

S

P

>, where S = P(B)�P(B).

We refer to [8] for a complete study of this operator and full abstraction

results w.r.t. constructive negation by pruning. In the sequel we show that the

S-semantics is indeed a collecting semantics in the hierarchy and we derive from

it a new operational semantics obtained by a pure concretization process.

5 Clark's semantics for normal CLP programs

The generalization of Clark's semantics to normal CLP programs can now be

de�ned as a simple upward closure of the S-semantics. We �rst de�ne the Up

operator over P(B) � P(B):

De�nition11. The set of ground instances of a constrained atom over A is

de�ned by :

[cjA]

A

= fA# j # : V !A;A j= c#g

De�nition12. Let I be a subset of B

Up(I) = fdjA : there exists cjA 2 I s.t. th(A) j= d! c and d is A-satis�ableg

A partial Clark interpretation for a CLP (A) program is a couple of upward

closed sets of constrained atoms U =< U

+

; U

�

>, satisfying the following con-

sistency condition:

[U

+

]

A

\ [U

�

]

A

= ;

The set of partial Clark interpretation forms a semi-lattice for set inclusion, we

denote it by (U;�

3

).

De�nition13. The Clark's semantics of a normal CLP (A) program P is the

pair

< U ; T

U

P

>, where U = Up(P(B)) � Up(P(B)) and T

U

P

= Up � T

S

P

.

We want to show that the Clark's semantics is a collecting semantics. First

we prove that there exist � and
 which provide a Galois insertion between the

domain of the semantics we are considering.

It is worth noting that since our interpretations I are pairs of interpretations

< I

+

; I

�

>, then also the abstraction operator � has to be considered as a pair

< �

+

; �

�

> and in the same way
 =<

+

;

�

>.

We recall that we note by J the saturated model of Th(A) considered in the

core semantics. Now by a cautious proof process we can establish:

Lemma14 [13]. < �

g

;

g

>; where �

g

=< �

+

g

; �

�

g

>,

�

+

g

= �I

+

2 P(B):[I

+

]

J

, �

�

g

= �I

�

2 P(B):[I

�

]

J

,

g

=<

+

g

;

�

g

>,

+

g

= �I

+

2 P(B

J

):

S

n

cjA : [cjA]

J

2 I

+

o

;

�

g

= �I

�

2 P(B

J

):

S

n

cjA :

[cjA]

J

2 I

�

o

;

is a Galois insertion of U (and S) into D.

Theorem15 [13]. For every J -interpretation I, �

J

P

(I) = �

g

(T

U

P

(

g

(I))) =

�

g

(T

S

P

(

g

(I))).

Corollary 16. < U ; T

U

P

> and < S; T

S

P

> are collecting semantics.

It is also immediate from the de�nition of the Clark's semantics that the

S-semantics is a collecting semantics w.r.t. the Clark's semantics, and that in

fact T

C

P

�Up = Up � T

S

P

, a property stronger than the one requested for being a

collecting semantics.

6 T

S

P

-trees operational semantics

6.1 Bottom-up semantics

The operational semantics obtained by a direct concretization of operator T

S

P

leads to the de�nition of a domain T of �nite AND-OR-trees labeled by goals.

AND-nodes are labeled by constrained literals, cjA or cj:A, where c is the

conjunction of the constraints on its childrens. OR-nodes are labeled by complex

goals of the form cj:(dj�), where c is the disjunction of the constraints on its

childrens. The leaves are AND-nodes or OR nodes with zero successors, or special

nodes labeled with a constraint, noted cj2. The root will be always an AND-

node.

With

cjG

4

i

we indicate a tree with root labeled by cjG. Root is a function:

T ! B which gives the label of the root of a tree, Root(

cjL

4

) = cjL.

With

cjL

V

and

T

1

; : : : ; T

n

we denote the tree with root cjL, and with the T

i

's are subtrees

in an AND-relation. With

cjG

V

or

T

1

; : : : ; T

n

we denote the tree with root cjG, and with

the T

i

's as subtrees in an OR-relation.

A partial tree interpretation is a couple of sets of trees =< I

+

; I

�

> sat-

isfying the consistency property on the roots of the trees in I

+

and I

�

. Now

the concretization of the T

S

P

operator leads to the de�nition of an operator

T

Trees

P

=< T

Trees

+

P

; T

Trees

�

P

> over the domain of partial tree interpretations.

The �rst component speci�es the AND-compositional execution tree for a

positive literal A. This is obtained by composing with an AND-node the suc-

cessful tree for the positive atoms in the body and the successful tree for the

negative atoms in the body.

T

Trees

+

P

(I) is de�ned as the set of trees of the form

0

B

B

@

cjA

V

and

dj2 c

1

jA

1

: : : c

m

jA

m

c

m+1

j:A

m+1

: : : c

n

j:A

n

4

1

: : : 4

n

4

n+1

: : : 4

m

1

C

C

A

such that A : �djA

1

; : : : ; A

m

;:A

m+1

; : : : ;:A

n

, is a program clause,

c

1

jA

1

: : : c

n

jA

n

4

1

: : : 4

n

2 I

+

c

m+1

j:A

m+1

: : : c

n

j:A

n

4

n+1

; : : : ; 4

n+m

2 I

�

and c = d ^

V

n

i=1

c

i

is A-satis�able.

The de�nition of T

Trees

�

P

follows similarly the de�nition of T

S

�

P

. T

Trees

�

P

(I)

is de�ned as the set of trees of the form

0

B

B

B

B

B

B

@

cj:A

V

and

c

1

j:(d

1

jA

1;1

; :::; A

1;m

1

; �

1

) : : :

V

or

: : :

:d

1

j2 e

1;1

j:A

1;1

: : : e

1;m

1

j:A

1;m

k

e

1;m

k+1

jA

1;m

k

+1

: : : e

1;n

1

jA

1;n

1

: : :

4

1;1

4

1;m

1

4

1;m

1

+1

4

1;n

1

: : :

1

C

C

C

C

C

C

A

where fA d

1

jA

1;1

; :::; A

1;m

1

; �

1

; :::; A d

k

jA

k;1

; :::; A

k;m

k

; �

k

g is the set of

program clauses de�ning A,

the A

i;j

's, for m

i

+ 1 � j � n

i

, are atoms such that :A

i;j

occurs in �

i

,

for all clause index i, 1 � i � k,

e

i;1

j:A

i;1

: : : e

i;m

i

j:A

i;m

i

4

1;1

: : : 4

1;m

1

2 I

�

e

i;m

i

+1

jA

i;m

i

+1

: : : e

i;n

i

jA

i;n

i

4

1;m

1

+1

; : : : ; 4

1;n

1

2 I

+

c

i

= :d

i

_

W

n

i

j=1

e

i;j

and c =

V

k

i=1

c

i

is A-satis�able.

That semantics will be the most concrete semantics de�nition of the hierar-

chy.

De�nition17. The T

P

-Trees semantics is the pair < P(T)� P(T); T

Trees

P

>

Being monotone and �nitary one can easily check that T

Trees

P

is in fact a con-

tinuous operator over P(T)�P(T). The T

P

-Trees semantics is a concrete seman-

tics which allows to distinguish programs having di�erent T

P

-Trees derivations,

both for positive or negative literals. Now we can relate the T

P

-Trees semantics

to the S-semantics.

Lemma18. The pair < �;
 >; where � =< �

+

; �

�

>,

�

+

= �I

+

2 P(T):

n

cjA :

cjA

4

2 I

+

o

;

�

�

= �I

�

2 P(T):

n

cjA :

cj:A

4

2 I

�

o

and

 =<

+

;

�

>,

+

= �I

+

2 P(B):

S

n

cjA

4

2 T : cjA 2 I

+

o

;

�

= �I

�

2 P(B):

S

n

cj:A

4

2 T : cjA 2 I

�

o

;

is a Galois insertion of P(Trees) into S.

Theorem19. The T

P

-Trees-semantics is a collecting semantics w.r.t. the S-

semantics.

Hence by proposition 8 and theorem 19 we get

Corollary 20. The T

P

-Trees semantics < P(Trees); T

Trees

P

> is a collecting

semantics.

We thus obtain the hierarchy pictured in �gure 1. The generalization of the

Heyting's semantics to normal CLP program has not been discussed. The idea,

following [15, 12], is to collect in that semantics the successful upward closed

�nite T

P

-trees. This leads to a semantics which is not comparable with the

S-semantics (because of the upward closure) but which is more concrete than

the Clark's semantics. For de�nite logic programs such a semantics provides an

intuitionistic interpretation [15].

6.2 Top down semantics

It is interesting to examine the top down semantics corresponding to the con-

cretization of operator T

S

P

. Such a top-down semantics describes an inference

rule of constructive negation for normal programs. As a matter of fact the in-

ference rule we obtain has no simple relationship with the rule of constructive

negation by pruning studied in [8], although both rules de�ne the same set of

computed answer constraints for each goal.

Thanks to the AND-compositional property we just have to de�ne the rewrit-

ing process for literal goals only. So we de�ne a transition relation !: T � T

over T

P

-trees.

In the top-down semantics the tree is constructed by rewriting its leaves,

then the constraints have to be propagated bottom-up to the root for the check

of satis�ability. To this end we de�ne a function label: T ! T which labels a

tree in a bottom-up fashion according to the labels on its leaves. Formally :

label (cjG) = cjG for a leaf,

label (

cjL

V

and

4

1

: : :4

n

) =

V

n

i=1

c

i

jG

V

and

4

0

1

: : :4

0

n

where

c

i

jG

i

4

0

i

= label(4

i

).

label (

cjL

V

or

4

1

: : :4

n

) =

W

n

i=1

c

i

jG

V

or

4

0

1

: : :4

0

n

where

c

i

jG

i

4

0

i

= label(4

i

).

The idea of the transition relation is to rewrite an atomic goal truejA with a

program clause, thereby producing and AND node, and to rewrite a goal truej:A

with all the program clauses de�ning A, thereby producing and AND node with

OR nodes as leaves. But note that due to the non-deterministic choice of literals

with repetition in program bodies for the formation of OR nodes (cf. def. of

T

Trees

P

�

), a tree will be rewritten top-down either by expanding a leaf or by

adding a successor to an OR node.

Let 4[truejL] denotes a tree containing either a leaf node labeled by truejL

or an OR node labeled by cj:(dj�) where :L occurs in �. Then let us denote by

4[4

0

]

the tree 4 in which either the leaf node has been replaced by4

0

or the OR node

has been added a successor 4

0

.

The transition relation !: T � T can now be de�ned as the least transition

satisfying the following rules for positive and negative literals :

4[truejA] ! label (4 [

truejA

V

and

dj2 truejL

1

: : : truejL

n

])

where A djL

1

; :::; L

n

is a clause of the program and the root of the rewritten

tree is satis�able,

4[truej:A] ! label (4 [

truej:A

V

and

dj2 truej:(d

1

j�

1

)

V

or

: : :

truej:(d

k

j�

k

)

V

or

])

where fA d

1

j�

1

:; : : : ; A d

k

j�

k

g is the set of clauses de�ning A in the

program, and the root of the rewritten tree is satis�able,

Now a successful tree is a tree whose leaves are labeled by constraints only.

The successful trees de�ned by the top-down rewriting relation are exactly the

trees of the bottom-up semantics. For lack of space we cannot give more details,

moreover a precise comparison of this top-down semantics (automatically) syn-

thesized from the �xpoint semantics, and the known ones of for instance [20], [7]

or [8] is not easy to establish, and should serve further investigation.

7 Conclusion and Perspectives

We have shown that the hierarchy of semantics for de�nite logic programs de-

�ned in [12] can be generalized to normal CLP programs. Note that this result,

when restricted to de�nite CLP programs, still generalize the previous results

on de�nite CLP programs, as we model �nite failure, an observable which was

out of the scope of the semantics described in [11, 12, 5].

More work is needed to e�ectively use the results presented here for the static

analysis of normal CLP programs. In particular one should further investigate

{ the systematic design of collecting semantics, and the notion of optimal

collecting semantics w.r.t. an observable property,

{ the abstract interpretation of normal CLP programs, and the de�nition of

appropriate domains for groundness analysis, mode analysis, type analysis,

etc.

{ the study of compositional semantics w.r.t. various operators of program

combination [5].

{ the design of more
exible hierarchies capable of incorporating other stan-

dard operational semantics.

The results contained in this paper should serve as a basic ground for such

extensions.

References

1. A. Bossi, M. Gabbrielli, G. Levi, M. Martelli, \The s-semantics approach: theory

and applications", Journal of Logic Programming, 19-20, pp.149-197, 1994.

2. P. Cousot, R. Cousot, \Systematic design of program analysis frameworks", In

Proc. 6th Annual Symposium on Principles of Programming Languages, pp.269-

282, 1979.

3. P. Cousot, R. Cousot, \Abstract interpretation and application to logic programs",

Journal of Logic Programming, 13(2 and 3), pp.103-179, 1992.

4. D. Chan, \Constructive negation based on the completed database", in: R.A.

Kowalski and K.A. Bowen (eds), Proc. of the �fth International Conference on

Logic Programming, MIT Press, Cambridge, MA, pp.11-125, 1988.

5. M. Comini, G. Levi, M.C. Meo, \Compositionality in SLD-derivations and their

abstractions", Proc. of International Symposium on Logic Programming, ILPS'95,

Portland, MIT Press, pp.561-575, 1995.

6. K. Doets \From Logic to Logic Programming", MIT Press, 1992.

7. W. Drabent, \What is failure? An approach to constructive negation", Acta In-

formatica, 32:1, pp.27-59, 1995.

8. F. Fages, \Constructive negation by pruning", LIENS technical report 94-14, re-

vised 95-24. To appear in the Journal of Logic Programming, 1996.

9. M. Fitting, \A Kripke/Kleene semantics for logic programs", Journal of Logic

Programming, 2(4), pp.295-312, 1985.

10. M. Falaschi, G. Levi, M. Martelli, C. Palamidessi, \Declarative modeling of the

operational behavior of logic programs", Theoretical Computer Science, 69(3),

pp.289-318, 1989.

11. M. Falaschi, G. Levi, M. Martelli, C. Palamidessi, \A model-theoretic reconstruc-

tion of the operational semantics of logic programs", Information and Computa-

tion, 103, pp.86-113, 1993.

12. R. Giacobazzi, \"Optimal" collecting semantics for analysis in a hierarchy of logic

program semantics", Proc of 13th STACS'96, C. Puech and R Reischuk Ed., LNCS

1046, Springer Verlag, pp.503-514. 1996.

13. R. Gori, \A hierarchy of semantics for CLP (A) general programs", Report of DEA

IMA, LIENS,

�

Ecole Normale Sup�erieure, Paris, 1995.

14. J. Ja�ar, J.L. Lassez, \Constraint Logic Programming", Proc. of POPL'87, Mu-

nich, pp.111-119, 1987.

15. R. Kemp, G. Ringwood, \Reynolds base, Clark models and Heyting semantics

of logic programs", Technical Report, Queen Mary and West�eld College, 1991,

revised 1995.

16. K. Kunen, \Negation in logic programming", Journal of Logic Programming, 4(3),

pp.289-308, 1987.

17. K. Kunen, \Signed data dependencies in logic programming", Journal of Logic

Programming, 7(3), pp.231-245, 1989.

18. M. Maher, \Equivalences of logic programs", in: J. Minker (ed.) Foundations of

deductive databases and logic programming, Morgan Kaufmann, pp.627-658, Los

Altos, CA, 1988.

19. P. Stuckey, \Constructive negation for constraint logic programming", Proc.

LICS'91, pp.328-339, 1991.

20. P. Stuckey \Negation and constraint logic programming", Information and Com-

putation 118(1), pp.12-33 (1995).

