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Abstract—Bin packing is a classical combinatorial opti-
mization problem which has a wide range of real-world ap-
plications in industry, logistics, transport, parallel computing,
circuit design and other domains. While usually presented
as discrete problems, we consider here continuous packing
problems including curve shapes, and model these problems
as continuous optimization problems with a multi-objective
function combining non-overlapping with minimum bin size
constraints. More specifically, we consider the covariance
matrix adaptation evolution strategy (CMA-ES) with a non-
overlapping and minimum size objective function in either
two or three dimensions. Instead of taking the intersection
area as measure of overlap, we propose other measures,
monotonic with respect to the intersection area, to better
guide the search. In order to compare this approach to
previous work on bin packing, we first evaluate CMA-ES
on Korf’s benchmark of consecutive sizes square packing
problems, for which optimal solutions are known, and on a
benchmark of circle packing problems. We show that on
square packing, CMA-ES computes solutions at typically
14% of the optimal cost, with the time limit given by the best
dedicated algorithm for computing optimal solutions, and
that on circle packing, the computed solutions are at 2% of
the best known solutions. We then consider generalizations of
this benchmark to mixed squares and circles, boxes, spheres
and cylinders packing problems, and study a real-world
problem for loading boxes and cylinders in containers. These
hard problems illustrate the interesting trade-off between
generality and efficiency in this approach.

Keywords-bin packing; evolutionary computing; contin-

uous optimization; covariance matrix adaptation; square
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I. INTRODUCTION

Bin packing problems are concerned with finding how
to place a given number of objects in a limited space
without overlapping. The objective is either to use a
minimum number of bins for packing a given list of items,
or dually, to cut a maximum number of items in a given
piece of material. This kind of problems has a wide range
of real-world applications in industry, logistics, transport,
parallel computing, circuit design and other domains. In
many applications, small improvements in the packing can
result in considerable benefits.

Packing is however a hard optimization problem. The
complexity of the problem, and the possibility or not of
using exact methods, depend upon the geometry of the
objects and the constraints imposed. Packing objects of
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different sizes is also much harder than packing objects
of same size since the objects are no longer symmetrical.
In one dimension, deciding the existence of a packing of
a list of objects of different integer lengths, into & bins
of some given length, is already an NP-complete problem
[1]. Higher dimensional discrete square packing problems,
in two or three dimensions for instance, have the same
theoretical complexity, and have been studied extensively
for their numerous practical applications [2].

In this paper, in addition to packing problems for poly-
gons [3], we consider continuous packing problems with
curve shapes. In addition to the problem of packing circles
in a rectangular or circular bin' [4], [5], we consider
packing problems mixing square and curve shapes, such
as polygons and circles, and three dimensional packing
problems mixing boxes, spheres and cylinders.

On square packing problems, exact methods have been
used to find optimal solutions and prove optimality. For
instance, constraint-based methods have been used by
Simonis and O’Sullivan in [6] to solve Korf’s benchmark
of discrete consecutive-square packing problems and prove
the optimality of solutions, up to 32 squares in [7].

On curve packing problems, inexact methods like for
instance genetic algorithms [8] or hybrid simulated an-
nealing with tabu search methods [5], are usually used
to compute suboptimal solutions. On circle packing prob-
lems, [4] reports the use of exact methods for problems
with circles of same size, and global optimization methods
from mathematical software for problems with circles of
different sizes for which the optimal solutions are not
known.

In this paper, we evaluate the covariance matrix adap-
tation evolution strategy (CMA-ES?) [9], one of the most
powerful evolutionary algorithm for continuous optimiza-
tion with arbitrary objective functions, on hard packing
problems including square shapes, curve shapes, mixed
square and curve shapes, and also continuous rotations.

In order to measure the overlaps between objects, we
show that instead of taking the intersection area as overlap
measure, other measures, monotonic with respect to the

IThe web site http://packomania.com contains benchmarks of such
circle packing problems.
Zhttps://www.lri.fr/~hansen/cmaes_inmatlab.html



intersection area, can better guide the search. We define
such monotonic measures for polygons and circles.

We also propose a challenging benchmark of problems
which generalizes both Korf’s benchmark of consecutive
size square packing problems [3], and a similar bench-
mark of circle packing problems [4], to mixed squares
and circles, and three dimensional problems with cubes,
spheres, and cylinders. In addition, we consider a real-
world application for loading boxes and cylinders in a
container?.

On problems on which the optimal costs are known,
we show that CMA-ES computes solutions at typically
14% of the optimal bin size in time comparable to the
best dedicated algorithms for finding optimal solutions. On
circle packing, we show that CMA-ES computes solutions
at 2% of the best known algorithms in the same time
limit. On our real-world application for loading a container
with boxes and cylinders, CMA-ES computes valuable
solutions in typically less than 15 minutes per run for 59
objects.

These results show that solving packing problems by
continuous optimization using monotonic overlap mea-
sures provides an interesting trade-off between generality
and efficiency, and that CMA-ES in particular succeeds in
computing quality packings on very hard problems.

II. PACKING BY CONTINUOUS OPTIMIZATION

Packing problems, either discrete or continuous, can
be modelled as continuous optimization problems where
the unknowns are the coordinates of the objects, and the
objective function to minimize combines a measure f, of
the overlap between the objects, with a measure f; of the
overall space used for the packing.

It is worth remarking that the overlap measure does not
need to be the exact area or volume of the intersection,
but can be any positive function equal to zero when there
is no overlap, and monotonic with respect to the area or
volume of the intersection.

By taking as objective function f = « - f, + fs with
a sufficiently high coefficient o, we ensure that the non-
overlapping constraints are enforced before the space used
is minimized.

A. Monotonic Measures of Overlap for Guiding the
Search

Between two squares, rectangles, triangles or more gen-
erally polygons, the overlap can be measured as the area
o of the intersection. CGAL* is a computational geometry
library which can be used for these computations.

However, in the case where one polygon is totally
included in another one, the intersection area which is
the area of the included polygon, remains equal as long
as the polygon is included. In order to guide the search
towards the elimination of this case, we found it important

3All the packing problems presented in this article, and the
source code in C are available at http://contraintes.inria.fr/benchmarks/
packingCMAES/

“http://www.cgal.org/

to add a measure of the degree of inclusion. We thus take
fo = o+d, where d is the sum of the distances between the
borders of the pairs of polygons that contain each other.
Indeed, d decreases when the included polygons approach
the borders of their enclosing polygons, and is equal to
zero when there is no more total inclusions.

The overlap between two circles, given by the coor-
dinates of their center and their radius, (z1,y1,71) and
(z2,y2,72), does not need to be the area of intersec-
tion of the circles. We found it preferable to measure
the overlap as the positive difference between the sum
of their radii and the distance between their centers,
ie. max(0,71 +72 — /(21 — 22)% + (u1 — y2)?2). Indeed,
in the case of total inclusion of one circle in another, this
simpler measure has the advantage of decreasing when the
distance between the borders decreases, and thus measures
the degree of total inclusion as well.

Similarly, between a square ABC'D and a circle C =
(O,r), we use the overlap measure dy(O, ABCD) +
de([AB],C) +dye([BC), C) +d([CD), C) +d(|AD], C)
where dp(O, ABCD) is the distance between point O
and the closest edge of square ABCD if O is in ABCD,
0 otherwise; and, writing P for be the perpendicular pro-
jection of O on (AB), dy([AB],(O,r)) is the minimum
distance min(||PA||, ||PB]J|) if P is in [AB], otherwise
the positive difference max(0,r — min(||OA|, || OB]|)).
The idea here is again to provide a measure of the degree
of total inclusion. This measure is generalized to polygons
and circles.

These measures of overlap in two dimensions (2D) can
also be generalized to measure the overlap of objects in
3D, between polygons (boxes, prisms,...), spheres, cylin-
ders, and rigid assemblies of 3D objects.

Interestingly, they can also be generalized to allow
continuous rotations of objects, by adding an orientation
for each object. This can be achieved by adding one
angle variable in 2D, or three angle variables in 3D, to
each object. Figure 1 depicts some solutions found with
these measures using CMA-ES, for packing triangles with
continuous rotations in a rectangular bin of minimum
area>.

It is worth noting that in this approach, the capability to
define and compute a measure of overlap between objects
is the only requirement for packing arbitrary complex
shapes, with or without continuous rotations.

B. Measures of the Space Used to Minimize

Now, for minimizing the space used for the packing in
the case of a rectangular bin (resp. a box), one can easily
take as measure f; the area (resp. volume) of the enclosing
rectangle (resp. box) defined by the extreme points of the
objects in the packing.

For a circular bin, as considered in the circle packing
benchmark of the next section, one can enforce it to be
centered in the origin without loss of generality, and then

SFriedman’s results on packing unit squares with continuous rota-
tion are available at http://www?2.stetson.edu/~efriedma/papers/squares/
squares.html



Figure 1. Solutions found by CMA-ES (with four restarts) for packing
with rotations N (respectively 11, 12, 13 and 20) equilateral triangles
of consecutive sizes from 1 to N, in a rectangular bin of minimum area
(here 9.53 x 31.62, 17.82x20.78, 20.34 x 22.25 and 32.54 X 51.65). It
is remarkable that the packings in staggered rows are found by continuous
optimization.

take as measure f, of the space used just its radius,
defined as the maximum distance of the extreme points of
the objects, i.e. for polygons the largest distance to their
extreme points, and for circles and spheres, the distance
to their center plus radius.

III. COVARIANCE MATRIX ADAPTATION EVOLUTION
STRATEGY

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES®) [9] is one of the most powerful global op-
timization strategy for minimizing an objective function
over the reals in a “black-box” scenario, i.e. without
assuming any property about the objective function. This
method is a multi-point method which uses of population
of configurations (here packings defined by the coordinates
and orientations of the objects) to sample the search
space, estimates the covariance matrix at each sampling,
determines the next move in the most promising direction
(here translations and rotations of objects), and updates ac-
cordingly the multi-variate normal distribution for the next
sampling (i.e. mean value and variance of the coordinate
and orientation variables).

CMA-ES behaves in effect like a gradient-based method
where the gradient is estimated by sampling, according to
some multi-variate normal distribution of the variables,
which is itself updated during search to adapt to the
landscape. When the objective function does not improve,

Ohttps://www.lri.fr/~hansen/cmaes_inmatlab.html

CMA-ES can be restarted to find different local optima.
We refer to [9] for more details on that evolutionary
algorithm.

The parameters of CMA-ES were used with their default
values as follows: a population size of 100 and a stopping
criterion based on either an improvement of less than
le — 12 in the objective function, or a standard deviation
of the distribution less than 0.5 for rectangular bin packing
(0.01 for the circle packing benchmark), or a fixed timeout
indicated in the next section for each benchmark. For
packing objects in a rectangle, the initial distribution of
solutions was centered on the coordinate value 100 with a
standard deviation of 100, so that the initial solutions have
few overlaps. For packing circles in a circle, we start from
an initial distribution of solutions centered on the origin
and a standard deviation of 1, which is sufficient to ensure
that the initial placements have few overlaps when the radii
are fractional.

IV. RESULTS ON CONSECUTIVE SQUARE, CIRCLE,
CUBE, SPHERE, AND MIXED PACKING PROBLEMS

In this section, we first consider Korf’s benchmark of
Consecutive-Square Packing Problems [3]. This bench-
mark consists in finding for each number of squares N, a
rectangle of minimum area in which can be packed all the
squares of sizes 1 x 1,2x 2,--- | N x N without overlap.
In [7], the problem has been solved and optimality proved
for all values of N < 32 using a constraint-based method
and a search strategy similar to [6].

Figure 2 first shows an example of suboptimal packing
obtained with CMA-ES for 23 squares. Table I summa-
rizes the results obtained on all instances of that problem
for N < 32, and compares them to the best dedicated
algorithm of Huang and Korf in [3], [6] for finding the
optimal solution and proving optimality. This table shows
that with a time credit equal to the computation time of
the dedicated algorithm, CMA-ES finds solutions at 14%
of the optimal solution in average (the best known exact
algorithms find the optimal solution within 240s up to 25
squares).

The second example in Figure 2 is a packing of 16
equilateral triangles of consecutive sizes from 1 to 16 in
a rectangle of minimum area. Table II summarizes the
results found by CMA-ES for NV < 30.

We also consider the problem of packing /N circles of
radii i—*/2 fori = 1,..., N, in a circle of minimum radius,
introduced by Castillo et al. [4]. The third example in
Figure 2 is a packing found by CMA-ES for 18 circles.
Table III compares the results obtained with CMA-ES
within the time used by global optimization software
packages dedicated to this problem, namely LINGO [10],
NMinimize [11], and MathOptimizer Professional [12].
These results show that CMA-ES computes solutions at
2% from the best known solutions obtained with these
algorithms.

One striking feature of dealing with packing problems
by continuous optimization, is its ability to handle arbi-
trary complex shapes, provided one can define a measure



Table IIT
RESULTS OBTAINED WITH CMA-ES, LINGO, NMINIMIZE AND MATHOPTIMIZER PRO FOR PACKING N CIRCLES OF RADII i ~1/2 FOR
1 <7 < N IN A BOUNDING CIRCLE OF MINIMAL RADIUS. THE TIME LIMIT USED FOR CMA-ES IS THE MAXIMUM TIME (GIVEN IN SECONDS)
USED BY THE OTHER ALGORITHMS. THE BEST SOLUTION FOUND BY CMA-ES IS GIVEN WITH RATIO WITH RESPECT TO BEST KNOWN
SOLUTION, AVERAGE COST, STANDARD DEVIATION AND NUMBER OF RESTARTS.

N CMA-ES LINGO NMinimize MathOptimizer
Best radius (Ratio) | Restarts | Average + Std dev. Time Radius | Time | Radius Time Radius | Time
5 1.7518 (1.000) 32 1.7960 + 0.0288 3 1.7516 3 1.7734 2 1.7516 3
6 1.8117 (1.001) 31 1.8527 4+ 0.0246 5 1.8236 5 1.8473 2 1.8101 1
7 1.8501 (1.006) 32 1.9015 4+ 0.0244 8 1.8476 8 1.8921 3 1.8387 2
8 1.8638 (0.992) 31 1.9436 + 0.0337 11 1.9095 11 1.9377 4 1.8796 3
9 1.9367 (1.009) 29 1.9775 4+ 0.0300 15 1.9201 15 1.9758 9 1.9221 4
10 1.9590 (1.011) 24 1.9992 + 0.0248 16 1.9553 16 1.9647 14 1.9382 6
12 2.0110 (1.010) 29 2.0596 £ 0.0368 32 2.0038 31 2.0617 32 1.9902 11
14 2.0486 (1.008) 42 2.0927 £ 0.0302 65 2.0371 43 2.0663 65 2.0316 18
16 2.0658 (1.005) 72 2.1329 £ 0.0302 160 2.0562 78 2.1166 160 2.0661 28
18 2.0983 (1.014) 99 2.1707 £ 0.0323 302 2.1142 90 2.1213 302 2.0700 50
20 2.1487 (1.011) 127 2.2056 £ 0.0290 522 2.1382 144 2.1392 522 2.1255 59
25 2.2007 (1.016) 246 2.2926 £ 0.0350 1913 2.1821 248 22521 1913 2.1669 792
30 2.2676 (1.026) 385 2.3746 £ 0.0431 5273 22112 906 22185 5273 2.2149 263
35 2.3407 (1.036) 552 2.4611 £ 0.0535 12311 | 2.2645 | 1367 | 2.3428 | 12311 | 2.2597 464

0

Figure 2. Examples obtained with CMA-ES for packing 23 squares of
sizes 1 to 23 in a rectangle of minimum size (here 69 x 73, see Table I),
16 equilateral triangles of size 1 to 16 in a rectangle (here 41 x 29.44,
see Table II), and for packing 18 circles of radii i=/2 for 1 < i < 18
in a circle (here of radius 2.0983, see Table III).

of overlap, and mixed packing problems combining square
and curve shapes. Figure 3 shows suboptimal packings

Table T
RECTANGLE OF MINIMUM AREA FOUND BY CMA-ES (GIVEN WITH
RATIO W.R.T. THE OPTIMAL SOLUTION [3], AVERAGE COST,
STANDARD DEVIATION AND NUMBER OF RESTARTS) FOR PACKING N
SQUARES OF SIZES 1 TO N WITHIN A CPU TIME LIMIT OF 240s.

N Optimal Best (Ratio) Average £ Std dev. Restarty
10 | 15 x27 15 x 28 (1.04) 501.07 £ 42.58 346
11 19 x 27 17 x 33 (1.09) 655.28 £ 48.37 261
12 | 23 x29 23 x 30 (1.03) 842.55 + 67.59 195
13 | 22x38 27 x 34 (1.10) 1066.66 £ 82.97 153
)
)

14 | 23 x45 32 x 37 (1.14 1332.92 £ 99.39 125
15 23 x 55 27 x 53 (1.13 1648.49 £ 121.42 104
16 | 27 x 56 39 x 44 (1.13) 1987.21 £ 153.62 89
17 | 39 x 46 35 x 59 (1.15) 2402.12 +169.11 e
18 | 31 x69 35 x 69 (1.13) 2822.22 4+ 202.53 68
19 | 47 x 53 39 x 75 (1.17) 3337.59 + 297.87 59
20 | 34 x85 55 x 61 (1.16) 3908.37 + 315.21 53
21 38 x 88 50 x 79 (1.18) 4478.12 + 360.24 47
22 | 39 x98 58 x 79 (1.20) 5253.14 £+ 456.96 41
23 | 64 x 68 69 x 73 (1.16) 6006.89 + 468.13 38
24 | 56 x 88 69 x 86 (1.20) 6893.54 £ 481.60 33
25 | 43 x 129 78 x 87 (1.22) 7625.38 + 577.72 30
26 | 70 x 89 73 x 103 (1.21) 8698.42 + 610.80 27
27 | 47 x 148 | 71 x 120 (1.22) 9723.39 + 905.67 25
28 | 63 x 123 | 94 x 101 (1.23) 10896.86 + 876.79 | 23
29 | 81 x 106 | 77 x 138 (1.24) 12028.81 £ 694.82 19
30 | 51 x 186 | 70 x 164 (1.21) 13314.39 £+ 1066.88 | 18
31 | 91 x 110 | 117 x 118 (1.38) 15239.68 + 976.47 16
32 | 85 x 135 | 107 x 134 (1.25) | 16480.60 + 1369.48 | 15

obtained with CMA-ES for packing in a rectangle of
minimum area, respectively l6consecutive circles of di-
ameters 1 to 16 with 16 consecutive squares of sizes 1 to
16, 11 consecutive circles with 11 consecutive equilateral
triangles, and 14 consecutive squares with 14 equilateral
triangles. Tables IV, VI, V summarize our results obtained



Table II
RECTANGLES OF LEAST AREA FOUND BY CMA-ES IN 240S FOR
PACKING N TRIANGLES WITH EDGES OF LENGTH 1 TO N.

Table V
RECTANGLES FOUND BY CMA-ES IN 240S FOR PACKING N
CONSECUTIVE EQUILATERAL TRIANGLES OF SIZES 1 TO N WITH N

N Minimum area Average £ Std dev. | Restarts
10 20.50 x 14.72 341.53 £ 19.83 257 2N Minimum area Average £ Std dev. | Restarts
11 24.00 x 16.45 450.62 £+ 27.31 201 20 34.33 x 18.99 708.81 + 38.96 35
12 28.00 x 18.19 573.96 £+ 37.74 159 22 41.31 x 20.53 925.37 4+ 42.98 27
13 31.50 x 20.78 730.47 £41.79 139 24 35.55 x 30.31 1151.48 +41.74 16
14 27.50 x 29.44 896.10 4+ 48.04 118 26 36.59 x 39.33 1508.72 4+ 61.02 10
15 30.00 x 32.91 1093.96 + 58.54 100 28 45.40 x 38.98 1879.02 £ 87.27 6
16 41.00 x 29.44 1326.80 4 69.05 87 30 65.22 x 31.84 2304.74 + 153.22 9
17 52.50 x 26.85 1581.46 + 90.81 7 32 66.40 x 38.76 2726.06 + 100.64 6
18 44.00 x 38.11 1889.77 £ 121.13 67 34 98.15 x 31.23 3288.53 + 138.81 7
19 30.54 x 64.02 2186.84 + 103.00 59 36 111.17 x 33.52 3917.68 + 211.51 5
20 55.50 x 40.70 2529.21 + 114.33 49 38 68.19 x 63.78 4529.97 + 185.64 3
21 52.70 x 50.23 2922.20 + 144.89 40 40 111.46 x 46.14 5394.88 + 190.10 3
22 76.00 x 40.70 3345.22 + 132.38 34
23 63.17 x 55.28 3816.09 + 235.41 33 Table VI
24 | 118.83 x 34.64 | 4377.98 + 232.66 30 RECTANGLES FOUND BY CMA-ES IN 240S FOR PACKING N
CONSECUTIVE EQUILATERAL TRIANGLES WITH N CONSECUTIVE
25 | 68.50 x 64.95 | 4861.69 & 256.24 25 SQUARES.
26 75.48 X 66.70 5485.06 + 376.62 21
27 | 104.92 x 53.84 | 6077.71 + 254.52 22 2N | Minimum area | Average * Std dev. | Restarts
28 | 106.00 x 61.49 | 6878.06 + 329.60 18 20 | 30.00 x 23.99 832.73 + 67.10 53
29 | 81.25x86.60 | 7511.72 4 366.70 13 22 | 28.00 x 35.06 | 1100.74 & 68.27 40
30 | 63.94 x 120.48 | 8282.33 + 370.16 14 24 | 32.11 x 38.24 1405.19 + 99.15 29
26 38.00 x 42.78 1802.38 4+ 101.08 25
RECTANGLES FOUND BY gli/t[)fgg IN 2408 FOR PACKING N 28 | 60.05x32.82 1 2245.35 £ 133.97 20
SQUARES OF SIZES 1 TO N WITH N CIRCLES OF DIAMETERS 1 TO N. 30 | 49.31x49.99 | 2693.60+178.35 16
32 48.15 x 60.80 3294.26 + 294.43 13
2N | Minimum area | Average £ Std dev. | Restarts 34 | 90.36 x 39.53 | 3912.83 £297.77 8
20 25 x 34 977.29 + 78.28 44 36 66.17 x 60.00 4456.62 4 388.32 7
29 26 x 43 1276.62 + 117.64 34 38 82.50 x 63.71 5547.24 + 261.57 6
24 39 % 43 1652.61 + 104.59 23 40 91.16 x 62.53 5942.15 + 220.46 3
26 37 x 50 2081.19 £+ 167.94 17
28 35 x 68 2571.16 + 145.17 13 s CMA Easble \2’210 N
10 50 x 57 3094.66 L 205.60 10 OXES FOUND WITHCUBES ES SIII;ES 0 iic]i)[l.\IDS FOR PACKING
32 56 x 62 3649.06 + 90.39 8
34 37 x 110 4478.51 £ 327.87 10 N | Minimum volume Average £ Std dev. Restarts
36 55 x 92 5618.45 £+ 449.19 6 10 13 x 17 x 19 5069.06 + 453.41 146
38 58 x 100 6381.48 £ 362.71 6 11 11 x 20 x 26 7328.80 + 742.87 112
40 75 x 90 7297.70 + 267.12 5 12 17 x 21 x 23 10296.62 £ 932.35 91
13 19 x 23 x 25 13948.90 + 1558.83 74
14 21 x 25 x 27 18614.56 + 1975.31 63
with CMA-ES with a timeout of 240 seconds, for packing 15 25 X 27 x 29 24726.58 £ 2168.30 53
in a rectangle of least area /N consecutive objects of one 16 | 26 x29x 34 31467.78 £ 2500.82 44
simple shape with [N consecutive objects of one other 17 28 x 33 x 35 40458.57 + 4431.68 40
Simple Shape, for 5 < N < 20. 18 30 x 34 x 41 50018.66 + 4627.22 32
These benchmarks can also be generalized to 3D, with 19 | 33x36x45 62959.90 £ 5591.34 28
consecutive cube and sphere packing problems. Table VII 20 | 35x39x50 77675.50 £ 6638.45 2
summarizes our results on cubes. Similarly, Table VIII 21 36 x 37 x 62 94891.15 + 8857.45 21
shows the results for packing in a box N cylinders of 22 ] 4l x42x54 113875.23 + 9468.84 17
consecutive radii and heights 1 to N in 240 seconds. 23 | 40 x48x 62 132324.31 + 8588.13 17
In all these benchmarks, CMA-ES stops by reaching the 24 4048 78 160632.34 + 9899.59 13
minimum threshold value of 10~2 for the standard devi- 2 4349 X775 183628.71 £ 14416.27 13
ation of the multi-variate normal distribution used for the 26 43> 64 x 72 226350.20 £ 19656.29 1
. Ly . . .. 27 54 X 55 x 71 253237.57 £ 23096.49 11
populatlon, and makes restarts Wlthln the given time limit. 0 53 % 67 x T4 307933.96 - 2706455 0
This means that, although starting from a diverse random
population of placements, CMA-ES does converge to a 29 52 68 90 33617232 £ 17303.35 8
30 57 X 67 x 94 387778.48 + 34668.24 7

particular placement at each run. The convergence is quite

CIRCLES OF DIAMETERS 1 TO .
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Figure 3.

Example of placement obtained with CMA-ES in 240s for

packing 16 circles of diameters 1 to 16 with 16 squares of sizes 1 to 16
in a rectangle (here 62 x 56, see Table IV), 11 circles of diameters 1
to 11 with 11 equilateral triangles of sizes 1 to 11 in a rectangle (here
41.31 x 20.53, see Table V), and for packing 14 squares of sizes 1
to 14 with 14 equilateral triangles of sizes 1 to 14 in a rectangle (here
60.05 x 32.82, see Table VI).

Table VIII

BOXES FOUND BY CMA-ES IN 240 SECONDS FOR PACKING N

PARALLEL CYLINDERS OF CONSECUTIVE RADII AND HEIGHTS FROM

1TON.
N | Minimum volume Average £ Std dev. Restarts
10 10 x 37 x 39 18181.40 £ 1594.20 266
11 19 x 22 x 49 25994.71 £ 2091.52 214
12 12 x 45 x 55 36650.77 £ 2917.79 176
13 13 x 41 x 76 49515.17 £ 4282.56 146
14 27 x 41 x 47 67040.26 + 6270.90 114
15 27 x 47 x 55 87102.24 + 7948.93 101
16 26 x 57 x 61 112985.10 + 10750.13 83
17 30 X 62 x 65 141018.32 £ 11130.01 72
18 30 x 65 x 76 178727.75 £+ 14711.77 60
19 35 x 59 x 87 218760.42 £ 20027.57 51
20 37 X 65 x 96 269114.06 £ 20665.73 44
21 36 x 77 x 99 326470.14 £ 27625.47 38
22 38 x 81 x 110 404863.90 + 41335.54 33
23 44 x 80 x 118 468015.13 £ 35350.81 29
24 63 x 81 x 91 555001.05 £ 37500.15 24
25 47 x 98 x 125 665798.73 £ 58224.89 21
26 | 49 x 111 x 120 753064.33 £ 81645.53 18
27 65 x 92 x 135 898699.65 £ 66555.36 18
28 | 70 x 110 x 122 1053994.27 £ 85033.27 15
29 | 79 x 103 x 112 1113128.42 4+ 96514.84 12
30 | 103 x 106 x 110 | 1380865.71 &+ 121570.06 14

slow but we have checked that the CMA-ES strategy leads
to better compactions than algorithmically, by iterating
object moves in the different directions successively until
a fixpoint is reached. CMA-ES spends time to infer good
packing directions from an initially diverse population of
packing solutions, gradually eliminate diverse solutions by
decreasing the standard deviation of the distribution, and
converge to a particular placement for the whole popu-
lation. However, restarts are necessary to explore other
local minima, and one defect of the CMA-ES strategy
is that each restart is performed with a complete loss of
information from the previous runs.

V. RESULTS ON A REAL-WORLD CONTAINER
LOADING PROBLEM WITH BOXES AND CYLINDERS

In logistics, the main problems addressed are packing,
design of optimal plan of packing products in cartons
and cartons in pallets, optimization in distribution by
minimizing the number of pallets, optimization of vehicle
or container loading plans, optimization of assignment of
containers in wagons. In this section, we present a real-
world problem from our industrial company for packing
boxes and cylinders in a container.

In a simplification of the problem, all objects are put
in a given orientation and one object cannot be above
another one. Consequently, the problem can be solved as
a two-dimensional problem. A packing solution provides
the position of the base of the objects on the rectangular
container floor, without overlapping.

In this industrial application, the width of the container
is fixed (equal to 248 cm), while the length is variable and
must be minimized. The objective function thus consists
in finding the smallest length for the container. This is
used in turn to determine the types of trucks to use
and their numbers. The actual packing in the trucks is
then done manually according to the computed global
placement, with some margins added to solve rounding
problems. Figure 4 depicts one computed placement. One
computation with a stopping criterion based on a standard
deviation less than 10~2 for the variables takes 743s in
average. We used 30 restarts to produce that solution.

Additional constraints, such as partial orderings be-
tween objects for satisfying multipe delivery orders, can
be easily added in this approach, since the only thing to
do is to define a measure of violation of those constraints,
and add them to the objective function as done for the
non-overlapping constraints.

VI. CONCLUSION AND DISCUSSION

We have shown that solving packing problems by con-
tinuous optimization, using monotonic overlap measures,
provides an interesting trade-off between generality and
efficiency, and that CMA-ES in particular succeeds in
computing quality packings on very hard problems.

On Korf’s benchmark of discrete consecutive sizes
square packing problems, for which the optimal costs are
known up to 32 squares, we have shown that the solutions
computed by CMA-ES are typically at 14% from the
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Figure 4.

Industrial application: best placement found with 30 restarts for a transportation order of 59 objects mixing boxes and cylinders on a row

with a fixed width of 240cm. The computed length of the packing is used to allocate trucks to the order.

optimal cost, with a computation time comparable to the
time used by the best exact methods for finding an optimal
solution [3].

On a benchmark of consecutive sizes circle packing
problems, CMA-ES finds solutions at 2% of the best
known costs obtained by running the three global opti-
mization methods reported in Castello et al. [4]. On a
generalization of these benchmarks to 3D for cubes and
spheres, and to mixed shapes, including square and circles,
cubes, spheres and cylinders, as well as on a real-world
problem for loading a container with boxes and cylinders,
CMA-ES is able to compute similarly suboptimal solutions
in less than 240 seconds for problems of size up to 30
objects in 2D. CMA-ES is able to compute a suboptimal
solution for the industrial application with 59 objects in
less than 800s.

CMA-ES does not perform as well as the best dedicated
algorithm restricted to some simple specific shapes, but
still performs reasonably well in these particular cases,
with the advantage of being able to deal with arbitrary
complex shapes in all generality, provided a measure of
overlap can be defined. This is remarkable since these
packing benchmarks are very challenging problems for
black-box continuous optimization methods. The main
defect of CMA-ES is probably its sensitivity to the initial
sampling and the necessity to restart the method from
scratch to escape from local minima. CMA-ES acts as a
compactor for a population of random placements, with
a subtle effect of “homogeneization” of the population
during evolution, which leads to convergence with a small
value for standard deviation of the distribution. This evo-
lution strategy leads to better solutions than by applying
an algorithmic compactor iteratively in each direction.
However it leaves room for improvement concerning the
elimination of restarts. In principle, it would indeed be
preferable for an evolutionary algorithm to compute sev-
eral solutions in parallel, rather than sequentially with a
complete loss of information at each restart.

We believe that the overlap measures and the
consecutive-size packing benchmarks we have presented
here are relevant to real-world mixed shapes packing
problems, and should be used in the future to evaluate
different evolutionary strategies, and measure progress in
the field.
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