
Combining explicit negation and negation by failure via

Belnap's logic

?

Paul Ruet, Fran�cois Fages

1

Thomson - LCR, Domaine de Corbeville, 91404 Orsay, France,

LIENS, Ecole Normale Sup�erieure, 45 rue d'Ulm, 75005 Paris, France

Abstract

This paper deals with logic programs containing two kinds of negation: negation

as failure and explicit negation. This allows two di�erent forms of reasoning in

the presence of incomplete information. Such programs have been introduced by

Gelfond and Lifschitz and called extended programs. We provide them with a logical

semantics in the style of Kunen, based on Belnap's four-valued logic, and an answer

sets' semantics that is shown to be equivalent to that of Gelfond and Lifschitz.

The proofs rely on a translation into normal programs, and on a variant of Fit-

ting's extension of logic programming to bilattices.

1 INTRODUCTION

One of the striking features of logic programming is that it naturally supports

non-monotonic reasoning by means of negative literals. Simply inferring neg-

ative information from a positive program is already a form of non-monotonic

inference that shows essential di�erences between the two main approaches to

the model-theoretic semantics of logic programs: namely the standard model

approach and the program's completion approach.

In the standard model approach, the semantics of a positive program is iden-

ti�ed to the least Herbrand model of the program. Then :A must be inferred

if A is false in the least Herbrand model of the program (i.e. Closed World

Assumption). In the program's completion approach, the clauses de�ning the

?

A preliminary version was presented at ILPS'94, Workshop on Uncertainty in

Databases and Deductive Systems, Ithaca NY (Nov. 94).

1

Correspondence to: Laboratoire d'Informatique de l'Ecole Normale Sup�erieure,

45 rue d'Ulm, 75005 Paris, France. E-mail: fruet,fagesg@dmi.ens.fr.

Preprint submitted to Elsevier Science 12 April 1996

same predicate are read as a de�nition of the predicate using an equivalence

connective in place of implications. Then :A must be inferred if :A is a logical

consequence of the completion of the program.

From a programming language point of view, the standard model approach is

not viable because it is untractable, namely the set of false atoms is not recur-

sively enumerable. From a knowledge representation point of view however,

standard models correspond naturally to the intended semantics of programs.

Therefore the challenge is to provide constructs that capture the essential as-

pects of standard models, in a recursively enumerable setting.

In the framework of normal programs which allow negation inside program

clause bodies, the stable models of [12] provide a general notion of standard

model. Stable models however may not exist or may not be unique. Strati�ed

and perfect models [3], are particular cases of stable models uniquely de�ned

for restricted classes of normal programs. Three-valued standard models have

also been de�ned to resolve the di�culty of existence and uniqueness of a stan-

dard model for normal programs. None of these notions of standard model for

normal programs however is computable so any concrete operational seman-

tics is necessarily incomplete.

On the other hand, the completion of a normal program may be inconsistent,

e.g. with P = fp :� :pg, P

�

= fp $:pg, in which case any literal should

be inferred. In order to resolve these di�culties, Kunen proposed to take the

set of the consequences in three-valued logic of the program's completion as

the declarative semantics of the program. In the previous example, taking the

third truth value u for p provides a model of P

�

as u$:u. Kunen proved a

completeness result [18] for the negation as failure rule w.r.t. the three-valued

completion of the program, followed by stronger completeness results for the

constructive negation rule [19,7].

In this paper we study extended logic programs as introduced by Gelfond and

Lifschitz [13,14] (see also [21,1]) to deal with two kinds of negation: explicit

negation allowed in clause heads and bodies and negation by failure allowed in

clause bodies only. These two negations allow two di�erent forms of reasoning

in the presence of incomplete information: to infer not A, you may want to

know that A cannot be inferred (it is the case of negation by failure =A), or

you may require an explicit inference process for not A, when e.g. the closed

world assumption cannot be made on A (it is the case of explicit negation

:A).

We study the existence of 4-valued Belnap's models for extended programs and

develop a 9-valued Kunen-style semantics for extended programs. Because the

negation as failure connective is not monotonic w.r.t. the knowledge ordering,

our construction is not an instance of the bilattice extension of logic program-

ming proposed by Fitting in [10], it corresponds rather to an extension of this

framework to incorporate negation as failure: our 3�3 construction extends

Fitting's programs on the 2�2 bilattice of Belnap's logic, in the same way as

2

programs with negation as failure (provided with 3-valued semantics) extend

positive (2-valued) programs.

Furthermore we show that the answer sets of [14] correspond to a notion of

standard 4-valued Belnap's models, and we suggest with examples that our

computable semantics captures essential aspects of the answer set semantics

for extended programs.

2 PRELIMINARIES ON EXTENDED LOGIC PROGRAMS

Closed World Assumption.

When the closed world assumption is not applicable, i.e. when dealing with

possibly incomplete or inconsistent information, the deduction process of the

falsity of a sentence A should be independent from that of the truth of A.

Such a deduction process should then be able to infer negative information in

another way than does the usual negation as failure, namely it should be able

to infer \explicitly" negated information as well as positive one. In order to do

this, one has to distinguish between two kinds of negation: explicit negation

(denoted :) and negation as failure (denoted /). Not unexpectedly, : will be

allowed to occur in the head of clauses, but not /.

Here is a short example borrowed from [14].

A College uses the following rules for awarding scholarships to its students:

(i) Every student with a GPA of at least 3.8 is eligible.

(ii) Every minority student with a GPA of at least 3.6 is eligible.

(iii) No student with the GPA under 3.6 is eligible.

(iv) The students whose eligibility is not determined by these rules are inter-

viewed by the scholarship committee.

Assume this program is used in conjunction with a database containing the

following fact about one of the students: Ann's GPA is 3.7.

The database contains no information about minority(ann), whereas Ann is

a minority student, but declined to state this fact on her application, as a

matter of principle. Representing such a knowledge in a logic programming

language requires thus two kinds of negation: an explicit negation, which may

occur in the head of clauses (rule 3) and negation by failure (rule 4).

Such programs have been introduced by Gelfond and Lifschitz in [13] and

called extended programs.

Note that the two kinds of negation allow to distinguish between temporary

and de�nitive lack of information. For this reason, extended programs have

3

been early devoted to temporal reasoning about actions. In [15] Gelfond and

Lifschitz use them as a language for deriving properties of actions in an open

context.

Syntax of Extended Programs.

We assume our language L to be �xed, and contain, for each n � 0, a countable

set of n-ary function symbols and a countable set of n-ary predicate symbols;

in addition, L has a symbol = for equality, that never occurs in a program,

but is used in forming the completed program. The set V of variables is �xed

as well.

Atomic formulas are de�ned as usual from L and V. A classical literal is an

atomic formula or the explicit negation :A of an atomic formulaA. A (general)

literal is a classical literal or the negation by failure, =L, of a classical literal

L. A literal of the form =L is called a slashed literal. A clause is of the form:

L

0

:� L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

;

where the L

i

's are classical literals, 0 � m � n, and commas stand as usual

for conjunctions ^. If n = 0, we just write L

0

. L

0

is called the head of the

clause, and (L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

) its body. Note that a clause admits

explicitly negated literals in its head. An (extended) program is a �nite set of

clauses. A query is of the form L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

.

Call-consistent, strati�ed, p.o.c. and strict extended programs.

The following de�nitions are not essential for our semantics, they will be used

in Section 5 to establish connections with the answer sets' semantics of Gelfond

and Lifschitz.

Let PRED be the set of all predicate symbols or :-negated predicate symbols.

Let P be a given program. If p; q 2 PRED, we de�ne (as in [18]) p w

+1

q i�

P contains a clause in which p occurs in the head and q occurs in a classical

(not-slashed) literal of the body. We say p w

�1

q i� P contains a clause in

which p occurs in the head and q occurs in a slashed literal of the body. Let

�

+1

and �

�1

be the least pair of relations on PRED satisfying: p �

+1

p

and p w

i

q & q �

j

r) p �

i�j

r, i; j 2 f+1;�1g. Intuitively �

+1

(resp. �

�1

)

denotes the relation of dependance among predicates through an even number

(including 0) of / (resp. an odd number of /).

These relations could have been de�ned similarly on ground atoms instead of

predicates. In the following de�nitions, we use both forms (on predicates, on

atoms), so for sake of clarity we explicitly mention which one is intended.

We say that P is call-consistent i� we never have p �

�1

p for any predicate

4

symbol p, i.e. no predicate symbol or :-negated predicate symbol p is de�ned

negatively from itself.

Following [3] we say that an extended program P is strati�ed i� no predicate

symbol or :-negated predicate symbol depends on itself through at least one

/ negation.

It is locally strati�ed i� no ground atom or ground :-negated atom depends

on itself through at least one / negation.

Following [6] we say that an extended program P is positive order consistent

(p.o.c.) i� the relation w

+1

on atoms has no in�nite decreasing chain (it is in

particular the case if all recursions are through one or more /).

If � is a query, we say � �

i

p i� either a �

i

p for some atom a occurring

positively in � or a �

�i

p for some a occurring negatively in �. An extended

program P is said strict w.r.t. the query � i� for no predicate letter p do we

have both � �

+1

p and � �

�1

p.

3 BELNAP'S LOGIC

In [4] Belnap introduced a four-valued logic intended to deal in a useful way

with inconsistent or incomplete information (see also [2]).

A way to interpret Belnap's truth values is to think of them as sets of classical

truth values: we write t for ftrueg, f for ffalseg, ? for ; (indicating a lack of

information) and > for ftrue; falseg (indicating inconsistency).

�

�

�

�

�

�

@

@

@

@

@

@ �

�

�

�

�

�

@

@

@

@

@

@

f t

?

>

Fig. 1. The bilattice of Belnap's logic.

This set T of truth values has two natural orderings: one is the subset rela-

tion, a knowledge ordering �

k

(the vertical ordering in Figure 1), and a truth

5

ordering �

t

(the horizontal one). In this way, inconsistency (>) and lack of

information (?) cannot be distinguished according to the truth ordering. Each

of these orderings provides the set of truth values with the structure of a lat-

tice, so that the whole structure can be considered as the simplest non-trivial

bilattice [16,9].

Meet and join under �

t

are denoted ^ and _; they are generalizations of the

usual conjunction and disjunction. Meet and join under �

k

are denoted

and �, respectively consensus and gullability operators; but we shall not need

them in our extended logic programs. On the other hand, there is a natural

notion of negation :, which
ips the diagram from left to right, switching f

and t, leaving ? and > alone.

In [10] Fitting proposes an extension of logic programming to bilattices: to

execute a bilattice logic program, you just compute the actual (truth) value

v of the body of a clause and replace the value of the head by v. Since all

connectives considered by Fitting are monotone w.r.t. �

k

, this mechanism

amounts to adding information to the fact base: your knowledge about the

situation increases (but not necessarily following the truth ordering).

In this paper, we shall consider also connectives that are non-monotonic w.r.t.

the knowledge ordering in order to model negation as failure. We shall consider

the slash /, which
ips the diagram from bottom-left to top-right, switching

f and >, and t and ?

2

. In a four-valued logic it is very natural to introduce

such a connective, moreover there is a need for it, to get a fully expressive set

of connectives:

Complete Sets of Connectives.

In classical logic, the connectives :, ^ and _ form a complete set, i.e for

every integer n, all the mappings from ff; tg

n

to ff; tg can be expressed by

composition of some of the connectives. In fact, : and ^ su�ce to form a

complete set for classical logic.

When moving to Belnap's logic, the connectives : and ^ extending the cor-

responding classical ones do not form a complete set. Precisely: if K

n

are sets

of mappings from ff; t;?;>g

n

to ff; t;?;>g, and K =

S

K

n

, let us call K

the intersection of all the sets S such that:

(i) S contains K, the 0-ary f, t, ?, >, and the k

th

n-ary projection �

k

n

for

every integers n � k � 1,

(ii) if f

1

: : : f

p

are in S and all n-ary, and if � is in K and p-ary, then ��<

2

We will give some intuition behind the choice of / as the right connective for

modeling negation as failure in Section 4.

6

f

1

:::f

p

> is in S and is n-ary.

We say that the set K is complete for T if K contains all the mappings from

ff; t;?;>g

n

to ff; t;?;>g, for every integer n.

Proposition 1 The connectives : and ^ do not form a complete set for T .

Proof: let K be this set of connectives. One veri�es easily that : and ^ are

monotone w.r.t. �

k

, i.e. x �

k

x

0

implies :(x) �

k

:(x

0

), and x �

k

x

0

and

y �

k

y

0

imply x ^ y �

k

x

0

^ y

0

. (The property that the lub and glb under

one ordering of a bilattice are monotone in the other ordering holds in any

distributive bilattice [16,11]; this is a corollary of Ginsberg's representation

theorem for distributive bilattices [16].)

By induction, all connectives in K are monotone w.r.t. �

k

as well.

But / is not monotone w.r.t. the knowledge ordering: for instance, ? �

k

t,

but =? = t /�

k

/t = ?. Hence = 62 K . 2

Hence, to get a complete set of connectives, we need to add at least a non-

monotonic connective to f:,^g. The addition of / su�ces:

Proposition 2 The connectives :, ^ and = form a complete set for T .

Proof : let K

0

be this set of connectives. We prove, by induction on n, that

every function from ff; t;?;>g

n

to ff; t;?;>g is in K

0

.

� n = 0 : because of condition (i), all truth values are in K

0

.

� n + 1 : de�ne nx = :=:x (exchanges f and ?, t and >), and �x = =:=x.

Hence the connectives n and � belong to K

0

.

Now let f be a (n + 1)-ary function. We de�ne the n-ary functions g, h, k, l

by:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

f(x

1

:::x

n

; f) = g(x

1

:::x

n

)

f(x

1

:::x

n

; t) = h(x

1

:::x

n

)

f(x

1

:::x

n

;?) = k(x

1

:::x

n

)

f(x

1

:::x

n

;>) = l(x

1

:::x

n

)

If (?t) is the unary function that lets t invariant and maps the other truth

values to f, then we have: f(x

1

:::x

n+1

) = [(?t)(:x

n+1

)^g(x

1

:::x

n

)]_ [(?t)x

n+1

^

h(x

1

:::x

n

)] _ [(?t)(=x

n+1

) ^ k(x

1

:::x

n

)] _ [(?t)(nx

n+1

) ^ l(x

1

:::x

n

)].

But (?t)x = x^�x. Hence f can be expressed in K

0

, and the result is proved

for any integer n. 2

7

4 9-VALUED KUNEN-STYLE SEMANTICS VIA BELNAP'S

LOGIC

In the usual case (programs without explicit negation :), the semantics is

3-valued, and this corresponds to the three possible situations for a ground

query: `yes' answer (true), �nite failure (false) and looping (unde�ned).

In the case of programs with both negations, the answers concerning the truth

and falsity of a query are completely independant. So the truth value assigned

to a formulaA will be a couple of classical truth values (true, false, unde�ned),

the 1

st

element of this couple corresponding to the knowledge about the truth

of A, and the 2

nd

one corresponding to the knowledge about its falsity. Hence

logic programs with both negations will be provided with a 9-valued Kunen-

style semantics.

�

�

�

�

�

�

�

�@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@I

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

1

1

u

�

2

1

u

0 0

f t

>

?

Fig. 2. The 9-valued logic of extended programs.

Truth values are then handled as points in a square (see Figure 2). For in-

stance, t = (1; 0), ? = (0; 0): : : We can de�ne two projections on truth

values: �

1

(x; y) = x and �

2

(x; y) = y, where x; y 2 f0; u; 1g. Now de�ne

an order <

t

on f0; u; 1g by 0 <

t

u <

t

1, and the order-reversing function

v 7! v by 0 = 1, 1 = 0 and u = u: then we may extend the connectives

de�ned in Section 3 by (v

1

; v

2

) ^ (w

1

; w

2

) = (min

<

t

(v

1

; w

1

);max

<

t

(v

2

; w

2

)),

(v

1

; v

2

) _ (w

1

; w

2

) = (max

<

t

(v

1

; w

1

);min

<

t

(v

2

; w

2

)), :(v

1

; v

2

) = (v

2

; v

1

) and

=(v

1

; v

2

) = (v

1

; v

2

).

The choice of the connective / for modeling negation as failure becomes clear

8

now. Since the positive and negative informations about a formula A are sep-

arated in extended programs, such a connective has to negate (the truth value

representing) the positive information in A, keeping unchanged the negative

information in A. This is indeed what the connective / does.

The de�nition of the completed program (see below) uses a (2-valued) Lukas-

iewicz equivalence $: v $ w is t i� �

1

(v) = �

1

(w) and f otherwise. Note that

$ is not monotone w.r.t. the knowledge ordering of Belnap's logic, just like

/. Of course v $ w can be de�ned here in terms of ^, / and :, thanks to

Proposition 2.

4.1 COMPLETED PROGRAM AND 9-VALUED MODELS

Completed program.

Let L(�

1

; :::; �

n

) :� � be a clause, with variables Y

1

: : : Y

j

. Its normalization is

L(X

1

; :::;X

n

) :� 9Y

1

� � � 9Y

j

(X

1

= �

1

^ ::: ^X

n

= �

n

^ �)

where X

1

: : :X

n

are new variables.

Let P be an extended program and L(X

1

; :::;X

n

) :�

i

(1 � i � m) be the m

normalizations of the clauses in P where L occurs in the head. Then the com-

pleted de�nition of the n-ary classical literal L is 8X

1

� � � 8X

n

(L(X

1

; :::;X

n

) $

1

_ � � � _

m

). If m = 0, we just write =L(X

1

; :::;X

n

).

Now the completed program P

?

is the set of the completed de�nitions of all

classical literals, together with the axioms of Clark's equational theory CET

(see [5]).

9-Valued structures.

A 9-valued structure A for the �xed language L consists of a nonempty set A

(the domain of interpretation), and:

(i) for every n-ary function symbol f , A(f) : A

n

! A is a n-ary function,

(ii) for every n-ary predicate symbol p other than =, A(p) is a mapping from

A

n

to the set of 9 truth values; A(=) is always true identity, i.e., A(=)(a; b)

is t i� a and b are the same object and f otherwise.

A 4-valued structure is simply a 9-valued structure in which, for every predicate

p, neither �

1

(A(p)) nor �

2

(A(p)) takes the value u. As usual, the interpreta-

tion is extended to formulas according to the 9-valued truth tables (de�ned

9

above componentwise); for the quanti�ers, we de�ne obviously A(9X�) =

W

a2A

A(�(a)) and A(8X�) =

V

a2A

A(�(a)).

We say that the 9-valued structure A is a model of the completed program

P

?

, denoted A j=

9

P

?

, i� all formulas in P

?

have truth value t in A. If A is

in fact a 4-valued structure, then we write A j=

4

P

?

.

A

A

A

A

A

A

A

A

A

A

A

�

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

(1; u)(0; u)

(u; u)

(u; 0)

(0; 0) (0; 1) (1; 0) (1; 1)

(u; 1)

�

� � � �

� � � �

Fig. 3. The 9-valued bilattice based on Belnap's logic.

Extensions.

Let <

k

be the ordering on f0; u; 1g such that u <

k

0 and u <

k

1. If A

and B are two 9-valued structures, we shall say that B is an extension of

A i� A and B have the same domain of interpretation and agree on the

interpretations of all function symbols, and for each ground atomic formula

�, �

1

(A(�)) �

k

�

1

(B(�)) and �

2

(A(�)) �

k

�

2

(B(�)). The natural ordering

between extensions is induced by the ordering �

k

de�ned component-wise on

the 9 truth values from �

k

(see Figure 3).

Intuitively, an extension of A is \less unde�ned" than A. It is a concept

di�erent from that of \expansion" (see [18]) and more natural in our context,

but Kunen's proofs of interest for us can be easily adapted to the notion of

extension.

To see this, let us return temporarily to the classical setting and recall the

de�nition of an expansion: if P and Q are sets of predicate symbols, P � Q,

M is a 3-valued P-structure (i.e. a structure that interprets only predicate

10

symbols in P) and N a 3-valued Q-structure, then N is called an expansion

of M if M and N have the same domain and agree on the interpretations of

all function symbols and predicate symbols in P. Let us de�ne an extension

of a classical 3-valued structure M to be a 3-valued structure N such that for

every formula �, M(�) �

k

N (�). If P is a set of predicate symbols and M is a

3-valued P-structure, let M

P

denote the structure such that M

P

(p) = M(p)

if p 2 P else M

P

(p) = u. Then the following (trivial) proposition establishes

the connection between expansions and extensions.

Proposition 3 Let M be a 3-valued P-structure and N a 3-valued Q-struc-

ture, with P � Q. N

Q

is an extension of M

P

i� N is an expansion of M.

This shows that expansions and extensions are about the same notion (for in-

stance: Kunen's immediate consequence operator 	 maps each 3-valued struc-

ture to an \extension" of it; besides if M is a 3-valued Q-structure and S a

signing for P � Q, then 2val(M; S)

Q

is an \extension" of M

Q

; etc.).

Immediate consequence operator.

Given an extended program P , we de�ne an operator T

P

which maps each 9-

valued structure to an extension of it. Let A be a 9-valued structure, p a n-ary

predicate and a

1

: : : a

n

2 A. The domain of T

P

(A) equals that of A; T

P

(A) and

A agree on the interpretations of all function symbols. For predicate symbols,

let v = T

P

(A)(p)(a

1

:::a

n

) be de�ned by:

(i) { �

1

(v) = 1 i� there is a clause in P of the form p(�

1

:::�

n

) :� �, with

variables Y

1

: : : Y

j

, and some b

1

: : : b

j

2 A, such that �

1

(A(�)(b

1

:::b

j

)) =

1 and 8i, A(�

i

)(b

1

:::b

j

) = a

i

;

{ �

1

(v) = 0 i� for each clause in P of the form p(�

1

:::�

n

) :� �, with vari-

ables Y

1

: : : Y

j

and every b

1

: : : b

j

2 A, we have either �

1

(A(�)(b

1

:::b

j

)) =

0 or some A(�

i

)(b

1

:::b

j

) 6= a

i

;

{ �

1

(v) = u otherwise.

(ii) { �

2

(v) = 1 i� there is a clause in P of the form :p(�

1

:::�

n

) :� �, with

variables Y

1

: : : Y

j

, and some b

1

: : : b

j

2 A, such that �

1

(A(�)(b

1

:::b

j

)) =

1 and 8i, A(�

i

)(b

1

:::b

j

) = a

i

;

{ �

2

(v) = 0 i� for each clause in P of the form :p(�

1

:::�

n

) :��, with vari-

ables Y

1

: : : Y

j

and every b

1

: : : b

j

2 A, we have either �

1

(A(�)(b

1

:::b

j

)) =

0 or some A(�

i

)(b

1

:::b

j

) 6= a

i

;

{ �

2

(v) = u otherwise.

One veri�es easily that T

P

(A) is indeed an extension of A.

Theorem 4 Let A be a 9-valued structure. T

P

(A) = A i� A j=

9

P

?

: the �xed

points of T

P

are exactly the 9-valued models of P

?

.

Conversion to 4-valued structures.

11

Since T

P

is monotone (w.r.t. the well-founded ordering �

k

induced on 9-valued

structures), it has a �xed point (see [8]), hence P

?

always has a 9-valued model.

More speci�cally, as in the classical case, we would like to know when P

?

has

in fact a 4-valued model. This is given by the condition of call-consistency

introduced in Section 2:

Theorem 5 If P is call-consistent and A j=

9

P

?

, then A has a 4-valued

extension B such that B j=

4

P

?

. As a consequence, if P is call-consistent, then

P

?

has a 4-valued model.

Theorem 6 Suppose P is call-consistent and strict w.r.t. a query �. Then �

is a 4-valued consequence of P

?

i� it is a 9-valued consequence of P

?

.

This means that our extended programs are to Fitting's programs on Belnap's

logic, what programs with negation as failure are to positive programs.

In the next Section, we give proofs of these theorems through a \faithful"

translation from extended programs to normal programs (such a translation

has already been used by Gelfond and Lifschitz in [14].

4.2 REDUCTION TO NORMAL PROGRAMS

Let L be a �xed �rst-order language. We build a new �rst-order language L

:

by adding to L, for each predicate symbol p, a new predicate symbol p

0

.

Let L be a classical literal built on the language L: if L is an atomic formula,

then let L

:

be L; if L = :p(a

1

:::a

n

), then L

:

= p

0

(a

1

:::a

n

). (Note that in any

case, L

:

is an atomic formula built on L

:

.)

Let P be an extended program. P

:

is the classical program obtained by re-

placing each clause L

0

:� L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

by L

:

0

:� L

:

1

; : : : ; L

:

m

,

=L

:

m+1

; : : : ; =L

:

n

. In P

:

, = stands for negation as failure. Again, the notation

= is unusual, but using : could have lent to confusion. Similarly we can de�ne

�

:

for any set � of L-formulas such that negation : occurs only in front of

atomic formulas.

Let A be a 9-valued (L-)structure. The 3-valued (L

:

-)structure A

:

is de�ned

as follows:

(i) the domain of A

:

is A, the domain of A;

(ii) for every n-ary function symbol f , A

:

(f) = A(f);

(iii) for n-ary predicate symbols other than =, we have to distinguish between

two cases: A

:

(p) = �

1

(A(p)) and A

:

(p

0

) = �

2

(A(p)); A

:

(=) is always true

12

(2-valued) identity, i.e. A

:

(=)(a; b) is 1 i� a and b are the same object and 0

otherwise.

Finally, if � is a normal program, 	

�

denotes the immediate consequence op-

erator of Kunen [18] on 3-valued structures, and �

?

denotes Clark's completed

program [5].

Proposition 7 Let A and B be 9-valued (L-)structures and P an extended

program. The following statements hold:

(i) A is 4-valued i� A

:

is 2-valued;

(ii) B is an extension of A i� B

:

is an extension of A

:

;

(iii) P

?

:

= P

:

?

;

(iv) T

P

(A) = A i� 	

P

:

(A

:

) = A

:

;

(v) A j=

9

P

?

i� A

:

j=

3

P

?

:

.

Proof:

(i) and (iii) are clear;

(ii): the main observation is that ^, : and / are monotone w.r.t. the ordering

�

k

, and that ^ and : are monotone w.r.t. �

k

. Now: B is an extension of

A () for every ground formula �, �

1

(A(�)) �

k

�

1

(B(�)) and �

2

(A(�)) �

k

�

2

(B(�)) () for every n-ary predicate symbol p and each a

1

: : : a

n

2 A = B,

�

1

(A(p(a

1

:::a

n

))) �

k

�

1

(B(p(a

1

:::a

n

))) and

�

2

(A(p(a

1

:::a

n

))) �

k

�

2

(B(p(a

1

:::a

n

))) (for ^, : and / are monotone w.r.t.

�

k

) () for every n-ary predicate symbol p and each a

1

: : : a

n

2 A = B,

A

:

(p(a

1

:::a

n

)) �

k

B

:

(p(a

1

:::a

n

)) and A

:

(p

0

(a

1

:::a

n

)) �

k

B

:

(p

0

(a

1

:::a

n

)) ()

for every ground formula �, A

:

(�) �

k

B

:

(�) (for ^ and : are monotone w.r.t.

�

k

) () B

:

is an extension of A

:

;

(iv) follows from the de�nition of T

P

and the remark that

�

2

(T

P

(A)(p)(a

1

:::a

n

)) = �

1

(T

P

(A)(:p)(a

1

:::a

n

));

(v): one can prove easily by induction that for every ground formula � such

that : occurs only in front of atomic formulas, we have A

:

(�

:

) = �

1

(A(�)).

Now, for any completed de�nition 8X

1

� � � 8X

n

(p(X

1

; :::;X

n

) $ in P

?

, we

have: A j=

9

p $ () �

1

(A(p)) = �

1

(A()) () A

:

(p) = A

:

(

:

) (thanks

to the above remark) () A

:

j=

3

p $

:

; and for any completed de�ni-

tion 8X

1

� � � 8X

n

(:p(X

1

; :::;X

n

) $ in P

?

, we have: A j=

9

:p $ ()

�

1

(A(:p)) = �

1

(A()) () A

:

(p

0

) = A

:

(

:

) (thanks to the above remark)

() A

:

j=

3

p

0

$

:

. 2

Proof of Theorem 4: it follows from Proposition 7 (iii, iv, v) and [18]

(Lemma 3.1). 2

13

Proof of Theorem 5: it is an easy consequence of Proposition 7 (i, ii, v) and

[18] (Theorem 3.4 and Corollary 3.5: namely if � is a call-consistent normal

program and M is a 3-valued structure such that M j=

3

�

?

, then M has a

2-valued extension N such that N j=

2

�

?

). 2

Proof of Theorem 6. It follows directly from Proposition 7 (i, iii, v) and

[18] (Theorem 3.6): P

?

`

9

� i� P

?

:

`

3

�

:

by Proposition 7 (v), i� P

:

?

`

3

�

:

by Proposition 7 (iii). Besides P

:

is call-consistent and strict w.r.t. �

:

in the

sense of Kunen, so by Theorem 3.6 [18], P

:

?

`

3

�

:

i� P

:

?

`

2

�

:

i� P

?

:

`

2

�

:

,

i.e. for all 2-valued B, B j=

2

P

?

:

implies B j=

2

�

:

, i.e. (by Proposition 7 (i))

for all 4-valued A, A

:

j=

2

P

?

:

implies A

:

j=

2

�

:

. By Proposition 7 (v) this is

equivalent to P

?

`

4

�. 2

Operational Semantics.

The reduction to normal programs allows to consider that literals A and :A

have a \separate life". Hence SLDNF resolution [18] (resp. constructive nega-

tion [19,7]) provide extended programs with correct (resp. complete) opera-

tional semantics, in the following way: the answer to a given goal G in an

extended logic program is obtained by combining the answers to G and G

:

(in the corresponding normal program); each answer sets the value of one

component v

1

or v

2

of the truth value (v

1

; v

2

) of G: 'yes' is 1, 'no' is 0, no

answer means u.

Example.

The rules in the example of Section 2 can be encoded in the following extended

program P :

eligible(X) :� highGPA(X):

eligible(X) :�minority(X); fairGPA(X):

: eligible(X) :� : fairGPA(X):

interview(X) :� = eligible(X); = : eligible(X):

with the following facts:

fairGPA(ann):

: highGPA(ann):

Our Kunen-style semantics (weaker than the answer sets' semantics) su�ces

to deduce the expected assertion interview(ann), i.e. interview(ann) is a 9-

valued consequence of the completed program. Note that by Theorem 6, the

4-valued consequences and 9-valued consequences of P

?

are identical, since P

is call-consistent and strict w.r.t. interview(ann).

14

5 CONNECTION WITH THE ANSWER SETS' SEMANTICS

In this Section we de�ne answer sets for our extended programs, which are

obtained from those of Gelfond and Lifschitz's by dropping their rule which

globalizes contradictions (saying that a program which implies both A and :A

implies anything). We prove that our answer sets for a given program P are 4-

valued models of P

?

, if explicit negation and negation as failure are interpreted

by the connectives : and /, respectively, i.e. that the logic underlying logic

programming with classical negation and negation as failure is indeed Belnap's

logic.

Let P be a program with no negation by failure: de�ne �(P) as the least

set S of ground classical literals such that for every ground rule instance

L :� L

1

; : : : ; L

m

in P , L

1

; : : : ; L

m

2 S =) L 2 S.

Let P be an extended program (with negation by failure) and S a set of

ground classical literals: de�ne P

S

as the program (with no negation by failure)

obtained from P by:

{ removing every ground rule instance L :� L

1

; : : : ; L

m

; =L

m+1

; : : : ; =L

n

such

that for some i, m+ 1 � i � n, L

i

2 S;

{ removing all slashed literals from all other ground rules instances.

Now de�ne an answer set of an extended program P to be a solution S to the

equation S = �(P

S

).

Finally we de�ne a translation m between sets of ground classical literals

and 4-valued structures: if S is a set of ground classical literals, m(S) is the

structure whose domain is the Herbrand universe, that interprets terms by

themselves and such that, if A is any ground atomic formula:

{ if A 2 S, then �

1

(m(S)(A)) = 1,

{ if :A 2 S, then �

2

(m(S)(A)) = 1,

{ if A =2 S, then �

1

(m(S)(A)) = 0,

{ if :A =2 S, then �

2

(m(S)(A)) = 0.

Theorem 8 If S is an answer set of an extended program P , then m(S) is a

4-valued Herbrand model of P

?

.

Proof: let S be an answer set of P , i.e. S = �(P

S

), a

1

: : : a

n

be Herbrand

terms, and 8X

1

� � � 8X

n

(L(X

1

; :::;X

n

) $ be any completed de�nition in

P

?

. We have to prove that �

1

(m(S)()) = �

1

(m(S)(L)(a

1

; :::; a

n

)).

{ If �

1

(m(S)(L)(a

1

; :::; a

n

)) = 1 then L(a

1

; :::; a

n

) 2 S; because of the def-

inition of �, there must be a ground rule instance R

S

: L(a

1

; :::; a

n

) :

15

� L

1

; : : : ; L

k

in P

S

such that L

1

; : : : ; L

k

2 S. This rule comes from a rule

R = (L :�L

1

; : : : ; L

k

; =L

k+1

; : : : =L

n

) in P , and therefore L

k+1

; : : : ; L

n

=2 S.

Thus �

1

(m(S)(L

1

)) = � � � = �

1

(m(S)(L

k

)) = �

1

(m(S)(=L

k+1

)) = � � � =

�

1

(m(S)(=L

n

)) = 1, and = �_9(L

1

^� � � ^L

k

^=L

k+1

^� � � ^=L

n

). Hence

�

1

(m(S)()) = 1.

{ If �

1

(m(S)(L)(a

1

; :::; a

n

)) = 0 then L(a

1

; :::; a

n

) =2 S; for all ground rule

instance R

S

in P

S

of the form (L(a

1

; :::; a

n

) :� L

1

; : : : ; L

k

), one of the

L

1

; : : : ; L

k

does not belong to S, say L

i

, so that �

1

(m(S)(L

i

)) = 0 and

hence �

1

(m(S)()) = 0.

{ �

1

(m(S)(L)(a

1

; :::; a

n

)) = u never happens. 2

Thus our answer sets can be identi�ed with models in Belnap's logic. Besides

the well-known results about answer sets' semantics for normal programs ex-

tend easily to our setting; we just sketch 3 theorems (for the de�nitions see

Section 2):

Theorem 9 ([6]) If P is a call-consistent extended program, then P has an

answer set.

Theorem 10 ([12]) If P is a locally strati�ed extended program, then P has

exactly one answer set.

Theorem 11 ([6]) If P is a p.o.c. extended program, then the answer sets of

P coincide with the 4-valued Herbrand models of P

?

.

6 CONCLUSION

The contribution of this paper is twofold:

(i) From the viewpoint of Fitting's programs on bilattices, we extend the

programs on (the bilattice of) Belnap's logic by the addition of a non-

monotonic operator /, and we show that this notion of extended programs

corresponds to the one of Gelfond and Lifschitz.

(ii) From the viewpoint of the extended programs of Gelfond and Lifschitz,

we provide them with a logical semantics in the style of Kunen, and we

show that the underlying logic is precisely Belnap's logic.

References

[1] J.J. Alferes and L.M. Pereira, On Logic Program Semantics with Two Kinds

of Negation, in: Proceedings ILPS'92 Joint International Conference and

Symposium on Logic Programming (1992).

16

[2] A.R. Anderson, N.D. Belnap Jr. and J.M. Dunn, Entailment: the Logic of

Relevance and Necessity. (Princeton University Press, vol.2 p.506-541, 1992).

[3] K.R. Apt, H.A. Blair and A. Walker, Towards a Theory of Declarative

Knowledge, in: J. Minker, ed., Foundations of Deductive Databases and Logic

Programming (Morgan Kaufmann, 1988).

[4] N.D. Belnap Jr., A Useful Four-Valued Logic, in: J.M. Dunn and G. Epstein,

eds., Modern Uses of Multiple-Valued Logic (Reidel, 1977).

[5] K.L. Clark, Negation as Failure, in: H. Gallaire and J. Minker, eds., Logic and

Databases (Plenum, New York, 1978).

[6] F. Fages, Consistency of Clark's Completion and Existence of Stable Models,

Technical Report 90-15, Ecole Normale Sup�erieure, Paris (1990), and Methods

of Logic in Computer Science 1 (1994).

[7] F. Fages, Constructive Negation by Pruning, to appear in J. of Logic

Programming (1996).

[8] M. Fitting, A Kripke-Kleene Semantics for Logic Programs, J. of Logic

Programming 2 (1985).

[9] M. Fitting, Bilattices and the Theory of Truth, J. of Philosophical Logic 18

(1989).

[10] M. Fitting, Bilattices and the Semantics of Logic Programming, J. of Logic

Programming 11 (1991).

[11] M. Fitting, The Family of Stable Models, J. of Logic Programming 17 (1993).

[12] M. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic

Programming, in: Proceedings ICLP'88, 5

th

International Conference on Logic

Programming (1988).

[13] M. Gelfond and V. Lifschitz, Logic Programs with Classical Negation, in:

Proceedings ICLP'90, 7

th

International Conference on Logic Programming

(1990).

[14] M. Gelfond and V. Lifschitz, Classical Negation in Logic Programs and

Disjunctive Databases, New Generation Computing 9 (1991).

[15] M. Gelfond and V. Lifschitz, Representing Actions in Extended Logic Programs,

in: Proc. ILPS'92 Joint International Conference and Symposium on Logic

Programming (1992).

[16] M. Ginsberg, Multivalued Logics: a Uniform Approach to Reasoning in Arti�cial

Intelligence, Computational Intelligence 4 (1988).

[17] K. Kunen, Negation in Logic Programming, J. of Logic Programming 4 (1987).

[18] K. Kunen, Signed Data Dependences in Logic Programs, J. of Logic

Programming 7 (1989).

17

[19] P. Stuckey, Constructive Negation for Constraint Logic Programming, in:

Proceedings LICS'91 International Conference on Logic in Computer Science

(1991).

[20] M.H. Van Emden and R. Kowalski, The Semantics of Predicate Logic as a

Programming Language, in: J. of the Association for Computing Machinery 23

(1976).

[21] G. Wagner, A Database Needs Two Kinds of Negation, in: B. Thalheim, J.

Demetrovics and H.-D. Gerhardt, eds., MFDBS'91 (Springer, 1991).

18

