Using Modes to Ensure Subject Reduction for
Typed Logic Programs with Subtyping*

Jan-Georg Smaus', Francois Fages?, and Pierre Deransart?

1 OWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, jan.smaus@cwi.nl
2 INRIA-Rocquencourt, BP105, 78153 Le Chesnay Cedex, France,
{francois.fages, pierre.deransart}@inria.fr

Abstract. We consider a general prescriptive type system with para-
metric polymorphism and subtyping for logic programs. The property of
subject reduction expresses the consistency of the type system w.r.t. the
execution model: if a program is “well-typed”, then all derivations start-
ing in a “well-typed” goal are again “well-typed”. It is well-established
that without subtyping, this property is readily obtained for logic pro-
grams w.r.t. their standard (untyped) execution model. Here we give
syntactic conditions that ensure subject reduction also in the presence
of general subtyping relations between type constructors. The idea is to
consider logic programs with a fixed dataflow, given by modes.

1 Introduction

Prescriptive types are used in logic and functional programming to restrict the
underlying syntax so that only “meaningful” expressions are allowed. This allows
for many programming errors to be detected by the compiler. Gédel [7] and
Mercury [15] are two implemented typed logic programming languages.

A natural stability property one desires for a type system is that it is con-
sistent with the execution model: once a program has passed the compiler, it
is guaranteed that “well-typed” configurations will only generate “well-typed”
configurations at runtime. Adopting the terminology from the theory of the \-
calculus [17], this property of a typed program is called subject reduction. For
the simply typed A-calculus, subject reduction states that the type of a A-term
is invariant under reduction. This translates in a well-defined sense to functional
and logic programming.

Semantically, a type represents a set of terms/expressions [8,9]. Now subtyp-
ing makes type systems more expressive and flexible in that it allows to express
inclusions among these sets. For example, if we have types int and real, we might
want to declare int < real, i.e., the set of integers is a subset of the set of reals.
More generally, subtype relations such as list(u) < term make it possible to type
Prolog meta-programming predicates [5], as shown in Ex. 1.4 below and Sec. 6.

In functional programming, a type system that includes subtyping would
then state that wherever an expression of type o is expected as an argument,
any expression having a type ¢’ < o may occur. The following example explains
this informally, using an ad hoc syntax.

* A long version of this paper, containing all proofs, is available in [14].

Example 1.1. Assume two functions sqrt : real — real and fact : int — int
which compute the square root and factorial, respectively. Then sqrt (fact 3) is
a legal expression, since fact 3 is of type int and may therefore be used as an
argument, to sqrt, because sqrt expects an argument of type real, and int < real.

Subject reduction in functional programming crucially relies on the fact that
there is a clear notion of dataflow. It is always the arguments (the “input”) of a
function that may be smaller than expected, whereas the result (the “output”)
may be greater than expected. This is best illustrated by a counterexample,
which is obtained by introducing reference types.

Example 1.2. Suppose we have a function f : real ref — real defined by
let f(x) = x := 3.14; return x. So [takes a reference (pointer) to a real as
argument, assigns the value 3.14 to this real, and also return 3.14. Even though
int < real, this function cannot be applied to an int ref, since the value 3.14
cannot be assigned to an integer.

In the example, the variable x is used both for input and output, and hence
there is no clear direction of dataflow. While this problem is marginal in func-
tional programming, it is the main problem for subject reduction in logic pro-
gramming with subtypes.

Subject reduction for logic programming means that resolving a “well-typed”
goal with a “well-typed” clause will always result in a “well-typed” goal. It holds
for parametric polymorphic type systems without subtyping [9, 10].!

Ezample 1.3. In analogy to Ex. 1.1, suppose Sqrt/2 and Fact/2 are predicates
of declared type (Real,Real) and (Int, Int), respectively. Consider the program

Fact(3,6).

Sqrt(6,2.45).
and the derivations

Fact(3,x), Sqrt(x,y) ~ Sqrt(6,y) ~ O

Sqrt(6,x), Fact(x,y) ~ Fact(2.45,y)
In the first derivation, all arguments have a type that is less than or equal to the
declared type, and so we have subject reduction. In the second derivation, the
argument 2.45 to Fact has type Real, which is greater than the declared type.
The atom Fact(2.45,y) is illegal, and so we do not have subject reduction.

Here we address this problem by giving a fixed direction of dataflow to logic
programs, i.e., by introducing modes [1] and replacing unification with double
matching [2], so that the dataflow is always from the input to the output positions
in an atom. We impose a condition on the terms in the output positions, or more
precisely, on the types of the variables occurring in these terms: each variable
must have ezactly the declared (expected) type of the position where it occurs.

In Ex. 1.3, let the first argument of each predicate be input and the second
be output. In both derivations, x has type Int. For Fact(3,x), this is exactly
the declared type, and so the condition is fulfilled for the first derivation. For
Sqrt(6, x), the declared type is Real, and so the condition is violated.

! Note however that the first formulation of subject reduction [10] was incorrect [8].

The contribution of this paper is a statement that programs that are typed
according to a type system with subtyping, and respect certain conditions con-
cerning the modes, enjoy the subject reduction property, i.e., the type system
is consistent w.r.t. the (untyped) execution model. This means that effectively
the types can be ignored at runtime, which has traditionally been considered as
desirable, although there are also reasons for keeping the types during execu-
tion [11]. In Sec. 6, we discuss the conditions on programs.

There are few works on prescriptive type systems for logic programs with sub-
typing [3-6,8]. Hill and Topor [8] give a result on subject reduction for systems
without subtyping, and study general type systems with subtyping. However
their results on the existence of principal typings turned out to be wrong [3].
Beierle [3] shows the existence of principal typings for systems with subtype re-
lations between constant types, and provides type inference algorithms. Beierle
and also Hanus [6] do not claim subject reduction for their systems. Fages and
Paltrinieri [5] have shown a weak form of subject reduction for constraint logic
programs with subtyping, where equality constraints replace substitutions in the
execution model.

The idea of introducing modes to ensure subject reduction for logic programs
was proposed previously by Dietrich and Hagl [4]. However they do not study the
decidability of the conditions they impose on the subtyping relation. Furthermore
since each result type must be transparent (a condition we will define later),
subtype relations between type constructors of different arities are forbidden.

Ezample 1.4. Assume types Int, String and List(u) defined as usual, and a
type Term that contains all terms (so all types are subtypes of Term). Moreover,
assume Append as usual with declared type (List(u),List(u),List(u)), and a
predicate Functor with declared type (Term, String), which gives the top func-
tor of a term. In our formalism, we could show subject reduction for the query
Append([1],[], %), Functor(x,y), whereas this is not possible in [4] because the
subtype relation between List(Int) and Term cannot be expressed.

The plan of the paper is as follows. Section 2 mainly introduces the type sys-
tem. In Sec. 3, we show how expressions can be typed assigning different types
to the variables, and we introduce ordered substitutions, which are substitutions
preserving types. In Sec. 4, we show under which conditions substitutions ob-
tained by unification are indeed ordered. In Sec. 5, we show how these conditions
on unified terms can be translated into conditions on programs and derivations.

2 The Type System

We use the type system of [5]. First we recall some basic concepts [1]. When we
refer to a clause in a program, we mean a copy of this clause whose variables are
renamed apart from any other variables in the context. A query is a sequence
of atoms. A query Q' is a resolvent of a query Q and a clause h < B if Q =
ay.. ., 0m, Q = (a1,...,a5-1,B,akt1,...,am)0, and h and a; are unifiable
with MGU 6. Resolution steps and derivations are defined in the usual way.

Table 1. The subtyping order on types

(Par) u<wu u is a parameter

TS e Ty ST

4 —
(Constr) K(Tl,...,Tm)SK’(T{,...,Tr’n,) K<K,t=txx-

2.1 Type expressions

The set of types T is given by the term structure based on a finite set of con-
structors K, where with each K € K an arity m > 0 is associated (by writing
K/m), and a denumerable set & of parameters. A flat type is a type of the
form K (uy,...,un), where K € K and the u; are distinct parameters. We write
7[o] to denote that the type 7 strictly contains the type o as a subexpression.

A type substitution @ is a mapping from parameters to types. The domain
of @ is denoted by dom(©), the parameters in its range by ran(©). The set of
parameters in a syntactic object o is denoted by pars(o).

We assume an order < on type constructors such that: K/m < K'/m' implies
m > m'; and, for each K € K, the set {K' | K < K'} has a maximum. Moreover,
we associate with each pair K/m < K'/m' an injection tx g : {1,...,m'} —
{1,...,m} such that tx k" = tk, Kk © Ltk Kk whenever K < K' < K'". This
order is extended to the subtyping order on types, denoted by <, as the least
relation satisfying the rules in Table 1.

Proposition 2.1. If ¢ < 7 then 0@ < 76 for any type substitution 6.

Proposition 2.2. For each type o, the set {7 | 0 < 7} has a maximum, which
is denoted by Maz (o).

For Prop. 2.2, it is crucial that K/m < K'/m' implies m > m'. For example,
if we allowed for Emptylist/0 < List/1, then we would have Emptylist <
List(r) for all 7, and so Prop. 2.2 would not hold. Note that the possibility of
“forgetting” type parameters, as in List/1 < Anylist/0, may provide solutions
to inequalities of the form List(u) < u, e.g. u = Anylist. However, we have:

Proposition 2.3. An inequality of the form u < 7[u] has no solution. An in-
equality of the form 7[u] < u has no solution if u € vars(Maxz(r)).

2.2 Typed programs

We assume a denumerable set V of variables. The set of variables in a syntactic
object o is denoted by vars(o). We assume a finite set F (resp. P) of function
(resp. predicate) symbols, each with an arity and a declared type associated
with it, such that: for each f € F, the declared type has the form (7,...,7,,7),
where n is the arity of f, (11,...,7,) € T™, 7 is a flat type and satisfies the trans-
parency condition [8]: pars(ri,...,m,) C pars(r); for each p € P, the declared
type has the form (7,...,7,), where n is the arity of p and (71,...,7,) € T™.

Table 2. The type system.

(Var) {e:7,..}Fa:T
Utt;:o 0;<1;0 (i€ 1,...,
(Func) Ul—;l z _: (tl(z En)rg}) O is a type substitution
T1..-TR—T (AR :
Ukt;:op 0;<1;0 (i€ 1,...,
(Atom,) Ul—; 10 _&1 (Ztn§At07TTLL}) O is a type substitution
T1...Tn 3o

Ukt;:o; 0;<T; (iE{].,...,TL})
(Headatom) Ubpr,...on (t1,....tn) Headatom

UrFA; Atom ... UFA, Atom
(Query) UFAy,..., A, Query

UFQ Query UrA Headatom
UFA+Q Clause

(Clause)

The declared types are indicated by writing f., . ,,—+ and p;, .. . We assume
that there is a special predicate symbol =, , where u € U{.

We assume that /C, F, and P are fixed by declarations in a typed program,
where the syntactical details are insignificant for our results. In examples we
loosely follow Godel syntax [7].

A variable typing is a mapping from a finite subset of V to 7, written as
{z1 :71,...,2, : Tn}. The restriction of a variable typing U to the variables in
o is denoted as U[,. The type system, which defines terms, atoms etc. relative
to a variable typing U, consists of the rules shown in Table 2.

3 The Subtype and Instantiation Hierarchies

3.1 Modifying Variable Typings

We now show that if we can derive that some object is in the typed language
using a variable typing U, then we can always modify U in three ways: extending
its domain, instantiating the types, and making the types smaller.

Definition 3.1. Let U, U’ be variable typings. We say that U is smaller or
equal U', denoted U < U, f U ={z1 :711,...,xn : T}, U' = {21 : 7{,..., 2y :
7}, and for all i € {1,...,n}, we have 7; < 7]. We write U’ D< U if there exists
a variable typing U" such that U’ D U" and U" < U.

Lemma 3.1. Let U, U’ be variable typings and @ a type substitution such
that U' DX UO.If U F t : o, then U’ F t : ¢’ where ¢/ < ¢©®. Moreover, if
Ut A Atom then U' - A Atom, and if U + Q Query then U' F Q Query.

3.2 Typed Substitutions

Typed substitutions are a fundamental concept for typed logic programs.

Definition 3.2. If U + zy =ty,...,z, = t, Query where x1,...,x, are dis-
tinct variables and for each i € {1,...,n}, t; is a term distinct from z;, then
({x1/t1,...,2n/ty},U) is a typed (term) substitution.

To show that applying a typed substitution preserves “well-typedness” for
systems with subtyping, we need a further condition. Given a typed substitution
(0,U), the type assigned to a variable z by U must be sufficiently big, so that it
is compatible with the type of the term replaced for z by 6.

Ezample 3.1. Consider again Ex. 1.3. Taking U = {x : Int,y : Int}, we have
Ul x:Int,UF 245 :Real, and hence U - x = 2.45 Atom. So ({x/2.45},U) is
a typed substitution. Now U + Fact(x,y) Atom, but U lf Fact(2.45,y) Atom.
The type of x is too small to accommodate for instantiation to 2.45.

Definition 3.3. A typed (term) substitution ({z1/71,...,2,/rn},U) is an or-
dered substitution if, for each i € {1,...,n}, where z; : 7; € U, there exists
o; such that U F r; : 0; and o; < 7.

We now show that expressions stay “well-typed” when ordered substitutions
are applied [8, Lemma 1.4.2].

Lemma 3.2. Let (6,U) be an ordered substitution. If U F ¢ : o then U + ¢ : ¢
for some ¢’ < o. Moreover, if U F A Atom then U + A8 Atom, and likewise for
queries and clauses.

4 Conditions for Ensuring Ordered Substitutions

In this section, we show under which conditions it can be guaranteed that the
substitutions applied in resolution steps are ordered substitutions.

4.1 Type Inequality Systems

The substitution of a resolution step is obtained by unifying two terms, say #;

and ty. In order for the substitution to be typed, it is necessary that we can

derive U F t; = t5 Atom for some U. We will show that if U is, in a certain

sense, maximal, then it is guaranteed that the typed substitution is ordered.
We first formalise paths leading to subterms of a term.

Definition 4.1. A term t has the subterm ¢ in position €. If t = f(t1,...,t,)
and ¢; has subterm s in position (, then ¢ has subterm s in position i.¢.

Ezample 4.1. The term F(G(C),H(C)) has subterm C in position 1.1, but also in
position 2.1. The position 2.1.1 is undefined for this term.

Let us write _ F ¢ :< ¢ if there exist U and ¢’ such that U F ¢ : ¢’ and ¢’ < o.
To derive U F t; =ty Atom, clearly the last step has the form
Ubti:mm Ubkty:mn 7 <u@ 1w <ub
Utr t1 =u,u t2 Atom

C Anylist
ons List(u®)
€ s €
b'd u Cons L:,LSt(uQ)
u” List(u®)
2 List(u?)
u .
Cons List(u®?) Nil List(u®?)
2.1 List(uz'l)
u .
Nil 5T
Y u’ * List(u®'?)

Fig. 1. The term [x, [y]] and associated inequalities

So we use an instance (u,u)© of the declared type of the equality predicate,
and the types of ¢; and ¢y are both less then or equal to u®. This motivates the
following question: Given a term ¢ such that _ F ¢ :< ¢, what are the maximal
types of subterm positions of ¢t with respect to o7

Ezample 4.2. Let List/1,Anylist/0 € K where List(r) < Anylist for all 7,
and Nil_,pje(u), CONSy List(u)—List(w) € F. Consider the term [x,[y]] (in usual
list notation) depicted in Fig. 1, and let 0 = Anylist. Each functor in [x, [y]] is
introduced using Rule (Func). E.g., any type of Nil in position 2.1.2 is necessarily
an instance of List(u?!-2), its declared type.? To derive that Cons(y,Nil) is a
typed term, this instance must be smaller than some instance of the second
declared argument type of Cons in position 2.1, i.e., List(u?1).

So in order to derive that [x,[y]] is a term of a type smaller than Anylist,
we need an instantiation of the parameters such that for each box (position),
the type in the lower subbox is smaller than the type of the upper subbox.

We see that in order for _ - ¢ :< ¢ to hold, a solution to a certain type
inequality system (set of inequalities between types) must exist.

Definition 4.2. Let t be a term and ¢ a type such that _ - ¢ :< ¢. For each
position ¢ where ¢ has a non-variable subterm, we denote the function in this

position by fff ot ot (assuming that the parameters in Tf, ces ,TELC,TC are

fresh, say by indexi;g them with (). For each variable x € vars(t), we introduce
a parameter u” (so u® & pars(c)). The type inequality system of ¢ and o is

I(t,0) = {r¢ < o} U {r¢i < 7¢ | Position C.i in ¢ is non-variable} U
{u® < 7¢ | Position C.i in ¢ is variable z}.

A solution of Z(t,0) is a type substitution @ such that dom(©) N pars(s) =0
and for each 7 < 7/ € Z(t,0), the inequality 76 < 7'@ holds. A solution @ to

2 We use the positions as superscripts to parameters in order to obtain fresh copies.

I(t,0) is principal if for every solution O for I(t,0), there exists a ©' such that
for each 7 < 7' € Z(t,0), we have 70 < 70O’ and 70 < 7'OO'.

Proposition 4.1. Let ¢ be a term and o a type. If U F ¢ :< ¢ for some variable
typing U, then there exists a solution @ for Z(¢,0) (called the solution for
Z(t,0) corresponding to U) such that for each subterm ¢’ in position ¢ in ¢,
wehave UF ¢ : 7@ ift/ ¢ V,and U ¢/ : u!' @ if t' € V.

In the next subsection, we present an algorithm, based on [5], which com-
putes a principal solution to a type inequality system, provided ¢ is linear. In
Subsec. 4.3, our interest in principal solutions will become clear.

4.2 Computing a Principal Solution

The algorithm transforms the inequality system, thereby computing bindings to
parameters which constitute the solution. It is convenient to consider system of
both inequalities, and equations of the form u = 7. The inequalities represent
the current type inequality system, and the equalities represent the substitution
accumulated so far. We use < for < or =.

Definition 4.3. A system is left-linear if each parameter occurs at most once
on the left hand side of an equation/inequality. A system is acyclic if it does
not have a subset {r; < 71,...,7 < on} with pars(o;) N pars(tiz1) # 0 for all
1<i<n-1,and pars(c,) Npars(r) # 0.

Proposition 4.2. If ¢ is a linear term, then any inequality system Z(t,o) is
acyclic and left-linear.

By looking at Ex. 4.2, it should be intuitively clear that assuming linearity
of t is crucial for the above proposition.

We now give the algorithm. A solved form is a system I containing only
equations of the form I = {u; = 7, ..., up, = 7, } where the parameters u; are all
different and have no other occurrence in I.

Definition 4.4. Given a type inequality system Z(¢,0), where ¢ is linear, the
type inequality algorithm applies the following simplification rules:
(1) {K(Tla ---aTm) < KI(T{7 "'7Tyln')} ulr— {TL(i) < Til}izl,..,m’ ul
if K <K'and 1= 1g i
2){u<ujul —1
B){u<rUl — {u=7}UIu/T]
if 7# u, u & vars(r).
4) {r <ulUI — {u= Max(r)} U Iu/Max(T)]
if ¢V, ugvars(Maz(r)) and u € vars(l) for any I <r € X.

Intuitively, left-linearity of Z(¢, o) is crucial because it renders the binding of
a parameter (point (3)) unique.

Proposition 4.3. Given a type inequality system Z(t, o), where ¢ is linear, the
type inequality algorithm terminates with either a solved form, in which case
the associated substitution is a principal solution, or a non-solved form, in which
case the system has no solution.

4.3 Principal Variable Typings

The existence of a principal solution @ of a type inequality system Z(t,o) and
Prop. 4.1 motivate defining the variable typing U such that @ is exactly the
solution of Z(t, o) corresponding to U.

Definition 4.5. Let _ F ¢ :< o, and © be a principal solution of Z(¢,0). A
variable typing U is principal for ¢t and o if U D {2 : u”O | x € vars(t)}.

By the definition of a principal solution of Z(¢,0) and Prop. 4.1, if U is a
principal variable typing for ¢ and o, then for any U’ such that U'(z) > U(x)
for some z € vars(t), we have U' I/ t :< 0.

The following key lemma states conditions under which a substitution ob-
tained by unifying two terms is indeed ordered.

Lemma 4.4. Let s and ¢ be terms, s linear, such that U F s :< p, U Ft:< p,
and there exists a substitution # such that s@ = ¢t. Suppose U is principal for s
and p. Then there exists a type substitution @ such that for U' = UOT,4,s(s)
UUTV\vars(s)» We have that (6,U’) is an ordered substitution.

Ezample 4.3. Consider the term vectors (since Lemma 4.4 generalises in the
obvious way to term vectors) s = (3,x) and ¢ = (3,6), let p = (Int,Int) and
Us = {x: Int}, Uy = () (see Ex. 1.3). Note that Uy is principal for s and p, and
so ({x/6},Us UUy) is an ordered substitution (O is empty).

In contrast, let s = (6,x) and t = (6,2.45), let p = (Real,Real) and Us = {x:
Int}, U; = 0. Then Uy is not principal for s and p (the principal variable typing
would be {x/Real}), and indeed, there exists no @ such that ({x/2.45}, Us©OUU})
is an ordered substitution.

5 Nicely Typed Programs

So far we have seen that matching, linearity, and principal variable typings are
crucial to ensure that unification yields ordered substitutions. Note that those
results generalise in the obvious way from terms to term vectors. We now define
three corresponding conditions on programs and the execution model.

First, we define modes [1]. For p/n € P, a mode is an atom p(my, ..., my),
where m; € {I, O} fori € {1,...,n}. Positions with I (resp. O) are called input
(resp. output) positions of p. We assume that a mode is associated with each
p € P. The notation p(3,t) means that § (resp. ¢) is the vector of terms filling
the input (resp. output) positions of p(s,%). Moded unification is a special case
of double matching [2].

Definition 5.1. Consider a resolution step where p(s,%) is the selected atom
and p(w,v) is the renamed apart clause head.The equation p(s,t) = p(w,v) is
solvable by moded unification if there exist substitutions 6, f such that
wh; = § and vars(thy) Nwvars(vh;) = O and 0,0, = 60;. A derivation where all
unifications are solvable by moded unification is a moded derivation.

Definition 5.2. A query Q@ = p1(51,t1),.--,Pn(5n,tn) is nicely moded if

t1,-..,tp is a linear vector of terms and for all i € {1,...,n}
vars(3;) N U vars(t;) = 0. (1)
j=i

vars(ty) N U vars(t;) = 0. (2)

An atom p(§,?) is input-linear if 3 is linear, output-linear if # is linear.

Definition 5.3. Let C' = pryz,,, (t0,5n41) < Db, 7 (51,01), - 03, 7 (Bnstn)
be a clause. If C is nicely moded, tg is input-linear, and there exists a variable
typing U such that U + C' Clause, and for each i € {0,...,n}, U is principal for
t; and 7/, where 7/ is the instance of 7; used for deriving U + C' Clause, then
we say that C is nicely typed. A query Ug :) is nicely typed if the clause

Go + (is nicely typed.
We can now state the main result.

Theorem 5.1. Let C and @ be a nicely typed clause and query. If Q' is a
resolvent of C' and () where the unification of the selected atom and the clause
head is solvable by moded unification, then @' is nicely typed.

Ezample 5.1. Consider again Ex. 1.3. The program is nicely typed, where the
declared types are given in that example, and the first position of each predicate
is input, and the second output. Both queries are nicely moded. The first query is
also nicely typed, whereas the second is not (see also Ex. 4.3). For the first query,
we have subject reduction, for the second we do not have subject reduction.

6 Discussion

In this paper, we have proposed criteria for ensuring subject reduction for typed
logic programs with subtyping under the untyped execution model. Our starting
point was a comparison between functional and logic programming: In functional
programs, there is a clear notion of dataflow, whereas in logic programming,
there is no such notion a priori, and arguments can serve as input arguments
and output arguments. This difference is the source of the difficulty of ensuring
subject reduction for logic programs.

It is instructive to divide the numerous conditions we impose into four classes:
(1) “basic” type conditions on the program (Sec. 2), (2) conditions on the ex-
ecution model (Def. 5.1), (3) mode conditions on the program (Def. 5.2), (4)
“additional” type conditions on the program (Def. 5.3).

Concerning (1), our notion of subtyping deserves discussion. Approaches dif-
fer with respect to conditions on the arities of type constructors for which there is

a subtype relation. Beierle [3] assumes that the (constructor) order is only defined
for type constants, i.e. constructors of arity 0. Thus we could have Int < Real,
and so by extension List(Int) < List(Real), but not List(Int) < Tree(Real).
Many authors assume that only constructors of the same arity are comparable.
Thus we could have List(Int) < Tree(Real), but not List(Int) < Anylist.
We assume, as [5], that if K/m < K'/m', then m > m'. We think that this
choice is crucial for the existence of principal types.

Stroetmann and Glaf§ [16] argue that comparisons between constructors of
arbitrary arity should be allowed in principle. Their formalism is such that the
subtype relation does not automatically correspond to a subset relation. Never-
theless, the formalism heavily relies on such a correspondence, although it is not
said how it can be decided. We refer to [14] for more details.

Technically, what is crucial for subject reduction is that substitutions are
ordered: each variable is replaced with a term of a smaller type. In Section 4, we
gave conditions under which unification of two terms yields an ordered substitu-
tion: the unification is a matching, the term that is being instantiated is linear
and is typed using a principal variable typing. The linearity requirement ensures
that a principle variable typing exists and can be computed (Subsec. 4.2).

In Sec. 5, we showed how those conditions translate to conditions on the pro-
gram and the execution model. We introduce modes and assume that programs
are executed using moded unification (2). This might be explicitly enforced by
the compiler, or it might be verified statically [2]. Moded unification can actually
be very beneficial for efficiency, as witnessed by the language Mercury [15]. Apart
from that, (3) nicely-modedness states the linearity of the terms being instan-
tiated in a unification. Finally, (4) nicely-typedness states that the instantiated
terms must be typed using a principal variable typing.

Nicely-modedness has been widely used for verification purposes (e.g. [2]). In
particular, the linearity condition on the output arguments is natural: it states
that every piece of data has at most one producer. Input-linearity of clause heads
however can sometimes be a demanding condition [13, Section 10.2].

Note that introducing modes into logic programming does not mean that
logic programs become functional. The aspect of non-determinacy (possibility of
computing several solutions for a query) remains.

Even though our result on subject reduction means that it is possible to
execute programs without maintaining the types at runtime, there are circum-
stances where keeping the types at runtime is desirable, for example for memory
management, printing, or in higher-order logic programming where the existence
and shape of unifiers depends on the types [11].

There is a relationship between our notion of subtyping and transparency (see
Subsec. 2.2). Transparency ensures that two terms of the same type have identical
types in all corresponding subterms, e.g. if [1] and [x] are both of type List(Int),
we are sure that x is of type Int. Now in a certain way, allowing for a subtyp-
ing relation that “forgets” parameters undermines transparency. For example,
we can derive {x:String} F [x] = [1] Atom, since List(String) < Anylist
and List(Int) < Anylist, even though Int and String are incomparable. We
compensate for this by requiring principal variable typings. A principal variable

typing for [x] and Anylist contains {x : u*}, and so u* can be instantiated to
Int. Our intuition is that whenever this phenomenon (“forgetting” parameters)
occurs, requiring principal variable typings is very demanding; but otherwise,
subject reduction is likely to be violated. As a topic for future work, we want to
substantiate this intuition by studying examples.

Acknowledgements. We thank Erik Poll and Francgois Pottier for interesting dis-
cussions. Jan-Georg Smaus was supported by an ERCIM fellowship.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

K. R. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of MFCS, LNCS, pages
1-19. Springer-Verlag, 1993.

C. Beierle. Type inferencing for polymorphic order-sorted logic programs. In
L. Sterling, editor, Proceedings of ICLP, pages 765-779. MIT Press, 1995.

R. Dietrich and F. Hagl. A polymorphic type system with subtypes for Prolog. In
H. Ganzinger, editor, Proceedings of ESOP, LNCS, pages 79-93. Springer-Verlag,
1988.

F. Fages and M. Paltrinieri. A generic type system for CLP(X'). Technical report,
Ecole Normale Supérieure LIENS 97-16, December 1997.

M. Hanus. Logic Programming with Type Specifications, chapter 3, pages 91-140.
MIT Press, 1992. In [12].

P. M. Hill and J. W. Lloyd. The Gddel Programming Language. MIT Press, 1994.
P. M. Hill and R. W. Topor. A Semantics for Typed Logic Programs, chapter 1,
pages 1-61. MIT Press, 1992. In [12].

T.K. Lakshman and U.S. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In V. Saraswat and K. Ueda, editors, Proceedings
of ILPS, pages 202-217. MIT Press, 1991.

A. Mycroft and R. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23:295-307, 1984.

G. Nadathur and F. Pfenning. Types in Higer-Order Logic Programming, chapter 9,
pages 245-283. MIT Press, 1992. In [12].

F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

J.-G. Smaus. Modes and Types in Logic Programming. PhD thesis, University of
Kent at Canterbury, 1999.

J.-G. Smaus, F. Fages, and P. Deransart. Using modes to ensure subject reduction
for typed logic programs with subtyping. Technical report, INRIA, 2000. Available
via CoRR: http://arXiv.org/archive/cs/intro.html.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17-64, 1996.

K. Stroetmann and T. GlaB. A semantics for types in Prolog: The type system
of PAN version 2.0. Technical report, Siemens AG, ZFE T SE 1, 81730 Miinchen,
Germany, 1995.

Simon Thompson. Type Theory and Functional Programming. Addison-Wesley,
1991.

