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Abstrat. We onsider a general presriptive type system with para-

metri polymorphism and subtyping for logi programs. The property of

subjet redution expresses the onsisteny of the type system w.r.t. the

exeution model: if a program is \well-typed", then all derivations start-

ing in a \well-typed" goal are again \well-typed". It is well-established

that without subtyping, this property is readily obtained for logi pro-

grams w.r.t. their standard (untyped) exeution model. Here we give

syntati onditions that ensure subjet redution also in the presene

of general subtyping relations between type onstrutors. The idea is to

onsider logi programs with a �xed dataow, given by modes.

1 Introdution

Presriptive types are used in logi and funtional programming to restrit the

underlying syntax so that only \meaningful" expressions are allowed. This allows

for many programming errors to be deteted by the ompiler. G�odel [7℄ and

Merury [15℄ are two implemented typed logi programming languages.

A natural stability property one desires for a type system is that it is on-

sistent with the exeution model: one a program has passed the ompiler, it

is guaranteed that \well-typed" on�gurations will only generate \well-typed"

on�gurations at runtime. Adopting the terminology from the theory of the �-

alulus [17℄, this property of a typed program is alled subjet redution. For

the simply typed �-alulus, subjet redution states that the type of a �-term

is invariant under redution. This translates in a well-de�ned sense to funtional

and logi programming.

Semantially, a type represents a set of terms/expressions [8, 9℄. Now subtyp-

ing makes type systems more expressive and exible in that it allows to express

inlusions among these sets. For example, if we have types int and real , we might

want to delare int � real , i.e., the set of integers is a subset of the set of reals.

More generally, subtype relations suh as list(u) < term make it possible to type

Prolog meta-programming prediates [5℄, as shown in Ex. 1.4 below and Se. 6.

In funtional programming, a type system that inludes subtyping would

then state that wherever an expression of type � is expeted as an argument,

any expression having a type �

0

� � may our. The following example explains

this informally, using an ad ho syntax.

?

A long version of this paper, ontaining all proofs, is available in [14℄.



Example 1.1. Assume two funtions sqrt : real ! real and fat : int ! int

whih ompute the square root and fatorial, respetively. Then sqrt (fat 3) is

a legal expression, sine fat 3 is of type int and may therefore be used as an

argument to sqrt, beause sqrt expets an argument of type real , and int < real .

Subjet redution in funtional programming ruially relies on the fat that

there is a lear notion of dataow. It is always the arguments (the \input") of a

funtion that may be smaller than expeted, whereas the result (the \output")

may be greater than expeted. This is best illustrated by a ounterexample,

whih is obtained by introduing referene types.

Example 1.2. Suppose we have a funtion f : real ref ! real de�ned by

let f(x) = x := 3:14; return x. So f takes a referene (pointer) to a real as

argument, assigns the value 3:14 to this real, and also return 3:14. Even though

int < real , this funtion annot be applied to an int ref , sine the value 3:14

annot be assigned to an integer.

In the example, the variable x is used both for input and output, and hene

there is no lear diretion of dataow. While this problem is marginal in fun-

tional programming, it is the main problem for subjet redution in logi pro-

gramming with subtypes.

Subjet redution for logi programming means that resolving a \well-typed"

goal with a \well-typed" lause will always result in a \well-typed" goal. It holds

for parametri polymorphi type systems without subtyping [9, 10℄.
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Example 1.3. In analogy to Ex. 1.1, suppose Sqrt=2 and Fat=2 are prediates

of delared type (Real; Real) and (Int; Int), respetively. Consider the program

Fat(3,6).

Sqrt(6,2.45).

and the derivations

Fat(3,x), Sqrt(x,y) ; Sqrt(6,y) ; 2

Sqrt(6,x), Fat(x,y) ; Fat(2.45,y)

In the �rst derivation, all arguments have a type that is less than or equal to the

delared type, and so we have subjet redution. In the seond derivation, the

argument 2:45 to Fat has type Real, whih is greater than the delared type.

The atom Fat(2:45; y) is illegal, and so we do not have subjet redution.

Here we address this problem by giving a �xed diretion of dataow to logi

programs, i.e., by introduing modes [1℄ and replaing uni�ation with double

mathing [2℄, so that the dataow is always from the input to the output positions

in an atom. We impose a ondition on the terms in the output positions, or more

preisely, on the types of the variables ourring in these terms: eah variable

must have exatly the delared (expeted) type of the position where it ours.

In Ex. 1.3, let the �rst argument of eah prediate be input and the seond

be output. In both derivations, x has type Int. For Fat(3; x), this is exatly

the delared type, and so the ondition is ful�lled for the �rst derivation. For

Sqrt(6; x), the delared type is Real, and so the ondition is violated.

1

Note however that the �rst formulation of subjet redution [10℄ was inorret [8℄.



The ontribution of this paper is a statement that programs that are typed

aording to a type system with subtyping, and respet ertain onditions on-

erning the modes, enjoy the subjet redution property, i.e., the type system

is onsistent w.r.t. the (untyped) exeution model. This means that e�etively

the types an be ignored at runtime, whih has traditionally been onsidered as

desirable, although there are also reasons for keeping the types during exeu-

tion [11℄. In Se. 6, we disuss the onditions on programs.

There are few works on presriptive type systems for logi programs with sub-

typing [3{6, 8℄. Hill and Topor [8℄ give a result on subjet redution for systems

without subtyping, and study general type systems with subtyping. However

their results on the existene of prinipal typings turned out to be wrong [3℄.

Beierle [3℄ shows the existene of prinipal typings for systems with subtype re-

lations between onstant types, and provides type inferene algorithms. Beierle

and also Hanus [6℄ do not laim subjet redution for their systems. Fages and

Paltrinieri [5℄ have shown a weak form of subjet redution for onstraint logi

programs with subtyping, where equality onstraints replae substitutions in the

exeution model.

The idea of introduing modes to ensure subjet redution for logi programs

was proposed previously by Dietrih and Hagl [4℄. However they do not study the

deidability of the onditions they impose on the subtyping relation. Furthermore

sine eah result type must be transparent (a ondition we will de�ne later),

subtype relations between type onstrutors of di�erent arities are forbidden.

Example 1.4. Assume types Int, String and List(u) de�ned as usual, and a

type Term that ontains all terms (so all types are subtypes of Term). Moreover,

assume Append as usual with delared type (List(u); List(u); List(u)), and a

prediate Funtor with delared type (Term; String), whih gives the top fun-

tor of a term. In our formalism, we ould show subjet redution for the query

Append([1℄; [℄; x); Funtor(x; y), whereas this is not possible in [4℄ beause the

subtype relation between List(Int) and Term annot be expressed.

The plan of the paper is as follows. Setion 2 mainly introdues the type sys-

tem. In Se. 3, we show how expressions an be typed assigning di�erent types

to the variables, and we introdue ordered substitutions, whih are substitutions

preserving types. In Se. 4, we show under whih onditions substitutions ob-

tained by uni�ation are indeed ordered. In Se. 5, we show how these onditions

on uni�ed terms an be translated into onditions on programs and derivations.

2 The Type System

We use the type system of [5℄. First we reall some basi onepts [1℄. When we

refer to a lause in a program, we mean a opy of this lause whose variables are

renamed apart from any other variables in the ontext. A query is a sequene

of atoms. A query Q

0

is a resolvent of a query Q and a lause h  B if Q =

a

1

; : : : ; a

m

, Q

0

= (a

1

; : : : ; a

k�1

; B; a

k+1

; : : : ; a

m

)�, and h and a

k

are uni�able

with MGU �. Resolution steps and derivations are de�ned in the usual way.



Table 1. The subtyping order on types

(Par) u � u u is a parameter

(Constr)

�

�(1)

��

0

1

::: �

�(m

0

)

��

0

m

0

K(�

1

;:::;�

m

)�K

0

(�

0

1

;:::;�

0

m

0

)

K � K

0

, � = �

K;K

0

.

2.1 Type expressions

The set of types T is given by the term struture based on a �nite set of on-

strutors K, where with eah K 2 K an arity m � 0 is assoiated (by writing

K=m), and a denumerable set U of parameters. A at type is a type of the

form K(u

1

; : : : ; u

m

), where K 2 K and the u

i

are distint parameters. We write

� [�℄ to denote that the type � stritly ontains the type � as a subexpression.

A type substitution� is a mapping from parameters to types. The domain

of � is denoted by dom(�), the parameters in its range by ran(�). The set of

parameters in a syntati objet o is denoted by pars(o).

We assume an order� on type onstrutors suh that:K=m � K

0

=m

0

implies

m � m

0

; and, for eahK 2 K, the set fK

0

j K � K

0

g has a maximum. Moreover,

we assoiate with eah pair K=m � K

0

=m

0

an injetion �

K;K

0

: f1; : : : ;m

0

g !

f1; : : : ;mg suh that �

K;K

00

= �

K;K

0

Æ �

K

0

;K

00

whenever K � K

0

� K

00

. This

order is extended to the subtyping order on types, denoted by �, as the least

relation satisfying the rules in Table 1.

Proposition 2.1. If � � � then �� � �� for any type substitution �.

Proposition 2.2. For eah type �, the set f� j � � �g has a maximum, whih

is denoted by Max(�).

For Prop. 2.2, it is ruial that K=m � K

0

=m

0

implies m � m

0

. For example,

if we allowed for Emptylist=0 � List=1, then we would have Emptylist �

List(�) for all � , and so Prop. 2.2 would not hold. Note that the possibility of

\forgetting" type parameters, as in List=1 � Anylist=0, may provide solutions

to inequalities of the form List(u) � u, e.g. u = Anylist. However, we have:

Proposition 2.3. An inequality of the form u � � [u℄ has no solution. An in-

equality of the form � [u℄ � u has no solution if u 2 vars(Max(�)).

2.2 Typed programs

We assume a denumerable set V of variables. The set of variables in a syntati

objet o is denoted by vars(o). We assume a �nite set F (resp. P) of funtion

(resp. prediate) symbols, eah with an arity and a delared type assoiated

with it, suh that: for eah f 2 F , the delared type has the form (�

1

; : : : ; �

n

; �),

where n is the arity of f , (�

1

; : : : ; �

n

) 2 T

n

, � is a at type and satis�es the trans-

pareny ondition [8℄: pars(�

1

; : : : ; �

n

) � pars(�); for eah p 2 P , the delared

type has the form (�

1

; : : : ; �

n

), where n is the arity of p and (�

1

; : : : ; �

n

) 2 T

n

.



Table 2. The type system.

(Var) fx : �; : : :g ` x : �

(Fun)

U`t

i

:�

i

�

i

��

i

� (i2f1;:::;ng)

U`f

�

1

:::�

n

!�

(t

1

;:::;t

n

):��

� is a type substitution

(Atom)

U`t

i

:�

i

�

i

��

i

� (i2f1;:::;ng)

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Atom

� is a type substitution

(Headatom)

U`t

i

:�

i

�

i

��

i

(i2f1;:::;ng)

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Headatom

(Query)

U`A

1

Atom ::: U`A

n

Atom

U`A

1

;:::;A

n

Query

(Clause)

U`Q Query U`A Headatom

U`A Q Clause

The delared types are indiated by writing f

�

1

:::�

n

!�

and p

�

1

:::�

n

. We assume

that there is a speial prediate symbol =

u;u

where u 2 U .

We assume that K, F , and P are �xed by delarations in a typed program,

where the syntatial details are insigni�ant for our results. In examples we

loosely follow G�odel syntax [7℄.

A variable typing is a mapping from a �nite subset of V to T , written as

fx

1

: �

1

; : : : ; x

n

: �

n

g. The restrition of a variable typing U to the variables in

o is denoted as U�

o

. The type system, whih de�nes terms, atoms et. relative

to a variable typing U , onsists of the rules shown in Table 2.

3 The Subtype and Instantiation Hierarhies

3.1 Modifying Variable Typings

We now show that if we an derive that some objet is in the typed language

using a variable typing U , then we an always modify U in three ways: extending

its domain, instantiating the types, and making the types smaller.

De�nition 3.1. Let U , U

0

be variable typings. We say that U is smaller or

equal U

0

, denoted U � U

0

, if U = fx

1

: �

1

; : : : ; x

n

: �

n

g, U

0

= fx

1

: �

0

1

; : : : ; x

n

:

�

0

n

g, and for all i 2 f1; : : : ; ng, we have �

i

� �

0

i

. We write U

0

�� U if there exists

a variable typing U

00

suh that U

0

� U

00

and U

00

� U .

Lemma 3.1. Let U , U

0

be variable typings and � a type substitution suh

that U

0

�� U�. If U ` t : �, then U

0

` t : �

0

where �

0

� ��. Moreover, if

U ` A Atom then U

0

` A Atom, and if U ` Q Query then U

0

` Q Query.

3.2 Typed Substitutions

Typed substitutions are a fundamental onept for typed logi programs.



De�nition 3.2. If U ` x

1

= t

1

; : : : ; x

n

= t

n

Query where x

1

; : : : ; x

n

are dis-

tint variables and for eah i 2 f1; : : : ; ng, t

i

is a term distint from x

i

, then

(fx

1

=t

1

; : : : ; x

n

=t

n

g; U) is a typed (term) substitution.

To show that applying a typed substitution preserves \well-typedness" for

systems with subtyping, we need a further ondition. Given a typed substitution

(�; U), the type assigned to a variable x by U must be suÆiently big, so that it

is ompatible with the type of the term replaed for x by �.

Example 3.1. Consider again Ex. 1.3. Taking U = fx : Int; y : Intg, we have

U ` x : Int, U ` 2:45 : Real, and hene U ` x = 2:45 Atom. So (fx=2:45g; U) is

a typed substitution. Now U ` Fat(x; y) Atom, but U 6` Fat(2:45; y) Atom.

The type of x is too small to aommodate for instantiation to 2:45.

De�nition 3.3. A typed (term) substitution (fx

1

=r

1

; : : : ; x

n

=r

n

g; U) is an or-

dered substitution if, for eah i 2 f1; : : : ; ng, where x

i

: �

i

2 U , there exists

�

i

suh that U ` r

i

: �

i

and �

i

� �

i

.

We now show that expressions stay \well-typed" when ordered substitutions

are applied [8, Lemma 1.4.2℄.

Lemma 3.2. Let (�; U) be an ordered substitution. If U ` t : � then U ` t� : �

0

for some �

0

� �. Moreover, if U ` A Atom then U ` A� Atom, and likewise for

queries and lauses.

4 Conditions for Ensuring Ordered Substitutions

In this setion, we show under whih onditions it an be guaranteed that the

substitutions applied in resolution steps are ordered substitutions.

4.1 Type Inequality Systems

The substitution of a resolution step is obtained by unifying two terms, say t

1

and t

2

. In order for the substitution to be typed, it is neessary that we an

derive U ` t

1

= t

2

Atom for some U . We will show that if U is, in a ertain

sense, maximal, then it is guaranteed that the typed substitution is ordered.

We �rst formalise paths leading to subterms of a term.

De�nition 4.1. A term t has the subterm t in position �. If t = f(t

1

; : : : ; t

n

)

and t

i

has subterm s in position �, then t has subterm s in position i:�.

Example 4.1. The term F(G(C); H(C)) has subterm C in position 1:1, but also in

position 2:1. The position 2:1:1 is unde�ned for this term.

Let us write ` t :� � if there exist U and �

0

suh that U ` t : �

0

and �

0

� �.

To derive U ` t

1

= t

2

Atom, learly the last step has the form

U ` t

1

: �

1

U ` t

2

: �

2

�

1

� u� �

2

� u�

U ` t

1

=

u;u

t

2

Atom
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u
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u

2:1

Nil

List(u

2:1:2

)

List(u

2:1

)

�

�

�

�

P

P

P

P

Cons

List(u

2:1

)

u

2

Nil

List(u

2:2

)

List(u

2

)

�

�

�

�

P

P

P

P

x

u

x

u

�

Cons

List(u

2

)

List(u

�

)

�

�

�

�

P

P

P

P

Cons

List(u

�

)

Anylist

Fig. 1. The term [x; [y℄℄ and assoiated inequalities

So we use an instane (u; u)� of the delared type of the equality prediate,

and the types of t

1

and t

2

are both less then or equal to u�. This motivates the

following question: Given a term t suh that ` t :� �, what are the maximal

types of subterm positions of t with respet to �?

Example 4.2. Let List=1; Anylist=0 2 K where List(�) � Anylist for all � ,

and Nil

!List(u)

; Cons

u;List(u)!List(u)

2 F . Consider the term [x; [y℄℄ (in usual

list notation) depited in Fig. 1, and let � = Anylist. Eah funtor in [x; [y℄℄ is

introdued using Rule (Fun). E.g., any type of Nil in position 2:1:2 is neessarily

an instane of List(u

2:1:2

), its delared type.

2

To derive that Cons(y; Nil) is a

typed term, this instane must be smaller than some instane of the seond

delared argument type of Cons in position 2:1, i.e., List(u

2:1

).

So in order to derive that [x; [y℄℄ is a term of a type smaller than Anylist,

we need an instantiation of the parameters suh that for eah box (position),

the type in the lower subbox is smaller than the type of the upper subbox.

We see that in order for ` t :� � to hold, a solution to a ertain type

inequality system (set of inequalities between types) must exist.

De�nition 4.2. Let t be a term and � a type suh that ` t :� �. For eah

position � where t has a non-variable subterm, we denote the funtion in this

position by f

�

�

�

1

;:::;�

�

n

�

!�

�

(assuming that the parameters in �

�

1

; : : : ; �

�

n

�

; �

�

are

fresh, say by indexing them with �). For eah variable x 2 vars(t), we introdue

a parameter u

x

(so u

x

62 pars(�)). The type inequality system of t and � is

I(t; �) = f�

�

� �g [ f�

�:i

� �

�

i

j Position �:i in t is non-variableg [

fu

x

� �

�

i

j Position �:i in t is variable xg:

A solution of I(t; �) is a type substitution � suh that dom(�) \ pars(�) = ;

and for eah � � �

0

2 I(t; �), the inequality �� � �

0

� holds. A solution � to

2

We use the positions as supersripts to parameters in order to obtain fresh opies.



I(t; �) is prinipal if for every solution

~

� for I(t; �), there exists a �

0

suh that

for eah � � �

0

2 I(t; �), we have �

~

� � ���

0

and �

0

~

� � �

0

��

0

.

Proposition 4.1. Let t be a term and � a type. If U ` t :� � for some variable

typing U , then there exists a solution � for I(t; �) (alled the solution for

I(t; �) orresponding to U) suh that for eah subterm t

0

in position � in t,

we have U ` t

0

: �

�

� if t

0

62 V , and U ` t

0

: u

t

0

� if t

0

2 V .

In the next subsetion, we present an algorithm, based on [5℄, whih om-

putes a prinipal solution to a type inequality system, provided t is linear. In

Subse. 4.3, our interest in prinipal solutions will beome lear.

4.2 Computing a Prinipal Solution

The algorithm transforms the inequality system, thereby omputing bindings to

parameters whih onstitute the solution. It is onvenient to onsider system of

both inequalities, and equations of the form u = � . The inequalities represent

the urrent type inequality system, and the equalities represent the substitution

aumulated so far. We use 5 for � or =.

De�nition 4.3. A system is left-linear if eah parameter ours at most one

on the left hand side of an equation/inequality. A system is ayli if it does

not have a subset f�

1

5 �

1

; :::; �

n

5 �

n

g with pars(�

i

) \ pars(�

i+1

) 6= ; for all

1 � i � n� 1, and pars(�

n

) \ pars(�

1

) 6= ;.

Proposition 4.2. If t is a linear term, then any inequality system I(t; �) is

ayli and left-linear.

By looking at Ex. 4.2, it should be intuitively lear that assuming linearity

of t is ruial for the above proposition.

We now give the algorithm. A solved form is a system I ontaining only

equations of the form I = fu

1

= �

1

; :::; u

n

= �

n

g where the parameters u

i

are all

di�erent and have no other ourrene in I .

De�nition 4.4. Given a type inequality system I(t; �), where t is linear, the

type inequality algorithm applies the following simpli�ation rules:

(1) fK(�

1

; :::; �

m

) � K

0

(�

0

1

; :::; �

0

m

0

)g [ I �! f�

�(i)

� �

0

i

g

i=1;::;m

0

[ I

if K � K

0

and � = �

K;K

0

(2) fu � ug [ I �! I

(3) fu � �g [ I �! fu = �g [ I [u=� ℄

if � 6= u, u 62 vars(�).

(4) f� � ug [ I �! fu =Max(�)g [ I [u=Max(�)℄

if � 62 V , u 62 vars(Max(�)) and u 62 vars(l) for any l � r 2 �.

Intuitively, left-linearity of I(t; �) is ruial beause it renders the binding of

a parameter (point (3)) unique.

Proposition 4.3. Given a type inequality system I(t; �), where t is linear, the

type inequality algorithm terminates with either a solved form, in whih ase

the assoiated substitution is a prinipal solution, or a non-solved form, in whih

ase the system has no solution.



4.3 Prinipal Variable Typings

The existene of a prinipal solution � of a type inequality system I(t; �) and

Prop. 4.1 motivate de�ning the variable typing U suh that � is exatly the

solution of I(t; �) orresponding to U .

De�nition 4.5. Let ` t :� �, and � be a prinipal solution of I(t; �). A

variable typing U is prinipal for t and � if U � fx : u

x

� j x 2 vars(t)g.

By the de�nition of a prinipal solution of I(t; �) and Prop. 4.1, if U is a

prinipal variable typing for t and �, then for any U

0

suh that U

0

(x) > U(x)

for some x 2 vars(t), we have U

0

6` t :� �.

The following key lemma states onditions under whih a substitution ob-

tained by unifying two terms is indeed ordered.

Lemma 4.4. Let s and t be terms, s linear, suh that U ` s :� �, U ` t :� �,

and there exists a substitution � suh that s� = t. Suppose U is prinipal for s

and �. Then there exists a type substitution � suh that for U

0

= U��

vars(s)

[U�

Vnvars(s)

, we have that (�; U

0

) is an ordered substitution.

Example 4.3. Consider the term vetors (sine Lemma 4.4 generalises in the

obvious way to term vetors) s = (3; x) and t = (3; 6), let � = (Int; Int) and

U

s

= fx : Intg, U

t

= ; (see Ex. 1.3). Note that U

s

is prinipal for s and �, and

so (fx=6g; U

s

[ U

t

) is an ordered substitution (� is empty).

In ontrast, let s = (6; x) and t = (6; 2:45), let � = (Real; Real) and U

s

= fx :

Intg, U

t

= ;. Then U

s

is not prinipal for s and � (the prinipal variable typing

would be fx=Realg), and indeed, there exists no � suh that (fx=2:45g; U

s

�[U

t

)

is an ordered substitution.

5 Niely Typed Programs

So far we have seen that mathing, linearity, and prinipal variable typings are

ruial to ensure that uni�ation yields ordered substitutions. Note that those

results generalise in the obvious way from terms to term vetors. We now de�ne

three orresponding onditions on programs and the exeution model.

First, we de�ne modes [1℄. For p=n 2 P , a mode is an atom p(m

1

; : : : ;m

n

),

wherem

i

2 fI ;Og for i 2 f1; : : : ; ng. Positions with I (resp. O) are alled input

(resp. output) positions of p. We assume that a mode is assoiated with eah

p 2 P . The notation p(�s;

�

t) means that �s (resp.

�

t) is the vetor of terms �lling

the input (resp. output) positions of p(�s;

�

t). Moded uni�ation is a speial ase

of double mathing [2℄.

De�nition 5.1. Consider a resolution step where p(�s;

�

t) is the seleted atom

and p( �w; �v) is the renamed apart lause head.The equation p(�s;

�

t) = p( �w; �v) is

solvable by moded uni�ation if there exist substitutions �

1

, �

2

suh that

�w�

1

= �s and vars(

�

t�

1

) \ vars(�v�

1

) = ; and

�

t�

1

�

2

= �v�

1

. A derivation where all

uni�ations are solvable by moded uni�ation is a moded derivation.



De�nition 5.2. A query Q = p

1

(�s

1

;

�

t

1

); : : : ; p

n

(�s

n

;

�

t

n

) is niely moded if

�

t

1

; : : : ;

�

t

n

is a linear vetor of terms and for all i 2 f1; : : : ; ng

vars(�s

i

) \

n

[

j=i

vars(

�

t

j

) = ;: (1)

The lause C = p(

�

t

0

; �s

n+1

) Q is niely moded if Q is niely moded and

vars(

�

t

0

) \

n

[

j=1

vars(

�

t

j

) = ;: (2)

An atom p(�s;

�

t) is input-linear if �s is linear, output-linear if

�

t is linear.

De�nition 5.3. Let C = p

��

0

;��

n+1

(

�

t

0

; �s

n+1

)  p

1

��

1

;��

1

(�s

1

;

�

t

1

); : : : ; p

n

��

n

;��

n

(�s

n

;

�

t

n

)

be a lause. If C is niely moded,

�

t

0

is input-linear, and there exists a variable

typing U suh that U ` C Clause , and for eah i 2 f0; : : : ; ng, U is prinipal for

�

t

i

and ��

0

i

, where ��

0

i

is the instane of ��

i

used for deriving U ` C Clause , then

we say that C is niely typed. A query U

Q

: Q is niely typed if the lause

Go Q is niely typed.

We an now state the main result.

Theorem 5.1. Let C and Q be a niely typed lause and query. If Q

0

is a

resolvent of C and Q where the uni�ation of the seleted atom and the lause

head is solvable by moded uni�ation, then Q

0

is niely typed.

Example 5.1. Consider again Ex. 1.3. The program is niely typed, where the

delared types are given in that example, and the �rst position of eah prediate

is input, and the seond output. Both queries are niely moded. The �rst query is

also niely typed, whereas the seond is not (see also Ex. 4.3). For the �rst query,

we have subjet redution, for the seond we do not have subjet redution.

6 Disussion

In this paper, we have proposed riteria for ensuring subjet redution for typed

logi programs with subtyping under the untyped exeution model. Our starting

point was a omparison between funtional and logi programming: In funtional

programs, there is a lear notion of dataow, whereas in logi programming,

there is no suh notion a priori, and arguments an serve as input arguments

and output arguments. This di�erene is the soure of the diÆulty of ensuring

subjet redution for logi programs.

It is instrutive to divide the numerous onditions we impose into four lasses:

(1) \basi" type onditions on the program (Se. 2), (2) onditions on the ex-

eution model (Def. 5.1), (3) mode onditions on the program (Def. 5.2), (4)

\additional" type onditions on the program (Def. 5.3).

Conerning (1), our notion of subtyping deserves disussion. Approahes dif-

fer with respet to onditions on the arities of type onstrutors for whih there is



a subtype relation. Beierle [3℄ assumes that the (onstrutor) order is only de�ned

for type onstants, i.e. onstrutors of arity 0. Thus we ould have Int � Real,

and so by extension List(Int) � List(Real), but not List(Int) � Tree(Real).

Many authors assume that only onstrutors of the same arity are omparable.

Thus we ould have List(Int) � Tree(Real), but not List(Int) � Anylist.

We assume, as [5℄, that if K=m � K

0

=m

0

, then m � m

0

. We think that this

hoie is ruial for the existene of prinipal types.

Stroetmann and Gla� [16℄ argue that omparisons between onstrutors of

arbitrary arity should be allowed in priniple. Their formalism is suh that the

subtype relation does not automatially orrespond to a subset relation. Never-

theless, the formalism heavily relies on suh a orrespondene, although it is not

said how it an be deided. We refer to [14℄ for more details.

Tehnially, what is ruial for subjet redution is that substitutions are

ordered: eah variable is replaed with a term of a smaller type. In Setion 4, we

gave onditions under whih uni�ation of two terms yields an ordered substitu-

tion: the uni�ation is a mathing, the term that is being instantiated is linear

and is typed using a prinipal variable typing. The linearity requirement ensures

that a priniple variable typing exists and an be omputed (Subse. 4.2).

In Se. 5, we showed how those onditions translate to onditions on the pro-

gram and the exeution model. We introdue modes and assume that programs

are exeuted using moded uni�ation (2). This might be expliitly enfored by

the ompiler, or it might be veri�ed statially [2℄. Moded uni�ation an atually

be very bene�ial for eÆieny, as witnessed by the language Merury [15℄. Apart

from that, (3) niely-modedness states the linearity of the terms being instan-

tiated in a uni�ation. Finally, (4) niely-typedness states that the instantiated

terms must be typed using a prinipal variable typing.

Niely-modedness has been widely used for veri�ation purposes (e.g. [2℄). In

partiular, the linearity ondition on the output arguments is natural: it states

that every piee of data has at most one produer. Input-linearity of lause heads

however an sometimes be a demanding ondition [13, Setion 10.2℄.

Note that introduing modes into logi programming does not mean that

logi programs beome funtional. The aspet of non-determinay (possibility of

omputing several solutions for a query) remains.

Even though our result on subjet redution means that it is possible to

exeute programs without maintaining the types at runtime, there are irum-

stanes where keeping the types at runtime is desirable, for example for memory

management, printing, or in higher-order logi programming where the existene

and shape of uni�ers depends on the types [11℄.

There is a relationship between our notion of subtyping and transpareny (see

Subse. 2.2). Transpareny ensures that two terms of the same type have idential

types in all orresponding subterms, e.g. if [1℄ and [x℄ are both of type List(Int),

we are sure that x is of type Int. Now in a ertain way, allowing for a subtyp-

ing relation that \forgets" parameters undermines transpareny. For example,

we an derive fx : Stringg ` [x℄ = [1℄ Atom, sine List(String) � Anylist

and List(Int) � Anylist, even though Int and String are inomparable. We

ompensate for this by requiring prinipal variable typings. A prinipal variable



typing for [x℄ and Anylist ontains fx : u

x

g, and so u

x

an be instantiated to

Int. Our intuition is that whenever this phenomenon (\forgetting" parameters)

ours, requiring prinipal variable typings is very demanding; but otherwise,

subjet redution is likely to be violated. As a topi for future work, we want to

substantiate this intuition by studying examples.
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