
Using Modes to Ensure Subje
t Redu
tion for

Typed Logi
 Programs with Subtyping

?

Jan{Georg Smaus

1

, Fran�
ois Fages

2

, and Pierre Deransart

2

1

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, jan.smaus�
wi.nl

2

INRIA-Ro
quen
ourt, BP105, 78153 Le Chesnay Cedex, Fran
e,

ffran
ois.fages, pierre.deransartg�inria.fr

Abstra
t. We
onsider a general pres
riptive type system with para-

metri
 polymorphism and subtyping for logi
 programs. The property of

subje
t redu
tion expresses the
onsisten
y of the type system w.r.t. the

exe
ution model: if a program is \well-typed", then all derivations start-

ing in a \well-typed" goal are again \well-typed". It is well-established

that without subtyping, this property is readily obtained for logi
 pro-

grams w.r.t. their standard (untyped) exe
ution model. Here we give

synta
ti

onditions that ensure subje
t redu
tion also in the presen
e

of general subtyping relations between type
onstru
tors. The idea is to

onsider logi
 programs with a �xed data
ow, given by modes.

1 Introdu
tion

Pres
riptive types are used in logi
 and fun
tional programming to restri
t the

underlying syntax so that only \meaningful" expressions are allowed. This allows

for many programming errors to be dete
ted by the
ompiler. G�odel [7℄ and

Mer
ury [15℄ are two implemented typed logi
 programming languages.

A natural stability property one desires for a type system is that it is
on-

sistent with the exe
ution model: on
e a program has passed the
ompiler, it

is guaranteed that \well-typed"
on�gurations will only generate \well-typed"

on�gurations at runtime. Adopting the terminology from the theory of the �-

al
ulus [17℄, this property of a typed program is
alled subje
t redu
tion. For

the simply typed �-
al
ulus, subje
t redu
tion states that the type of a �-term

is invariant under redu
tion. This translates in a well-de�ned sense to fun
tional

and logi
 programming.

Semanti
ally, a type represents a set of terms/expressions [8, 9℄. Now subtyp-

ing makes type systems more expressive and
exible in that it allows to express

in
lusions among these sets. For example, if we have types int and real , we might

want to de
lare int � real , i.e., the set of integers is a subset of the set of reals.

More generally, subtype relations su
h as list(u) < term make it possible to type

Prolog meta-programming predi
ates [5℄, as shown in Ex. 1.4 below and Se
. 6.

In fun
tional programming, a type system that in
ludes subtyping would

then state that wherever an expression of type � is expe
ted as an argument,

any expression having a type �

0

� � may o

ur. The following example explains

this informally, using an ad ho
 syntax.

?

A long version of this paper,
ontaining all proofs, is available in [14℄.

Example 1.1. Assume two fun
tions sqrt : real ! real and fa
t : int ! int

whi
h
ompute the square root and fa
torial, respe
tively. Then sqrt (fa
t 3) is

a legal expression, sin
e fa
t 3 is of type int and may therefore be used as an

argument to sqrt, be
ause sqrt expe
ts an argument of type real , and int < real .

Subje
t redu
tion in fun
tional programming
ru
ially relies on the fa
t that

there is a
lear notion of data
ow. It is always the arguments (the \input") of a

fun
tion that may be smaller than expe
ted, whereas the result (the \output")

may be greater than expe
ted. This is best illustrated by a
ounterexample,

whi
h is obtained by introdu
ing referen
e types.

Example 1.2. Suppose we have a fun
tion f : real ref ! real de�ned by

let f(x) = x := 3:14; return x. So f takes a referen
e (pointer) to a real as

argument, assigns the value 3:14 to this real, and also return 3:14. Even though

int < real , this fun
tion
annot be applied to an int ref , sin
e the value 3:14

annot be assigned to an integer.

In the example, the variable x is used both for input and output, and hen
e

there is no
lear dire
tion of data
ow. While this problem is marginal in fun
-

tional programming, it is the main problem for subje
t redu
tion in logi
 pro-

gramming with subtypes.

Subje
t redu
tion for logi
 programming means that resolving a \well-typed"

goal with a \well-typed"
lause will always result in a \well-typed" goal. It holds

for parametri
 polymorphi
 type systems without subtyping [9, 10℄.

1

Example 1.3. In analogy to Ex. 1.1, suppose Sqrt=2 and Fa
t=2 are predi
ates

of de
lared type (Real; Real) and (Int; Int), respe
tively. Consider the program

Fa
t(3,6).

Sqrt(6,2.45).

and the derivations

Fa
t(3,x), Sqrt(x,y) ; Sqrt(6,y) ; 2

Sqrt(6,x), Fa
t(x,y) ; Fa
t(2.45,y)

In the �rst derivation, all arguments have a type that is less than or equal to the

de
lared type, and so we have subje
t redu
tion. In the se
ond derivation, the

argument 2:45 to Fa
t has type Real, whi
h is greater than the de
lared type.

The atom Fa
t(2:45; y) is illegal, and so we do not have subje
t redu
tion.

Here we address this problem by giving a �xed dire
tion of data
ow to logi

programs, i.e., by introdu
ing modes [1℄ and repla
ing uni�
ation with double

mat
hing [2℄, so that the data
ow is always from the input to the output positions

in an atom. We impose a
ondition on the terms in the output positions, or more

pre
isely, on the types of the variables o

urring in these terms: ea
h variable

must have exa
tly the de
lared (expe
ted) type of the position where it o

urs.

In Ex. 1.3, let the �rst argument of ea
h predi
ate be input and the se
ond

be output. In both derivations, x has type Int. For Fa
t(3; x), this is exa
tly

the de
lared type, and so the
ondition is ful�lled for the �rst derivation. For

Sqrt(6; x), the de
lared type is Real, and so the
ondition is violated.

1

Note however that the �rst formulation of subje
t redu
tion [10℄ was in
orre
t [8℄.

The
ontribution of this paper is a statement that programs that are typed

a

ording to a type system with subtyping, and respe
t
ertain
onditions
on-

erning the modes, enjoy the subje
t redu
tion property, i.e., the type system

is
onsistent w.r.t. the (untyped) exe
ution model. This means that e�e
tively

the types
an be ignored at runtime, whi
h has traditionally been
onsidered as

desirable, although there are also reasons for keeping the types during exe
u-

tion [11℄. In Se
. 6, we dis
uss the
onditions on programs.

There are few works on pres
riptive type systems for logi
 programs with sub-

typing [3{6, 8℄. Hill and Topor [8℄ give a result on subje
t redu
tion for systems

without subtyping, and study general type systems with subtyping. However

their results on the existen
e of prin
ipal typings turned out to be wrong [3℄.

Beierle [3℄ shows the existen
e of prin
ipal typings for systems with subtype re-

lations between
onstant types, and provides type inferen
e algorithms. Beierle

and also Hanus [6℄ do not
laim subje
t redu
tion for their systems. Fages and

Paltrinieri [5℄ have shown a weak form of subje
t redu
tion for
onstraint logi

programs with subtyping, where equality
onstraints repla
e substitutions in the

exe
ution model.

The idea of introdu
ing modes to ensure subje
t redu
tion for logi
 programs

was proposed previously by Dietri
h and Hagl [4℄. However they do not study the

de
idability of the
onditions they impose on the subtyping relation. Furthermore

sin
e ea
h result type must be transparent (a
ondition we will de�ne later),

subtype relations between type
onstru
tors of di�erent arities are forbidden.

Example 1.4. Assume types Int, String and List(u) de�ned as usual, and a

type Term that
ontains all terms (so all types are subtypes of Term). Moreover,

assume Append as usual with de
lared type (List(u); List(u); List(u)), and a

predi
ate Fun
tor with de
lared type (Term; String), whi
h gives the top fun
-

tor of a term. In our formalism, we
ould show subje
t redu
tion for the query

Append([1℄; [℄; x); Fun
tor(x; y), whereas this is not possible in [4℄ be
ause the

subtype relation between List(Int) and Term
annot be expressed.

The plan of the paper is as follows. Se
tion 2 mainly introdu
es the type sys-

tem. In Se
. 3, we show how expressions
an be typed assigning di�erent types

to the variables, and we introdu
e ordered substitutions, whi
h are substitutions

preserving types. In Se
. 4, we show under whi
h
onditions substitutions ob-

tained by uni�
ation are indeed ordered. In Se
. 5, we show how these
onditions

on uni�ed terms
an be translated into
onditions on programs and derivations.

2 The Type System

We use the type system of [5℄. First we re
all some basi

on
epts [1℄. When we

refer to a
lause in a program, we mean a
opy of this
lause whose variables are

renamed apart from any other variables in the
ontext. A query is a sequen
e

of atoms. A query Q

0

is a resolvent of a query Q and a
lause h B if Q =

a

1

; : : : ; a

m

, Q

0

= (a

1

; : : : ; a

k�1

; B; a

k+1

; : : : ; a

m

)�, and h and a

k

are uni�able

with MGU �. Resolution steps and derivations are de�ned in the usual way.

Table 1. The subtyping order on types

(Par) u � u u is a parameter

(Constr)

�

�(1)

��

0

1

::: �

�(m

0

)

��

0

m

0

K(�

1

;:::;�

m

)�K

0

(�

0

1

;:::;�

0

m

0

)

K � K

0

, � = �

K;K

0

.

2.1 Type expressions

The set of types T is given by the term stru
ture based on a �nite set of
on-

stru
tors K, where with ea
h K 2 K an arity m � 0 is asso
iated (by writing

K=m), and a denumerable set U of parameters. A
at type is a type of the

form K(u

1

; : : : ; u

m

), where K 2 K and the u

i

are distin
t parameters. We write

� [�℄ to denote that the type � stri
tly
ontains the type � as a subexpression.

A type substitution� is a mapping from parameters to types. The domain

of � is denoted by dom(�), the parameters in its range by ran(�). The set of

parameters in a synta
ti
 obje
t o is denoted by pars(o).

We assume an order� on type
onstru
tors su
h that:K=m � K

0

=m

0

implies

m � m

0

; and, for ea
hK 2 K, the set fK

0

j K � K

0

g has a maximum. Moreover,

we asso
iate with ea
h pair K=m � K

0

=m

0

an inje
tion �

K;K

0

: f1; : : : ;m

0

g !

f1; : : : ;mg su
h that �

K;K

00

= �

K;K

0

Æ �

K

0

;K

00

whenever K � K

0

� K

00

. This

order is extended to the subtyping order on types, denoted by �, as the least

relation satisfying the rules in Table 1.

Proposition 2.1. If � � � then �� � �� for any type substitution �.

Proposition 2.2. For ea
h type �, the set f� j � � �g has a maximum, whi
h

is denoted by Max(�).

For Prop. 2.2, it is
ru
ial that K=m � K

0

=m

0

implies m � m

0

. For example,

if we allowed for Emptylist=0 � List=1, then we would have Emptylist �

List(�) for all � , and so Prop. 2.2 would not hold. Note that the possibility of

\forgetting" type parameters, as in List=1 � Anylist=0, may provide solutions

to inequalities of the form List(u) � u, e.g. u = Anylist. However, we have:

Proposition 2.3. An inequality of the form u � � [u℄ has no solution. An in-

equality of the form � [u℄ � u has no solution if u 2 vars(Max(�)).

2.2 Typed programs

We assume a denumerable set V of variables. The set of variables in a synta
ti

obje
t o is denoted by vars(o). We assume a �nite set F (resp. P) of fun
tion

(resp. predi
ate) symbols, ea
h with an arity and a de
lared type asso
iated

with it, su
h that: for ea
h f 2 F , the de
lared type has the form (�

1

; : : : ; �

n

; �),

where n is the arity of f , (�

1

; : : : ; �

n

) 2 T

n

, � is a
at type and satis�es the trans-

paren
y
ondition [8℄: pars(�

1

; : : : ; �

n

) � pars(�); for ea
h p 2 P , the de
lared

type has the form (�

1

; : : : ; �

n

), where n is the arity of p and (�

1

; : : : ; �

n

) 2 T

n

.

Table 2. The type system.

(Var) fx : �; : : :g ` x : �

(Fun
)

U`t

i

:�

i

�

i

��

i

� (i2f1;:::;ng)

U`f

�

1

:::�

n

!�

(t

1

;:::;t

n

):��

� is a type substitution

(Atom)

U`t

i

:�

i

�

i

��

i

� (i2f1;:::;ng)

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Atom

� is a type substitution

(Headatom)

U`t

i

:�

i

�

i

��

i

(i2f1;:::;ng)

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Headatom

(Query)

U`A

1

Atom ::: U`A

n

Atom

U`A

1

;:::;A

n

Query

(Clause)

U`Q Query U`A Headatom

U`A Q Clause

The de
lared types are indi
ated by writing f

�

1

:::�

n

!�

and p

�

1

:::�

n

. We assume

that there is a spe
ial predi
ate symbol =

u;u

where u 2 U .

We assume that K, F , and P are �xed by de
larations in a typed program,

where the synta
ti
al details are insigni�
ant for our results. In examples we

loosely follow G�odel syntax [7℄.

A variable typing is a mapping from a �nite subset of V to T , written as

fx

1

: �

1

; : : : ; x

n

: �

n

g. The restri
tion of a variable typing U to the variables in

o is denoted as U�

o

. The type system, whi
h de�nes terms, atoms et
. relative

to a variable typing U ,
onsists of the rules shown in Table 2.

3 The Subtype and Instantiation Hierar
hies

3.1 Modifying Variable Typings

We now show that if we
an derive that some obje
t is in the typed language

using a variable typing U , then we
an always modify U in three ways: extending

its domain, instantiating the types, and making the types smaller.

De�nition 3.1. Let U , U

0

be variable typings. We say that U is smaller or

equal U

0

, denoted U � U

0

, if U = fx

1

: �

1

; : : : ; x

n

: �

n

g, U

0

= fx

1

: �

0

1

; : : : ; x

n

:

�

0

n

g, and for all i 2 f1; : : : ; ng, we have �

i

� �

0

i

. We write U

0

�� U if there exists

a variable typing U

00

su
h that U

0

� U

00

and U

00

� U .

Lemma 3.1. Let U , U

0

be variable typings and � a type substitution su
h

that U

0

�� U�. If U ` t : �, then U

0

` t : �

0

where �

0

� ��. Moreover, if

U ` A Atom then U

0

` A Atom, and if U ` Q Query then U

0

` Q Query.

3.2 Typed Substitutions

Typed substitutions are a fundamental
on
ept for typed logi
 programs.

De�nition 3.2. If U ` x

1

= t

1

; : : : ; x

n

= t

n

Query where x

1

; : : : ; x

n

are dis-

tin
t variables and for ea
h i 2 f1; : : : ; ng, t

i

is a term distin
t from x

i

, then

(fx

1

=t

1

; : : : ; x

n

=t

n

g; U) is a typed (term) substitution.

To show that applying a typed substitution preserves \well-typedness" for

systems with subtyping, we need a further
ondition. Given a typed substitution

(�; U), the type assigned to a variable x by U must be suÆ
iently big, so that it

is
ompatible with the type of the term repla
ed for x by �.

Example 3.1. Consider again Ex. 1.3. Taking U = fx : Int; y : Intg, we have

U ` x : Int, U ` 2:45 : Real, and hen
e U ` x = 2:45 Atom. So (fx=2:45g; U) is

a typed substitution. Now U ` Fa
t(x; y) Atom, but U 6` Fa
t(2:45; y) Atom.

The type of x is too small to a

ommodate for instantiation to 2:45.

De�nition 3.3. A typed (term) substitution (fx

1

=r

1

; : : : ; x

n

=r

n

g; U) is an or-

dered substitution if, for ea
h i 2 f1; : : : ; ng, where x

i

: �

i

2 U , there exists

�

i

su
h that U ` r

i

: �

i

and �

i

� �

i

.

We now show that expressions stay \well-typed" when ordered substitutions

are applied [8, Lemma 1.4.2℄.

Lemma 3.2. Let (�; U) be an ordered substitution. If U ` t : � then U ` t� : �

0

for some �

0

� �. Moreover, if U ` A Atom then U ` A� Atom, and likewise for

queries and
lauses.

4 Conditions for Ensuring Ordered Substitutions

In this se
tion, we show under whi
h
onditions it
an be guaranteed that the

substitutions applied in resolution steps are ordered substitutions.

4.1 Type Inequality Systems

The substitution of a resolution step is obtained by unifying two terms, say t

1

and t

2

. In order for the substitution to be typed, it is ne
essary that we
an

derive U ` t

1

= t

2

Atom for some U . We will show that if U is, in a
ertain

sense, maximal, then it is guaranteed that the typed substitution is ordered.

We �rst formalise paths leading to subterms of a term.

De�nition 4.1. A term t has the subterm t in position �. If t = f(t

1

; : : : ; t

n

)

and t

i

has subterm s in position �, then t has subterm s in position i:�.

Example 4.1. The term F(G(C); H(C)) has subterm C in position 1:1, but also in

position 2:1. The position 2:1:1 is unde�ned for this term.

Let us write ` t :� � if there exist U and �

0

su
h that U ` t : �

0

and �

0

� �.

To derive U ` t

1

= t

2

Atom,
learly the last step has the form

U ` t

1

: �

1

U ` t

2

: �

2

�

1

� u� �

2

� u�

U ` t

1

=

u;u

t

2

Atom

y

u

y

u

2:1

Nil

List(u

2:1:2

)

List(u

2:1

)

�

�

�

�

P

P

P

P

Cons

List(u

2:1

)

u

2

Nil

List(u

2:2

)

List(u

2

)

�

�

�

�

P

P

P

P

x

u

x

u

�

Cons

List(u

2

)

List(u

�

)

�

�

�

�

P

P

P

P

Cons

List(u

�

)

Anylist

Fig. 1. The term [x; [y℄℄ and asso
iated inequalities

So we use an instan
e (u; u)� of the de
lared type of the equality predi
ate,

and the types of t

1

and t

2

are both less then or equal to u�. This motivates the

following question: Given a term t su
h that ` t :� �, what are the maximal

types of subterm positions of t with respe
t to �?

Example 4.2. Let List=1; Anylist=0 2 K where List(�) � Anylist for all � ,

and Nil

!List(u)

; Cons

u;List(u)!List(u)

2 F . Consider the term [x; [y℄℄ (in usual

list notation) depi
ted in Fig. 1, and let � = Anylist. Ea
h fun
tor in [x; [y℄℄ is

introdu
ed using Rule (Fun
). E.g., any type of Nil in position 2:1:2 is ne
essarily

an instan
e of List(u

2:1:2

), its de
lared type.

2

To derive that Cons(y; Nil) is a

typed term, this instan
e must be smaller than some instan
e of the se
ond

de
lared argument type of Cons in position 2:1, i.e., List(u

2:1

).

So in order to derive that [x; [y℄℄ is a term of a type smaller than Anylist,

we need an instantiation of the parameters su
h that for ea
h box (position),

the type in the lower subbox is smaller than the type of the upper subbox.

We see that in order for ` t :� � to hold, a solution to a
ertain type

inequality system (set of inequalities between types) must exist.

De�nition 4.2. Let t be a term and � a type su
h that ` t :� �. For ea
h

position � where t has a non-variable subterm, we denote the fun
tion in this

position by f

�

�

�

1

;:::;�

�

n

�

!�

�

(assuming that the parameters in �

�

1

; : : : ; �

�

n

�

; �

�

are

fresh, say by indexing them with �). For ea
h variable x 2 vars(t), we introdu
e

a parameter u

x

(so u

x

62 pars(�)). The type inequality system of t and � is

I(t; �) = f�

�

� �g [f�

�:i

� �

�

i

j Position �:i in t is non-variableg [

fu

x

� �

�

i

j Position �:i in t is variable xg:

A solution of I(t; �) is a type substitution � su
h that dom(�) \ pars(�) = ;

and for ea
h � � �

0

2 I(t; �), the inequality �� � �

0

� holds. A solution � to

2

We use the positions as supers
ripts to parameters in order to obtain fresh
opies.

I(t; �) is prin
ipal if for every solution

~

� for I(t; �), there exists a �

0

su
h that

for ea
h � � �

0

2 I(t; �), we have �

~

� � ���

0

and �

0

~

� � �

0

��

0

.

Proposition 4.1. Let t be a term and � a type. If U ` t :� � for some variable

typing U , then there exists a solution � for I(t; �) (
alled the solution for

I(t; �)
orresponding to U) su
h that for ea
h subterm t

0

in position � in t,

we have U ` t

0

: �

�

� if t

0

62 V , and U ` t

0

: u

t

0

� if t

0

2 V .

In the next subse
tion, we present an algorithm, based on [5℄, whi
h
om-

putes a prin
ipal solution to a type inequality system, provided t is linear. In

Subse
. 4.3, our interest in prin
ipal solutions will be
ome
lear.

4.2 Computing a Prin
ipal Solution

The algorithm transforms the inequality system, thereby
omputing bindings to

parameters whi
h
onstitute the solution. It is
onvenient to
onsider system of

both inequalities, and equations of the form u = � . The inequalities represent

the
urrent type inequality system, and the equalities represent the substitution

a

umulated so far. We use 5 for � or =.

De�nition 4.3. A system is left-linear if ea
h parameter o

urs at most on
e

on the left hand side of an equation/inequality. A system is a
y
li
 if it does

not have a subset f�

1

5 �

1

; :::; �

n

5 �

n

g with pars(�

i

) \ pars(�

i+1

) 6= ; for all

1 � i � n� 1, and pars(�

n

) \ pars(�

1

) 6= ;.

Proposition 4.2. If t is a linear term, then any inequality system I(t; �) is

a
y
li
 and left-linear.

By looking at Ex. 4.2, it should be intuitively
lear that assuming linearity

of t is
ru
ial for the above proposition.

We now give the algorithm. A solved form is a system I
ontaining only

equations of the form I = fu

1

= �

1

; :::; u

n

= �

n

g where the parameters u

i

are all

di�erent and have no other o

urren
e in I .

De�nition 4.4. Given a type inequality system I(t; �), where t is linear, the

type inequality algorithm applies the following simpli�
ation rules:

(1) fK(�

1

; :::; �

m

) � K

0

(�

0

1

; :::; �

0

m

0

)g [I �! f�

�(i)

� �

0

i

g

i=1;::;m

0

[I

if K � K

0

and � = �

K;K

0

(2) fu � ug [I �! I

(3) fu � �g [I �! fu = �g [I [u=� ℄

if � 6= u, u 62 vars(�).

(4) f� � ug [I �! fu =Max(�)g [I [u=Max(�)℄

if � 62 V , u 62 vars(Max(�)) and u 62 vars(l) for any l � r 2 �.

Intuitively, left-linearity of I(t; �) is
ru
ial be
ause it renders the binding of

a parameter (point (3)) unique.

Proposition 4.3. Given a type inequality system I(t; �), where t is linear, the

type inequality algorithm terminates with either a solved form, in whi
h
ase

the asso
iated substitution is a prin
ipal solution, or a non-solved form, in whi
h

ase the system has no solution.

4.3 Prin
ipal Variable Typings

The existen
e of a prin
ipal solution � of a type inequality system I(t; �) and

Prop. 4.1 motivate de�ning the variable typing U su
h that � is exa
tly the

solution of I(t; �)
orresponding to U .

De�nition 4.5. Let ` t :� �, and � be a prin
ipal solution of I(t; �). A

variable typing U is prin
ipal for t and � if U � fx : u

x

� j x 2 vars(t)g.

By the de�nition of a prin
ipal solution of I(t; �) and Prop. 4.1, if U is a

prin
ipal variable typing for t and �, then for any U

0

su
h that U

0

(x) > U(x)

for some x 2 vars(t), we have U

0

6` t :� �.

The following key lemma states
onditions under whi
h a substitution ob-

tained by unifying two terms is indeed ordered.

Lemma 4.4. Let s and t be terms, s linear, su
h that U ` s :� �, U ` t :� �,

and there exists a substitution � su
h that s� = t. Suppose U is prin
ipal for s

and �. Then there exists a type substitution � su
h that for U

0

= U��

vars(s)

[U�

Vnvars(s)

, we have that (�; U

0

) is an ordered substitution.

Example 4.3. Consider the term ve
tors (sin
e Lemma 4.4 generalises in the

obvious way to term ve
tors) s = (3; x) and t = (3; 6), let � = (Int; Int) and

U

s

= fx : Intg, U

t

= ; (see Ex. 1.3). Note that U

s

is prin
ipal for s and �, and

so (fx=6g; U

s

[U

t

) is an ordered substitution (� is empty).

In
ontrast, let s = (6; x) and t = (6; 2:45), let � = (Real; Real) and U

s

= fx :

Intg, U

t

= ;. Then U

s

is not prin
ipal for s and � (the prin
ipal variable typing

would be fx=Realg), and indeed, there exists no � su
h that (fx=2:45g; U

s

�[U

t

)

is an ordered substitution.

5 Ni
ely Typed Programs

So far we have seen that mat
hing, linearity, and prin
ipal variable typings are

ru
ial to ensure that uni�
ation yields ordered substitutions. Note that those

results generalise in the obvious way from terms to term ve
tors. We now de�ne

three
orresponding
onditions on programs and the exe
ution model.

First, we de�ne modes [1℄. For p=n 2 P , a mode is an atom p(m

1

; : : : ;m

n

),

wherem

i

2 fI ;Og for i 2 f1; : : : ; ng. Positions with I (resp. O) are
alled input

(resp. output) positions of p. We assume that a mode is asso
iated with ea
h

p 2 P . The notation p(�s;

�

t) means that �s (resp.

�

t) is the ve
tor of terms �lling

the input (resp. output) positions of p(�s;

�

t). Moded uni�
ation is a spe
ial
ase

of double mat
hing [2℄.

De�nition 5.1. Consider a resolution step where p(�s;

�

t) is the sele
ted atom

and p(�w; �v) is the renamed apart
lause head.The equation p(�s;

�

t) = p(�w; �v) is

solvable by moded uni�
ation if there exist substitutions �

1

, �

2

su
h that

�w�

1

= �s and vars(

�

t�

1

) \ vars(�v�

1

) = ; and

�

t�

1

�

2

= �v�

1

. A derivation where all

uni�
ations are solvable by moded uni�
ation is a moded derivation.

De�nition 5.2. A query Q = p

1

(�s

1

;

�

t

1

); : : : ; p

n

(�s

n

;

�

t

n

) is ni
ely moded if

�

t

1

; : : : ;

�

t

n

is a linear ve
tor of terms and for all i 2 f1; : : : ; ng

vars(�s

i

) \

n

[

j=i

vars(

�

t

j

) = ;: (1)

The
lause C = p(

�

t

0

; �s

n+1

) Q is ni
ely moded if Q is ni
ely moded and

vars(

�

t

0

) \

n

[

j=1

vars(

�

t

j

) = ;: (2)

An atom p(�s;

�

t) is input-linear if �s is linear, output-linear if

�

t is linear.

De�nition 5.3. Let C = p

��

0

;��

n+1

(

�

t

0

; �s

n+1

) p

1

��

1

;��

1

(�s

1

;

�

t

1

); : : : ; p

n

��

n

;��

n

(�s

n

;

�

t

n

)

be a
lause. If C is ni
ely moded,

�

t

0

is input-linear, and there exists a variable

typing U su
h that U ` C Clause , and for ea
h i 2 f0; : : : ; ng, U is prin
ipal for

�

t

i

and ��

0

i

, where ��

0

i

is the instan
e of ��

i

used for deriving U ` C Clause , then

we say that C is ni
ely typed. A query U

Q

: Q is ni
ely typed if the
lause

Go Q is ni
ely typed.

We
an now state the main result.

Theorem 5.1. Let C and Q be a ni
ely typed
lause and query. If Q

0

is a

resolvent of C and Q where the uni�
ation of the sele
ted atom and the
lause

head is solvable by moded uni�
ation, then Q

0

is ni
ely typed.

Example 5.1. Consider again Ex. 1.3. The program is ni
ely typed, where the

de
lared types are given in that example, and the �rst position of ea
h predi
ate

is input, and the se
ond output. Both queries are ni
ely moded. The �rst query is

also ni
ely typed, whereas the se
ond is not (see also Ex. 4.3). For the �rst query,

we have subje
t redu
tion, for the se
ond we do not have subje
t redu
tion.

6 Dis
ussion

In this paper, we have proposed
riteria for ensuring subje
t redu
tion for typed

logi
 programs with subtyping under the untyped exe
ution model. Our starting

point was a
omparison between fun
tional and logi
 programming: In fun
tional

programs, there is a
lear notion of data
ow, whereas in logi
 programming,

there is no su
h notion a priori, and arguments
an serve as input arguments

and output arguments. This di�eren
e is the sour
e of the diÆ
ulty of ensuring

subje
t redu
tion for logi
 programs.

It is instru
tive to divide the numerous
onditions we impose into four
lasses:

(1) \basi
" type
onditions on the program (Se
. 2), (2)
onditions on the ex-

e
ution model (Def. 5.1), (3) mode
onditions on the program (Def. 5.2), (4)

\additional" type
onditions on the program (Def. 5.3).

Con
erning (1), our notion of subtyping deserves dis
ussion. Approa
hes dif-

fer with respe
t to
onditions on the arities of type
onstru
tors for whi
h there is

a subtype relation. Beierle [3℄ assumes that the (
onstru
tor) order is only de�ned

for type
onstants, i.e.
onstru
tors of arity 0. Thus we
ould have Int � Real,

and so by extension List(Int) � List(Real), but not List(Int) � Tree(Real).

Many authors assume that only
onstru
tors of the same arity are
omparable.

Thus we
ould have List(Int) � Tree(Real), but not List(Int) � Anylist.

We assume, as [5℄, that if K=m � K

0

=m

0

, then m � m

0

. We think that this

hoi
e is
ru
ial for the existen
e of prin
ipal types.

Stroetmann and Gla� [16℄ argue that
omparisons between
onstru
tors of

arbitrary arity should be allowed in prin
iple. Their formalism is su
h that the

subtype relation does not automati
ally
orrespond to a subset relation. Never-

theless, the formalism heavily relies on su
h a
orresponden
e, although it is not

said how it
an be de
ided. We refer to [14℄ for more details.

Te
hni
ally, what is
ru
ial for subje
t redu
tion is that substitutions are

ordered: ea
h variable is repla
ed with a term of a smaller type. In Se
tion 4, we

gave
onditions under whi
h uni�
ation of two terms yields an ordered substitu-

tion: the uni�
ation is a mat
hing, the term that is being instantiated is linear

and is typed using a prin
ipal variable typing. The linearity requirement ensures

that a prin
iple variable typing exists and
an be
omputed (Subse
. 4.2).

In Se
. 5, we showed how those
onditions translate to
onditions on the pro-

gram and the exe
ution model. We introdu
e modes and assume that programs

are exe
uted using moded uni�
ation (2). This might be expli
itly enfor
ed by

the
ompiler, or it might be veri�ed stati
ally [2℄. Moded uni�
ation
an a
tually

be very bene�
ial for eÆ
ien
y, as witnessed by the language Mer
ury [15℄. Apart

from that, (3) ni
ely-modedness states the linearity of the terms being instan-

tiated in a uni�
ation. Finally, (4) ni
ely-typedness states that the instantiated

terms must be typed using a prin
ipal variable typing.

Ni
ely-modedness has been widely used for veri�
ation purposes (e.g. [2℄). In

parti
ular, the linearity
ondition on the output arguments is natural: it states

that every pie
e of data has at most one produ
er. Input-linearity of
lause heads

however
an sometimes be a demanding
ondition [13, Se
tion 10.2℄.

Note that introdu
ing modes into logi
 programming does not mean that

logi
 programs be
ome fun
tional. The aspe
t of non-determina
y (possibility of

omputing several solutions for a query) remains.

Even though our result on subje
t redu
tion means that it is possible to

exe
ute programs without maintaining the types at runtime, there are
ir
um-

stan
es where keeping the types at runtime is desirable, for example for memory

management, printing, or in higher-order logi
 programming where the existen
e

and shape of uni�ers depends on the types [11℄.

There is a relationship between our notion of subtyping and transparen
y (see

Subse
. 2.2). Transparen
y ensures that two terms of the same type have identi
al

types in all
orresponding subterms, e.g. if [1℄ and [x℄ are both of type List(Int),

we are sure that x is of type Int. Now in a
ertain way, allowing for a subtyp-

ing relation that \forgets" parameters undermines transparen
y. For example,

we
an derive fx : Stringg ` [x℄ = [1℄ Atom, sin
e List(String) � Anylist

and List(Int) � Anylist, even though Int and String are in
omparable. We

ompensate for this by requiring prin
ipal variable typings. A prin
ipal variable

typing for [x℄ and Anylist
ontains fx : u

x

g, and so u

x

an be instantiated to

Int. Our intuition is that whenever this phenomenon (\forgetting" parameters)

o

urs, requiring prin
ipal variable typings is very demanding; but otherwise,

subje
t redu
tion is likely to be violated. As a topi
 for future work, we want to

substantiate this intuition by studying examples.

A
knowledgements. We thank Erik Poll and Fran�
ois Pottier for interesting dis-

ussions. Jan-Georg Smaus was supported by an ERCIM fellowship.

Referen
es

1. K. R. Apt. From Logi
 Programming to Prolog. Prenti
e Hall, 1997.

2. K. R. Apt and S. Etalle. On the uni�
ation free Prolog programs. In

A. Borzyszkowski and S. Sokolowski, editors, Pro
eedings of MFCS, LNCS, pages

1{19. Springer-Verlag, 1993.

3. C. Beierle. Type inferen
ing for polymorphi
 order-sorted logi
 programs. In

L. Sterling, editor, Pro
eedings of ICLP, pages 765{779. MIT Press, 1995.

4. R. Dietri
h and F. Hagl. A polymorphi
 type system with subtypes for Prolog. In

H. Ganzinger, editor, Pro
eedings of ESOP, LNCS, pages 79{93. Springer-Verlag,

1988.

5. F. Fages and M. Paltrinieri. A generi
 type system for CLP(X). Te
hni
al report,

E
ole Normale Sup�erieure LIENS 97-16, De
ember 1997.

6. M. Hanus. Logi
 Programming with Type Spe
i�
ations,
hapter 3, pages 91{140.

MIT Press, 1992. In [12℄.

7. P. M. Hill and J. W. Lloyd. The G�odel Programming Language. MIT Press, 1994.

8. P. M. Hill and R. W. Topor. A Semanti
s for Typed Logi
 Programs,
hapter 1,

pages 1{61. MIT Press, 1992. In [12℄.

9. T.K. Lakshman and U.S. Reddy. Typed Prolog: A semanti
 re
onstru
tion of the

My
roft-O'Keefe type system. In V. Saraswat and K. Ueda, editors, Pro
eedings

of ILPS, pages 202{217. MIT Press, 1991.

10. A. My
roft and R. O'Keefe. A polymorphi
 type system for Prolog. Arti�
ial

Intelligen
e, 23:295{307, 1984.

11. G. Nadathur and F. Pfenning. Types in Higer-Order Logi
 Programming,
hapter 9,

pages 245{283. MIT Press, 1992. In [12℄.

12. F. Pfenning, editor. Types in Logi
 Programming. MIT Press, 1992.

13. J.-G. Smaus. Modes and Types in Logi
 Programming. PhD thesis, University of

Kent at Canterbury, 1999.

14. J.-G. Smaus, F. Fages, and P. Deransart. Using modes to ensure subje
t redu
tion

for typed logi
 programs with subtyping. Te
hni
al report, INRIA, 2000. Available

via CoRR: http://arXiv.org/ar
hive/
s/intro.html.

15. Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury,

an eÆ
ient purely de
larative logi
 programming language. Journal of Logi
 Pro-

gramming, 29(1{3):17{64, 1996.

16. K. Stroetmann and T. Gla�. A semanti
s for types in Prolog: The type system

of pan version 2.0. Te
hni
al report, Siemens AG, ZFE T SE 1, 81730 M�un
hen,

Germany, 1995.

17. Simon Thompson. Type Theory and Fun
tional Programming. Addison-Wesley,

1991.

