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Abstract. Finding mathematical models satisfying a specification built
from the formalization of biological experiments, is a common task of
the modeller that techniques like model-checking help solving, in the
qualitative but also in the quantitative case. In this article we propose
to go one step further by defining a continuous degree of satisfaction of a
temporal logic formula with constraints. We show how such a satisfaction
measure can be used as a fitness function with state-of-the-art search
methods in order to find biochemical kinetic parameter values satisfying
a set of biological properties formalized in temporal logic. We also show
how it can be used to define a measure of robustness of a biological
model with respect to some specification. These methods are evaluated
on models of the cell cycle and of the MAPK signalling cascade.

1 Introduction

Temporal logics [1, 2] have proven useful as specification languages for describing
the behavior of a broad variety of systems ranging from electronic circuits to
software programs, and more recently biological systems in either boolean [3–5],
discrete [6], stochastic [7, 8] or continuous [9, 10, 4, 11] settings.

Because temporal logics allow us to express both qualitative (e.g. some pro-
tein is eventually produced) and quantitative (e.g. a concentration exceeds 10)
information about time and systems variables, they provide a powerful specifi-
cation language in comparison with the essentially qualitative properties consid-
ered in dynamical systems theory (e.g. multistability, existence of oscillations)
or with the exact quantitative properties considered in optimization theory (e.g.
curve fitting). In particular, these logics are well suited to the increasingly quan-
titative, yet incomplete, uncertain and imprecise information now accumulated
in the field of quantitative systems biology.

This use of temporal logics relies on a logical paradigm for systems biology
[12] which consists in making the following identifications:

biological model = transition system
biological properties = temporal logic formulae

biological validation = model-checking



In this paradigm, temporal logics have been used in many applications, either as
query languages of large interaction maps such as Kohn’s map of the cell cycle
[5, 13] or gene regulatory networks [11], or as specification languages of biological
properties known or inferred [14] from experiments, and used for validating mod-
els, discriminating between models and proposing new biological experiments [6],
finding parameter values [9], or estimating robustness [15]. An important lim-
itation of this approach is however due to the logical nature of temporal logic
specifications and their boolean interpretation. A yes/no answer to a temporal
logic query does not provide indeed any information on how far we are from
satisfaction, nor how to guide the search to satisfy a formula. A measure of how
close a model is to satisfy a property is needed.

In this paper, we define a continuous violation degree that quantifies how far
from satisfaction an LTL formula is in a given model. In order to accommodate
the various kinds of quantitative models defined by either ordinary or stochastic
differential equation systems [16, 17], rule-based languages like SBML [18] or
BIOCHAM [19, 20], hybrid Petri nets [21, 22], stochastic process calculi [23, 24],
etc..., we represent the behavior of the system simply by numerical traces [14,
25, 9, 10], so our method is rather general. This notion of violation degree is then
used for two applications in systems biology: the search of kinetic parameter
values in a model, and the quantitative estimation of the robustness of a model
by adapting the general framework of Kitano [26] to our temporal logic setting.

Section 2 presents the quantifier free fragment of first-order linear time logic
with constraints over the reals, QFLTL(R), studied in [14] and used in this
paper. Section 3 defines a real-valued degree of satisfaction of an LTL formula
using a variable abstraction mechanism which replaces real valued constants in
LTL formulae by QFLTL(R) variables, and using an aggregation function which
composes the distances between the validity domain of these variables and the
corresponding constants.

Section 4 shows how such a continuous degree of satisfaction of an LTL
formula can be used as a fitness function in local search methods for searching
kinetic parameter values in order to satisfy a temporal logic specification. We
describe a gradient based method and use the state-of-the-art Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [27] to evaluate the method on models
of the budding yeast cell cycle with 8 parameters and of the MAPK signaling
cascade with 30 parameters and 7 unknown initial conditions.

In section 5 we propose a definition of a robustness degree of a property
w.r.t. a set of model perturbations weighted by probabilities. This definition is
inspired by the abstract definition of robustness proposed by Kitano for systems
biology [26]. We develop it here in our temporal logic setting and illustrate its
relevance by applying it to the previous model of the cell cycle.



2 Preliminaries on Linear Time Logic with Constraints
over the Reals

2.1 LTL(R)

The Linear Time Logic LTL is a temporal logic [2] that extends classical logic
with modal operators for qualifying when a formula is true in an infinite sequence
of timed states, named a trace. The temporal operators are X (“next”, for at
the next time point), F (“finally”, for at some time point in the future), G
(“globally”, for at all time points in the future), U (“until”), and W (“ weak
until”). These operators enjoy some simple duality properties, ¬Xφ = X¬φ,
¬Fφ = G¬φ, ¬Gφ = F¬φ, ¬(ψ U φ) = (¬φ W ¬ψ), ¬(ψ W φ) = (¬ψ U ¬φ).
We have Fφ = true U φ, Gφ = φ W false.

A version of LTL with constraints over the reals, named LTL(R), has been
proposed in [10, 9] to express temporal properties about molecular concentra-
tions. The atomic formulae of LTL(R) are formed with inequality relations and
arithmetic operators over the real values of molecular concentrations and of their
derivatives. The precise syntax of LTL(R) is given in Table 1. As negations and
implications can be eliminated by propagating the negations down to the atomic
constraints in the formula, we will assume in the following that all LTL(R) for-
mulae are in negation free normal form.

Formula ::= Atom | Formula ∧ Formula | Formula ∨ Formula
| Formula ⇒ Formula | ¬ Formula
| X Formula | F Formula | G Formula
| Formula U Formula | Formula W Formula

Atom ::= Value Op Value
Op ::= < | > | ≤ | ≥
Value ::= float | [molecule] | d[molecule]/dt | Time

| Value + Value | Value - Value | - Value | Value × Value
| Value / Value | Value ^ Value

Table 1. Syntax of LTL(R) formulae.

For instance, F([A]>10) expresses that the concentration of A eventually gets
above the threshold value 10. G([A]+[B]<[C]) expresses that the concentration
of C is always greater than the sum of the concentrations of A and B. Oscillation
properties, abbreviated as oscil(M,K), are defined as a change of sign of the
derivative of M at least K times:
F((d[M]/dt > 0) ∧ F((d[M]/dt < 0) ∧ F((d[M]/dt > 0)...)))

LTL(R) formulae are interpreted over infinite traces of the form

(< t0,x0, dx0/dt >,< t1,x1, dx1/dt >, ...)



which give at discrete time points ti, the concentration values xi of the molecules,
and the values of their first derivatives dxi/dt. Whereas LTL(R) formulae are in-
terpreted over infinite traces, the ones we consider are always finite. For instance,
in a model described by a system of ordinary differential equations (ODE), and
under the hypothesis that the initial state is completely defined, numerical inte-
gration methods (such as Runge-Kutta or Rosenbrock method for stiff systems)
provide a finite simulation trace. To extend it to an infinite trace, we adopted
the solution of adding a loop on the last state, with the assumption that the
finite time horizon considered for the numerical integration is sufficiently large
to check the properties at hand.

It is worth noticing that the semantics of the “next” operator refers to the
next time point on the trace and that in adaptive step size integration methods
of ODE systems, the step size ti+1 − ti is not constant but determined through
an estimation of the error made by the discretization.

Formally, the truth value of an LTL(R) formula in a trace π is given in Table
2. These truth values can be computed on traces by model-checking [9].

s |= α iff α is a propositional formula and α is true in the state s,
π |= φ iff s |= φ where s is the first state of π,
π |= Xψ iff π1 |= ψ,

π |= ψ U ψ′ iff there exists k ≥ 0 s.t. πk |= ψ′ and πj |= ψ for all 0 ≤ j < k.

π |= ψ W ψ′ iff either for all k ≥ 0, πk |= ψ.

or there exists k ≥ 0 s.t. πk |= ψ ∧ ψ′ and for all 0 ≤ j < k, πj |= ψ.
π |= ¬ψ iff π 6|= ψ,
π |= ψ ∧ ψ′ iff π |= ψ and π |= ψ′,
π |= ψ ∨ ψ′ iff π |= ψ or π |= ψ′,
π |= ψ ⇒ ψ′ iff π |= ψ′ or π 6|= ψ,

Table 2. Inductive definition of the truth value of an LTL(R) formula in a trace π.

2.2 QFLTL(R)

In [14], the quantifier free fragment of the first-order extension of LTL(R), named
QFLTL(R), has been considered for the purpose of analyzing numerical data
time series in temporal logic and computing automatically LTL(R) specifications
from experimental traces. Syntactically, QFLTL(R) adds variables to atomic
expressions with the following grammar:

Atom ::= Value Op Value | Value Op Variable

For instance, the QFLTL(R) formula G([A] < v) expresses the constraint that
v is greater than the maximum concentration of A. The restriction that a vari-
able can only appear in the right-hand side of a comparison is motivated by
computability results.



As usual, the semantics of a QFLTL(R) formula containing variables is de-
fined by its ground instances which are LTL(R) formulae. Given a trace π and
a QFLTL(R) formula φ(x) over a vector x of v real-valued variables, the con-
straint satisfaction problem, ∃x ∈ Rv (φ(x)), is the problem of determining the
valuations v of the variables for which the formula φ is true. In other words, we
look for the domain of validity Dφ ⊂ Rv such that π |= ∀v ∈ Dφ (φ(v)).

In [14], an LTL(R) model-checking algorithm has been generalized to a QFLTL(R)
constraint solving algorithm which computes the exact domain of validity Dφ for
any QFLTL(R) formula φ, in time O((nf)2v) where v is the number of variables
in φ, f the size of the formula and n the length of the trace. This algorithm is
at the heart of the methods presented in the following sections.

3 Continuous Satisfaction Degree of LTL(R) Formulae

In order to evaluate numerically the adequateness of a model w.r.t. a temporal
logic specification, we introduce a continuous violation degree relating a trace
of the model to the given constraint LTL formula. When the model satisfies its
specification the degree will be null, and the farther the traces from the expected
behavior, the biggest the violation degree.

3.1 Variable Abstraction

Our definition of the violation degree of an LTL(R) formula relies on an abstrac-
tion of the constants occurring in the formula by variables. Starting from an
LTL specification φ of the expected behavior of a system, we transform it into a
QFLTL formula φ∗ by mapping the constants (i.e. real numbers corresponding
to concentration thresholds, amplitudes, etc.) c1, . . . , cn appearing in φ, to dis-
tinct variables x1, . . . , xn. It is worth noting that φ∗ is a QFLTL formula that
can also be seen as a function over Rn associating a closed LTL formula to an
instantiation of its variables.

Definition 1. Given an LTL(R) formula φ and a QFLTL abstraction φ∗, the
objective, noted var(φ), is the single point in the variable space Rn of φ∗, with
xi equal to ci for all 1 ≤ i ≤ n.

Example 1. Consider the LTL formula φ = F ([A] > 20) indicating that from
experiments it was observed that after some time the concentration of compound
A becomes greater than 20. We get φ∗ = F ([A] > x) as a QFLTL formula and
R as variable space. We have var(φ) = 20.

Because of the syntactical restriction imposed on the occurrences of vari-
ables in the right-hand sides of the inequalities in QFLTL(R) formulae, the
transformation from φ to φ∗ cannot always be done automatically. However for
polynomial expressions over concentrations and derivatives, one can apply the
following transformation on atomic expressions:

(e1 Op e2)∗ = e Op x



where Op is an inequality operator, e1−e2 is a polynomial in the concentrations
and derivatives with term c of degree 0, e = e1 − e2 − c and x is a new variable
introduced for the term −c.

More generally, φ∗ will be a QFLTL formula given with a variable space Rn

that may include variables defined from other φ∗ variables with linear inequali-
ties, allowing some rescaling between variables if necessary. The objective var(φ)
will be defined explicitly through an instantiation of those variables, i.e. a point
in the variable space.

Example 2. Consider the QFLTL formula φ∗ = F ([A] ≥ v) ∧ F ([A] ≤ w), let us
define the amplitude variable amp = v − w and use it as the only variable for
our variable space R. We can set as objective that the amplitude of variation of
the compound A is at least 10 with var(φ) = 10.

3.2 Quantitative Satisfaction

Given a QFLTL formula φ∗ and a numerical trace T , the QFLTL(R) constraint
solving algorithm of [14] computes the exact domain of validity for φ∗ on T , as
the domain of the variables Dφ∗(T ) ⊂ Rn.

Definition 2. The violation degree of a numerical trace T to an LTL formula
φ, noted vd(T, φ) is the Euclidean distance between Dφ∗(T ) and var(φ), i.e.
minv∈Dφ∗ (T )d(v, var(φ)).

Example 3. In the example 1 and given a mathematical model of our system,
let us suppose that the QFLTL constraint solving algorithm applied to φ∗ on
simulation trace T computes Dφ∗(T ) =]−∞, 15] as domain for variable x. Since
var(φ) = 20 we get vd(T, φ) = 5, i.e. the violation degree is 5 since the compound
reaches a maximum of 15 whereas the formula expresses that the threshold 20
be reached.

For the specification of example 2, suppose that the constraint solving com-
putes the domains of v and w: D(v) =]−∞, 15] and D(w) = [10,+∞[. For this
formula φ, the maximum value of D(v) represents the maximum value of [A]
and the minimum value of D(w) its minimum value in the trace. The domain
for variable amp is Dφ∗(T ) =] −∞, 5] since we know that amp = v − w, and
thus, since var(φ) = 10, we obtain vd(T, φ) = 5, i.e. the amplitude of the curve
is 5 whereas we wanted it to be 10.

Note that if T is such that φ is satisfied then vd(T, φ) = 0 since var(φ) ∈
Dφ∗(T ). However when φ is not valid on T , the violation degree vd provides
a quantitative measurement of its degree of non satisfaction. The use of this
measure is illustrated in the following sections to improve parameter search for
biological models and to define a quantitative notion of robustness of a system
w.r.t. a temporal logic formula.



4 Kinetic Parameter Search using Violation Degree

The violation degree provides a measure of how far a given numerical trace is
from an LTL specification. It is thus quite natural to use this measure to guide
the search when trying to satisfy such a formula by replacing the scanning of
parameter values described in [9] by a much more efficient local search method
which makes evolve parameter sets by exploring a neighborhood of the current
parameter set and by choosing the one which minimizes the violation measure.

4.1 Principle

Let us consider an LTL formula φ, an SBML/BIOCHAM reaction model with
initial conditions and known parameter values, a set of unknown parameters to
explore and for each of those an interval of search. We consider the problem of
finding a set of values of the unknown parameters such that the violation degree
of the corresponding trace T obtained by numerical simulation is vd(T, φ) = 0.

A generic optimization algorithm for parameter search can be described as
follows:

Algorithm 1 (generic parameter search method)

1. Set the current point in the parameter space to a random point belonging to
the provided search box, compute a numerical simulation with trace T and
the corresponding violation degree vd(T, φ);

2. if vd = 0 jump to 5.
3. for each point in a defined neighborhood of the current point, compute a trace

and its violation degree;
4. based on the violation degrees of the neighbors, determine the next point of

the iteration, set the current point to this point, update current vd and go to
2.

5. Return the current point in the parameter space.

This procedure can be interrupted after a given number of steps, returning
the best parameter set (minimizing the violation degree). It can also be restarted
with a new initial point (step 1) several times in order to diversify the search.

A naive method would be to define as neighborhood of the current parameter
state the parameter sets obtained by modifying one parameter by values ±δ ;
and to choose as next parameter set the best neighbor.

More efficient instances of this algorithm can be obtained however, by com-
bining state-of-the-art nonlinear optimization methods with the computation of
our violation degree used as a blackbox fitness function. In the following sec-
tions, we use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
of Hansen and Ostermeier [27]. This method uses a probabilistic definition of
the neighborhood, and stores information in a covariance matrix in order to re-
place the approximate gradient and Hessian of a quasi-Newton method by an
evolutionary algorithm.



4.2 Evaluation on Cell Cycle Models

In this section we present the application of the parameter search method out-
lined above to the budding yeast cell cycle model of [28]. This model displays how
proteins cdc2 and cyclin interact to form the heterodimer Cdc2-Cyclin~{p1,p2}
known as maturation promoting factor (MPF) and playing a key role in the con-
trol of mitotic cycles. The reaction rules of the model are the following:

MA(k1) for _ => Cyclin.

MA(k3) for Cyclin + Cdc2~{p1} => Cdc2-Cyclin~{p1,p2}

MA(k4p) for Cdc2-Cyclin~{p1,p2} => Cdc2-Cyclin~{p1}

AUTOCAT(k4) for Cdc2-Cyclin~{p1,p2} => Cdc2-Cyclin~{p1}

MA(k6) for Cdc2-Cyclin~{p1} => Cyclin~{p1} + Cdc2

MA(k7) for Cyclin~{p1} => _

MA(k8) for Cdc2 => Cdc2~{p1}

MA(k9) for Cdc2~{p1} => Cdc2

MA(k) denotes Mass Action law kinetics with parameter k while ~{p1} and ~{p1,p2}

denote phosphorylated forms of a molecule. The rate of reaction 4 is described by:
AUTOCAT(k4)= k4*[Cdc2-Cyclin~{p1,p2}]*[Cdc2-Cyclin~{p1}]^2.

We use as reference point kTyson the values of the kinetic parameters determined in
[28]. The simulation for kTyson of the system of ODEs extracted from these rules, given
in appendix, is displayed in Figure 1. The total amount of cyclin presents oscillations
of period 35 while MPF exhibits activity peaks with same period.

Using the optimization method CMA-ES together with our violation degree as a
parameter search method we wonder whether it is possible to find values of the kinetic
parameters corresponding to higher MPF peaks or oscillations with higher amplitudes
or shorter periods.
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Fig. 1. Dynamical behavior of the cell cycle model. The plots represent total cyclin
(YT) and maturation promoting factor (MPF). (a) Oscillatory behavior obtained with
parameter values kTyson . (b) Higher MPF peaks obtained with k∗

Tyson (solution of
problem S1). (c) Shorter oscillations period obtained with k∗

4 (solution of problem S4).

Search problem S1 : higher MPF peaks (2 parameters unknown)
Two parameters, k4 and k6, have been found in [28] to play a particular role for

the existence of oscillations. Depending on their values the system exhibits either a



steady state behavior or limit cycle oscillations. We wonder whether it is possible to
obtain higher MPF peaks by changing values of k4 and k6 only, all other parameters
remaining at the value kTyson chosen in [28]. More precisely, we want to reach at least
MPF peaks of 0.3, the maximum amount of MPF for kTyson being 0.19.

Therefore we define the LTL specification : φ1 = F ([MPF ] > 0.3) with the corre-
sponding QFLTL formula being :

φ∗1 = F ([MPF ] > max)

The variable space associated to φ∗1 is R and corresponds to the sole variable max.
The objective is var(φ) = 0.3, i.e the target peak value of MPF is 0.3. We have been
able to find valid parameter values, denoted k∗

Tyson, satisfying vd(T, φ∗1) = 0 where T
is the corresponding simulated trace (see Figure 1b). k∗

Tyson is given in Table 3.
As the plot shows, for these parameter values essential features of the curve, espe-

cially repeated MPF peaks, are conserved although it was not enforced by the speci-
fication. In particular, a constantly growing amount of MPF would have also resulted
in a null violation degree of this formula.

All computations have been performed on an Intel Core 2 Duo 2Ghz with 2Go
RAM. Note that as the optimization method CMA-ES uses a probabilistic neighbor-
hood two consecutive runs can yield different results. In this example answers are
typically obtained in less than 1 minute after around 250 numerical simulations and
violation degree computations.

Search problem S2 : amplitude of MPF oscillation (2 parameters un-
known)

In this example we refine the previous query by constraining the minimum level
of MPF. We search for k4 and k6 values that preserve at least two periods of MPF
oscillations having same amplitudes as those observed for kTyson.

φ∗2 = F ( [MPF ] > max ∧ F ([MPF ] < min

∧F ([MPF ] > max ∧ F ([MPF ] < min))))

In order to specify that the amplitude is at least 0.19, we use the variable space R
corresponding to only one variable, amp = max−min, and set var(φ) = 0.19, i.e the
target amplitude is 0.19. This value corresponds to the amplitude obtained for kTyson.
Starting from a different value k2 for k4 and k6, we try to recover the behavior of
kTyson. We found such parameters (in 11 s), given in Table 3 and referred to as k∗

2.
To illustrate the path followed during the search from k2 to k∗

2 we computed the
violation degree landscape in the k4, k6 parameter space. The resulting landscape is
displayed in Figure 2. Note that as all constants of the formula have been abstracted
by variables, the violation degree can only be finite. In particular when no oscillations
are present in the trace amp will be equal to 0, thus leading to a violation degree of
0.19. Regions where the violation degree is 0.19 correspond to regions of steady state
behavior whereas regions with a violation degree between 0 and 0.19 correspond to
regions of oscillations.

Under mild assumptions Tyson determined linear equations defining a region in
the k4, k6 plane where oscillations occurs, also represented in Figure 2. Our results
are fully consistent with his analytical analysis, and provide more information on the
amplitude of oscillation w.r;t. parameters k4 and k6.



Search problem S3 and S4 : amplitude and period of oscillations (all
8 parameters unknown)

To illustrate the scalability of the method we carry out two parameter searches on
all 8 parameters of the model. The first one (problem S3) is the same query as above
with formula φ∗2 but with all parameters unknown. The second one is a more complex
query used to find shorter oscillation periods of Cdc2 :

φ∗3 = F ( d([Cdc2])/dt < 0 ∧X(d([Cdc2])/dt > 0 ∧ Time = t1

∧X(F (d([Cdc2])/dt > 0 ∧X(d([Cdc2])/dt < 0 ∧ Time = t2))

To specify that the target period is 20, we use the variable space R corresponding
to the variable per = t2 − t1 with target var(φ) = 20. Search problem S3 starts from
parameter values k3 satisfying the constraints on their order of magnitude given in
[28]. k3 does not give rise to oscillations. Search problem S4 starts from k4 = kT yson.
In both cases parameter values are found satisfying the query (in 30 s for S3 and 350 s
for S4). Results are given in Table 3.
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Fig. 2. Violation degree landscape of problem S2. This violation degree measures am-
plitude of oscillations. Non oscillating regions have highest violation degree.



S1 S2 S3 S4
Initial values Result Initial values Result Initial values Result Initial values Result

vd(T, φ) 0.11 0 0.04 0 0.19 0 15.1 4.90e-4

Parameters ktyson k∗
tyson k2 k∗

2 k3 k∗
3 k4 k∗

4

k1 1.50e-2 1.50e-2 1.50e-2 1.50e-2 1.00e-2 1.14e-2 1.50e-2 2.41e2
k3 2.00e2 2.00e2 2.00e2 2.00e2 1.00e2 1.13e2 2.00e2 2.83e2
k4p 1.80e-2 1.80e-2 1.80e-2 1.80e-2 1.00e-2 8.77e-3 1.80e-2 2.24e-2
k4 1.80e2 8.99e2 2.00e1 1.94e2 1.00e2 1.82e2 1.80e2 2.28e2
k6 1.00 3.23 0.25 1.41 1.00 4.17e-1 1 1.13
k7 0.60 0.60 0.60 0.60 1.00 1.37 0.60 5.99e-1
k8 1.00e2 1.00e2 1.00e2 1.00e2 1.00e3 8.99e2 1.00e2 1.42e2
k9 1.00e2 1.00e2 1.00e2 1.00e2 1.00e2 8.44e1 1.00e2 6.94e1

Table 3. Resulting parameter values for search problems S1, S2, S3 and S4.

4.3 Evaluation on MAPK Signal Transduction Model

The MAPK signal transduction model [29] is used to test the scalability of the parame-
ter search method on a larger model. This model, made of a cascade of phosphorylation
reactions, consists of the following rules :

(MA(k1), MA(k2)) for RAF + RAFK <=> RAF-RAFK.

(MA(k3),MA(k4)) for RAF~{p1} + RAFPH <=> RAF~{p1}-RAFPH.

(MA(k5),MA(k6)) for MEK~$P + RAF~{p1} <=> MEK~$P-RAF~{p1}

where p2 not in $P.

(MA(k7),MA(k8)) for MEKPH + MEK~{p1}~$P <=> MEK~{p1}~$P-MEKPH.

(MA(k9),MA(k10)) for MAPK~$P + MEK~{p1,p2} <=> MAPK~$P-MEK~{p1,p2}

where p2 not in $P.

(MA(k11),MA(k12)) for MAPKPH + MAPK~{p1}~$P <=> MAPK~{p1}~$P-MAPKPH.

MA(k13) for RAF-RAFK => RAFK + RAF~{p1}.

MA(k14) for RAF~{p1}-RAFPH => RAF + RAFPH.

MA(k15) for MEK~{p1}-RAF~{p1} => MEK~{p1,p2} + RAF~{p1}.

MA(k16) for MEK-RAF~{p1} => MEK~{p1} + RAF~{p1}.

MA(k17) for MEK~{p1}-MEKPH => MEK + MEKPH.

MA(k18) for MEK~{p1,p2}-MEKPH => MEK~{p1} + MEKPH.

MA(k19) for MAPK-MEK~{p1,p2} => MAPK~{p1} + MEK~{p1,p2}.

MA(k20) for MAPK~{p1}-MEK~{p1,p2} => MAPK~{p1,p2} + MEK~{p1,p2}.

MA(k21) for MAPK~{p1}-MAPKPH => MAPK + MAPKPH.

MA(k22) for MAPK~{p1,p2}-MAPKPH => MAPK~{p1} + MAPKPH.

We denote by kMAPK the set of kinetic parameter values used as reference for this
model.

Search problem S5 : curve fitting at specific time points (22 parame-
ters unknown)

In this example, we investigate the use of our parameter search method as a curve
fitting tool at specific time points, on 22 parameter values. In order to express the
classical distance between two curves at time points 30 and 60 for instance, we use the
following pattern of formulae :



φ∗4 = G( Time = 30 → [MEK − RAF˜{p1}] = u

∧Time = 60 → [MEK − RAF˜{p1}] = v)

The parameter space of this formula is R2 is defined by the two variables u and v.
We set target var(φ) to the target values of [MEK − RAF˜{p1}] at time 30 and 60.
Note that this formula can be extended to any number of time points and molecules
in order to perform a complete curve fitting, if it is relevant.

This pattern of formulae can be used to search the values of all the 22 parameters
of the model to fit the concentration [MEK − RAF˜{p1}] at six time points. The
objective values for these time points are the values of the original model, obtained by
simulation with the original parameters kMAPK . The initial values for the search are
some random altered values kMAPKalt . Numerical simulations obtained with kMAPK ,
kMAPKalt and the resulting parameter values are given in Figure 3. It took 290 s to
obtain the result. This shows that the search method scales up well with the dimension
of the parameter space, in comparison with the parameter scanning method which has
an exponential time complexity in the number of parameters. Here, the computation
time is more dependent on the type of problem (formula used and initial values of
the parameters) and on the landscape of the violation degrees than on the number of
parameters.
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Fig. 3. Dynamical behavior of the MAPK model. The curves display
[MEK − RAF˜{p1}]. (a) Reference curve obtained with kMAPK (b) Simulated
curve obtained with altered parameter values kMAPKalt . Points are the reference
values taken from curve (a). (c) Simulated curve obtained after curve fitting (solution
of problem S5).

Search problem S6 : find oscillations (30 kinetic parameters and 7
initial conditions unknown)

In [30], oscillations have been found in the MAPK cascade model of [29] although
this model does not contain any negative feedback reaction. This does not contradict
Thomas’ necessary condition for sustained oscillations as such a purely directional cas-
cade does contain negative feedback in its influence graph as shown in [31] and analyzed
in [32]. However, to know whether these negative circuits in the influence graph are



functional, one needs to search for kinetic parameter values and initial conditions that
exhibit sustained oscillations.

Just by defining the following formula:

φ∗5 = F ( [MAPKp1p2] > max ∧ F ([MAPKp1p2] < min))

using the variable space R for the single variable amp = max−min, and by asking
that the amplitude be at least 0.5, setting var(φ) = 0.5, parameter values leading
to sustained oscillations, such as the ones depicted in Figure 4, were found in a few
minutes.

Fig. 4. Oscillations of MAPK found with CMA-ES in BIOCHAM

5 Quantitative Robustness Analysis

5.1 Principle

We have seen in the previous section that our notion of violation degree allows us to
use optimization techniques to efficiently guide parameter search given temporal logic
properties. Here, we show that the notion of violation degree also allows us to define in
a mathematically precise way a degree of robustness of a systems behavior described
in temporal logic w.r.t. a set of perturbations, and estimate it computationally. This
robustness degree is defined as the inverse of the average violation degree of the property
of interest over all admissible perturbations, possibly weighted by their probabilities.
This definition is an adaptation of the general definition given by Kitano [26] to our
temporal logic setting. Formally, using the notations introduced in previous sections,
we set:



Definition 3. Let P be a set of perturbations, prob(p) be the probability of perturbation
p, T (p) be the timed trace of the system under perturbation p ∈ P . The robustness
degree Rφ,P of a property φ with respect to P is the real value

Rφ,P =

„Z
p∈P

vd(T (p), φ)prob(p)dp

«−1

If the set of perturbations is finite (eg, gene knock outs), the robustness degree is
simply the inverse of a finite weighted sum and can be exactly computed. If the set of
perturbations is infinite, the robustness degree can be estimated by computing the vio-
lation degree between the behavior of the perturbed system T (p) and the specification
φ for sufficiently many perturbations.

5.2 Evaluation on Cell Cycle Model

Using the same cell cycle model as in section 4.2, we compare the robustness of oscilla-
tion properties with regard to perturbations of parameter values k4 and k6 for different
points in the parameter space.

We consider that parameter values for k4 and k6 are normally distributed around
their reference value with coefficient of variation equal to 0.2. We also enforce that
k4 ≥ 0 ∧ k6 ≥ 0. We examine the robustness of the property expressed by φ∗2, that is,
MPF oscillations are of amplitude at least 0.19.

The robustness degree of this property is compared for three different values of k4
and k6. These three points in the parameter space of k4 and k6 are indicated by the
three points kA, kB and kC in Figure 2. In all cases, the estimation of the robustness
degree is done by computing the mean value of the violation degree for 500 samples.

The estimated degree of robustness for parameters kA, kB and kC are respectively
133, 12.9 and 13.5. This is consistent with the location of points kA, kB and kC .
Perturbations around point kA have high probabilities of staying in the region satisfying
the specification whereas perturbations around point kB have high probabilities of
moving the system to the region with no oscillation. kC is more robust than kB even
though, as opposed to kB , its violation degree is non null. This can be explained by the
abrupt transition between oscillating and non oscillating regions near kB compared to
the smoother transition near kC .

The robustness degree can be estimated for perturbations on any number of pa-
rameters. For instance, by computing a robustness estimate for perturbations on all
parameters, with coefficient of variation 0.2 for specification φ∗2 and parameter values
kTyson and k3, the estimated robustness degrees for kTyson and k3 are 20.7 and 27.1
respectively. This indicates that the oscillations are more robust to variations of the
parameters values for k3 than for the parameters given in the original model of Tyson.

6 Related Work

Probabilistic temporal logics and probabilistic model checking have been used in sys-
tems biology [33], e.g. for an analysis of a probabilistic model of the MAP kinase sig-
naling cascade. However these techniques provide information on the probability that
a given property is exactly satisfied. They thus provide no quantitative information on
unsatisfied formulae and cannot be compared to the satisfaction degree presented in
this paper.



More closely related to our continuous satisfaction degree are the linear metrics for
quantitative transition systems defined in [34]. These metrics apply to traces and can
be characterized by quantitative LTL formulae. LTL formulae are interpreted on the
[0, 1] interval. However, no implementation is proposed, and the applicability of this
approach to solving optimization and robustness problems is not discussed.

To the best of our knowledge, the most closely related approach is the one proposed
by Fainekos and Pappas [35], where a satisfaction degree for temporal logic specifica-
tions is defined. Although the two approaches share many similarities, a significant
difference is that in [35] the satisfaction degree corresponds to a distance between a
trace and the set of traces satisfying a formula, whereas in our case the violation de-
gree corresponds to a distance between a formula and the set of formulae satisfied by
the trace. An advantage of the satisfaction degree is that it offers a rather intuitive
interpretation, since it corresponds to the minimal perturbation of the trace that can
change the truth value of the specification. However, the dimension of the space of
traces is in general considerably higher than the dimension of the space of formulae.
In the first case, traces are represented in a space of dimension X |τ | where X the state
space and |τ | the lenght of the trace. In the second case, formulae are represented
in a space whose dimension equals the number of variables appearing in the QFLTL
formula, typically corresponding to the number of numerical constants appearing in
the original LTL formula. Because the computation of satisfaction or violation degree
involves set operations, the dimensionality of the corresponding spaces may strongly
affect the practical applicability of these methods. Note however that these approaches,
handling sets of traces [36, 37], and our approach, handling sets of formulae, are a priori
compatible, and that their combination might combine their benefits.

Concerning robustness, in [38], Chaves and colleagues propose a quantitative mea-
sure of robustness corresponding to the volume of the set of valid parameters in the
parameter space. This measure thus reflects the proportion of parameters that satisfy
exactly the property, as opposed to our measure that represents how close to satis-
fying the property the system is for various parameters. These two measures provide
complementary information on robustness. In [15], robustness is similarly defined with
respect to temporal logic specifications. However, it has a Boolean interpretation, since
a property is defined as robustly satisfied by an ODE system if it is satisfied by the sys-
tem for all possible perturbations. As stated earlier, obtaining a quantitative measure
of robustness is more informative for many practical problems.

7 Conclusion

We have defined a continuous measure of satisfaction of an LTL(R) formula in a numer-
ical trace and shown that it can be computed using the QFLTL(R) constraint solving
algorithm of [14]. This measure is more informative that the Boolean interpretation of
the formulae and can be used in many situations in systems biology to reason about
numerical traces.

This measure can be used as a fitness function in state-of-the-art optimization
tools to efficiently guide the search of kinetic parameter values in biochemical reaction
models in order to satisfy a set of properties formalized in LTL(R).

It can similarly be used to estimate the robustness of a model w.r.t. temporal logic
specifications, in accordance to Kitano’s notion of robustness for systems biology.



The generalization of model-checking to temporal logic constraint solving which is
at the basis of the computation of this satisfaction measure thus seems to open new
research avenues for the use of temporal logics in systems biology.
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