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Chronotherapy and precision medicine
Time-dependent response to chemotherapy, radiotherapy.. = chronotherapy

Long-term aim: Personalize chronotherapies, but with what data?

Today’s aim: Find link between systemic regulators (e.g. Temperature) and cellular clock

Indeed, only wearables data are available'

i

Focus on mice: data available both at the
systemic and cellular level

'Biopsies around the clock not easily available at individual patient scale



Mouse class systemic regulators data
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Mouse class gene expression data (liver)
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A new model of the cellular circadian clock

Ordinary differential equations
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A new model of the cellular circadian clock
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Incorporating systemic regulators action on gene expression

Hypothesis: Multiplicative control of systemic regulators z on gene transcription
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Incorporating systemic regulators action on gene expression

Hypothesis: Multiplicative control of systemic regulators z on gene transcription

dxvivo |
dt = f(Z)VmaXTranSC(M, ‘)/) — awio
dxvivo N axviyg
dt
L=t e
/@ Transc(M, y)

Data for x = Bmall, Per2 and Rev-Erba
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Systemic regulators identification as a regression problem

| | > Mouse class dataz x

Axviw(ti)
At
Transc(M, y)

+ ax’o(t;)

e f(z(t)) = =y(t)

17 Residuals

Learn f using the samples {(z(ti),y(ti)) ,i={1,..,N —1}}

Explicit form | T_ Systemic Regulators

(unknown)

Learning f usually boils down to solve

N-1 . 2
argmin D (y(fi) _f(z(ti)))
fes i=1

For this study, .7 will be the space of linear functions.



Computing residuals y: acquisition of clock parameters and protein levels
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Clock model fit on in vitro hepatocytes data
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Clock model fit on in vitro hepatocytes data
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Perturbations of parameter values to obtain multiple realistic residual trajectories y(f)
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Linear regression
For each residual y, a linear model E Bjz; is fitted
j

@ The active regulators of the fitted model should be the same classwise.

e Different weights  for a regulator from one class to another are allowed
Need to account for the delay introduced by moving in different compartments

= Integral regulators Z;(t) = [ z;(s)ds are added: z < (z,Z)

T 0

Aregulator z; and its integral Z; are never found together in a model for all j

0.8 Food Intake (Class 1) 0.7 Food Intake (Class 2)
+ 0.4 fMelatonin +0.2 f Melatonin



Total error as a function of the number of involved regulators
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Total error as a function of the number of involved regulators
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2-term models ranking
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2-term models ranking
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@ Food Intake and Temperature stand out as best models key components.

@ Melatonin included as negative control: validation of the approach.



Classwise weights analysis for best 2-term models
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Conclusion & Perspectives

Biological insights and perspectives:

@ No realistic control for all 3 genes mRNA degradation & Rev-Erba transcription

@ Food Intake and Temperature main actors for Bmall and Per2 transcription

» Integration of best regulator models back in the ODEs
» Validation on human data

» Towards personalized chronotherapies

Design of a new model learning approach and further developments:
@ Integration of multi-type data and classwise analysis

@ Encompass prior knowledge in model, mechanistic predictions on unknown parts

» Handle large number of variables within the sparse multi-task regression framework



