
Consistency of Clark's Completion

and Existence of Stable Models

Fran�cois Fages

LCR Thomson-CSF

and

LIENS, CNRS,

Ecole Normale Sup�erieure

45 rue d'Ulm, 75005 Paris

France

fages@dmi.ens.fr

1 Abstract

The most general notion of canonical model for a logic program with nega-

tion is the one of stable model [9]. In [7] the stable models of a logic program

are characterized by the well-supported Herbrand models of the program, and

a new �xed point semantics that formalizes the bottom-up truth maintenance

procedure of [4] is based on that characterization. Here we focus our attention

on the abstract notion of well-supportedness in order to derive su�cient con-

ditions for the existence of stable models. We show that if a logic program �

is positive-order-consistent (i.e. there is no in�nite decreasing chain w.r.t. the

positive dependencies in the atom dependency graph of �) then the Herbrand

models of comp(�) coincide with the stable models of �. From this result and

the ones of [10] [17] [2] on the consistency of Clark's completion, we obtain suf-

�cient conditions for the existence of stable models for positive-order-consistent

programs. Then we show that a negative cycle free program can have no sta-

ble model if it is not positive-order-consistent, but that order-consistency alone

[17] [2] (this condition generalizes call-consistency [10] [18], it is independent

of positive-order-consistency) is su�cient to ensure the existence of a stable

model. The last result is based on a characterization of stable models due to

[5] and on a generalization of the result of [17] on the consistency of Clark's

completion to in�nite logic programs.

2 Introduction and Notations

A logic program � is a �nite set of rules of the form L

1

; :::; L

n

! A, where

A is an atom, called the conclusion and denoted by concl(R), and the L

i

's

are literals (i.e. atoms or negated atoms), called the premises and denoted by

prem(R). We denote the subset of positive atoms in prem(R) by pos(R), and

2

the set of atoms under a negation by neg(R). The set of ground instances of

a logic program � is denoted by Ground(�). Its Clark's completion [11] is

denoted by comp(�).

The most general notion of canonical model for a logic program or its

Clark's completion, is the one of stable model [9]. A Herbrand interpretation

I of a logic program � is said to be a stable model of � if I = M

H(�;I)

, where

M

H(�;I)

denotes the least Herbrand model of the pure Horn program H(�; I)

de�ned by the stability transformation:

H(�; I) = fpos(R)! concl(R) j R 2 Ground(�) ^ neg(R) \ I = ;g

This two step transformation eliminates the rules which have inconsistent

negative premises w.r.t. I, and eliminates the negative premises in the remain-

ing rules. A model is stable if it derives itself by this transformation. The

stable models of � coincide with the default models of � in Reiter's default

theory [16] [13]. Any stable model of a logic program � is a minimal Her-

brand model of � and of comp(�). Furthermore the stable model semantics

coincides with various canonical model semantics de�ned for restricted classes

of logic programs [9] [22] [12].

The aim of this paper is to investigate su�cient conditions for the existence

of stable models. The central notion is the dependency graph of a logic program

on which are based recent results on the completeness of SLDNF-resolution [10]

and on the consistency of Clark's completion [17] [2].

The predicate dependency graph [1] of a logic program � is a directed graph

with signed edges. The nodes are predicate symbols occurring in �. There is

a positive (resp. negative) edge from p to q if there is a rule in � with p in its

positive premises (resp. negative premises) and q in the conclusion.

We say q depends evenly (resp. oddly) on p, denoted p �

+

q (resp. p �

�

q),

if there is a path in the predicate dependency graph from p to q with an even

(resp. odd) number of negative edges. q depends on p, denoted p � q, if p �

+

q

or p �

�

q. We say q depends positively on p, denoted p �

0

q, if there is a

non-empty path from p to q with all edges positive (this de�nition di�ers from

[2]).

A logic program � is strati�ed [1] [21] if no node depends on itself through

at least one negative edge. � is call-consistent [10] [18] if no node depends

3

oddly on itself, i.e. �

�

is irreexive. For example the logic program f:a !

b; :b! ag is call-consistent but not strati�ed.

2.1. Theorem [9] [22]. If � is strati�ed then the strati�ed model of � (see

[1]) is the unique stable model of �.

2.2. Theorem [18] [10] [2]. If � is call-consistent then comp(�) has a

Herbrand model.

The atom dependency graph of � [15], denoted by G(�), is analogous to the

predicate dependency graph. The nodes are the ground atoms of the Herbrand

universe. There is a positive (resp. negative) edge from A to B if there is a rule

R 2 Ground(�) with A 2 pos(R) (resp. A 2 neg(R)) and B = concl(R). By

abuse of notation we de�ne also the relations �, �

0

, �

+

and �

�

, on ground

atoms, in the same way as in the predicate dependency graph *.

A logic program � is said to be locally strati�ed [15] if the relation of

dependency through at least one negative edge in G(�) is well-founded. � is

said to be negative cycle free [17] if �

�

is irreexive in G(�). � is said to

be order-consistent [17] if the relation (�

+

and �

�

) in G(�) is well-founded

(this condition is called local call-consistency in [2]). We say that � is positive-

order-consistent if �

0

is well-founded.

For example the logic program fp(s(X)) ! p(X); :p(s(X)) ! p(X)g is

negative cycle free, but not order-consistent, nor positive-order-consistent be-

cause of the �rst rule, nor locally strati�ed because of the second rule. Note

that on one hand order-consistency and positive-order-consistency are indepen-

dent conditions, and on the other hand both classes of call-consistent programs

and of locally strati�ed programs are contained in the class of order-consistent

programs, itself contained in the class of negative cycle free programs.

2.3. Theorem [9] [22]. If � is locally strati�ed then the unique perfect

model of � (see [15]) is the unique stable model of �.

2.4. Theorem [17] [2]. If � is order-consistent then comp(�) has a Herbrand

model.

* Consistently with [17] we shall say that a binary relation (not necessarily a partial

order) � is well-founded if there is no in�nite decreasing chain x

0

� x

1

� :::, in

particular � must be acyclic to be well-founded.

4

2.5. Theorem [17]. If � is negative cycle free and either function free or

internal variable free (i.e. for any rule the variables in the premise appear in

the conclusion) then comp(�) has a Herbrand model.

The assumptions in theorems 2.4 and 2.5 are independent. It is an

open problem whether negative cycle freeness alone implies the consistency of

comp(�) or not. In the sequel we study su�cient conditions for the existence

of stable models that subsume (local) strati�cation.

3 Existence of Stable Models, Part 1

The stable models of a logic program can be characterized in terms of well-

supported interpretations. We say a Herbrand interpretation I is well-supported

i� there exists a strict well-founded partial order � on I such that for any atom

A 2 I there exists a rule R 2 Ground(�) with concl(R) = A, I j= prem(R)

and for any B 2 pos(R); B � A.

3.1. Theorem [7]. For a general logic program �, the well-supported models

of � are exactly the stable models of �.

This was shown independently by [6] in the case where � is a propositional

program. For example the program �

2

= fp! p; :p! qg has two supported

minimal models, fpg and fqg which are both models of comp(�

2

), but only

one well-supported model fqg which is also the unique stable model and the

iterated least model in the strati�ed semantics of [1] [21]. The condition

of well-supportedness eliminates cyclic and in�nite supports. Well-supported

models are �nitely justi�ed models. For instance the program �

3

= fp(s(x))!

p(x)g, given with a constant a, has two supported Herbrand models, ; and

fp(s

i

(a))ji � 0g. They are both models of comp(�

3

), but ; is the only �nitely

justi�ed model of �

3

, i.e. the unique stable model of �

3

.

3.2. Theorem. If � is positive-order-consistent then the Herbrand models of

comp(�) coincide with the stable models of �.

Proof. A stable model of � is a Herbrand well-supported model of �, so it is

a Herbrand minimal supported model of �, hence a model of comp(�) [11].

Conversely let us reason by contradiction. Suppose M is a Herbrand model of

comp(�) but not a well-supported model of �. There exists an atom A 2 M

that cannot be �nitely justi�ed. However as M is a supported model of �,

there exists a rule R 2 Ground(�) with concl(R) = A and M j= prem(R). As

5

A cannot be �nitely justi�ed there exists B 2 pos(R), so B �

0

A, such that B

cannot be �nitely justi�ed. Therefore we get an in�nite decreasing chain w.r.t.

�

0

, i.e. a contradiction with the positive-order-consistency of �. ut

Since stable models are minimal Herbrand models [9] we obtain:

3.3. Corollary. If � is positive-order-consistent then all Herbrand models of

comp(�) are minimal.

3.4. Corollary. If � is positive-order-consistent, negative cycle free and either

function free or internal variable free, then � has a stable model.

Proof. By 3.2 and 2.5. ut

3.5. Corollary. If � is positive-order-consistent and order-consistent then �

has a stable model.

Proof. By 3.2 and 2.4. ut

3.6. Corollary. If � is call-consistent and the relation�

0

on predicate symbols

is acyclic (these assumptions are clearly decidable) then � has a stable model.

Proof. By 3.5, as call-consistency implies order-consistency and �

0

acyclic on

predicate symbols implies positive-order-consistency. ut

These corollaries can be exploited by logic programming tools based on

the stable model semantics, as in Truth Maintenance Systems [7] [6] or in

Deductive Data Bases [20] [23], to detect semantic errors statically. They

are also interesting from a programming point of view. Any logic program

can be transformed into a positive-order-consistent program that preserves the

program's completion semantics. The transformation consists in replacing a

positive premise in a rule

L

1

; :::; p(t

1

; :::; t

k

); :::; L

n

! A

by a negative premise

L

1

; :::;:p(t

1

; :::; t

k

); :::; L

n

! A

6

adding the rule

:p(x

1

; :::; x

k

)! p(x

1

; :::; x

k

)

It is obvious that this double negative does not change the program's completion

semantics, but it makes �

0

acyclic on predicate symbols. That transformation

appears in [19] to show that the program's completion semantics and the well-

founded semantics have the same theoretical expressive power. From a logic

programming point of view under the stable model semantics that transforma-

tion is a way to relax the constraint of well-supportedness for some predicates,

by requiring only that the intended interpretation of these predicates be sup-

ported, as in the models of the program's completion.

It is an open problem to know whether negative cycle free programs in the

general case have a consistent completion. However we show with an example

that this condition does not ensure the existence of a stable model.

3.7. Theorem. There exist (internal variable free) negative cycle free pro-

grams that have no stable model.

Proof. Let � = fp(s(X)) ! p(X); :p(s(X)) ! p(X)g. This is an internal

variable free negative cycle free program, so comp(�) is consistent by 2.5. The

only Herbrand model of comp(�) takes p true everywhere, however this is not

a well-supported model as it is not �nitely justi�ed. Therefore � has no stable

model. ut

So positive-order-consistency cannot be eliminated in the assumption of

corollary 3.4. However positive-order-consistency (resp. �

0

acyclic) is not nec-

essary in the assumption of corollary 3.5 (resp. 3.6). To show this we study

�rst the Clark's completion of in�nite logic programs.

4 Consistency of Completed In�nite Logic Programs

An in�nite logic program � is an in�nite set of (�nite) rules

L

1

; :::; L

n

! A

formed on a countable set of variables and a �nite alphabet of constants, func-

tions and predicates. In this way Ground(�) is always countable. The atom

dependency graph is de�ned as for �nite programs. In this section we show that

7

theorem 2.4 holds for in�nite logic programs as well, with the same proof as in

[17] [2] in the line of [10] [18].

The Clark's completion of an in�nite logic program is naturally de�ned by

an in�nite formula of �rst-order classical logic. The completed de�nition of a

predicate p, supposed to be unary here, is an in�nite �rst-order formula of the

form

8x p(x)$ 9y

1

:::9y

j

::: (x = t

1

^ C

1

) _ ::: _ (x = t

i

^ C

i

) _ :::

where the disjunction can be in�nite, but each member (x = t

i

^ C

i

) is a

�nite conjunction corresponding to a rule R 2 � with concl(R) = p(t

i

) and

prem(R) = C

i

. The Clark's completion of an in�nite logic program is composed

of the (�nite) conjunction of the completed de�nition of each predicate symbol,

together with the strong equality axioms.

The immediate consequence operator is de�ned undi�erently on in�nite

logic programs,

T

�

(I) = fconcl(R) j R 2 Ground(�); I j= prem(R)g

Its �xed points are the Herbrand models of comp(�).

4.1. Proposition. Let � be an in�nite logic program. Then a Herbrand

interpretation I is a model of comp(�) if and only if I is a �xed point of T

�

.

Proof. One can easily check that the proof in [11] for de�nite programs remains

correct in presence of both negation [1] and in�nite completed de�nitions. ut

Now, pair mappings on the set of partial interpretations in 2

B

H

� 2

B

H

,

�rst introduced in [8], can be associated to in�nite programs without any

modi�cation. Let � be an in�nite logic program and (M;N) 2 2

B

H

� 2

B

H

be

a partial interpretation, let us de�ne

T

+

�

(M;N) = fconcl(R) j R 2 Ground(�); pos(R) �M; neg(R) � Ng

T

�

�

(M;N) = fA j 8R 2 Ground(�)

concl(R) = A) pos(R) \N 6= ; _ neg(R) \M 6= ;g

The pair mapping < T

+

�

; T

�

�

> on in�nite logic programs enjoys the same

property of monotonicity and gives Herbrand models of comp(�) under certain

conditions.

8

4.2. Proposition. If M \N = ; then T

+

�

(M;N) \ T

�

�

(M;N) = ;.

4.3. Proposition. < T

+

�

; T

�

�

> is monotonic in the lattice 2

B

H

�2

B

H

ordered

by pair inclusion v, that is (M

1

; N

1

) v (M

2

; N

2

) (i.e. M

1

�M

2

and N

1

� N

2

)

implies < T

+

�

; T

�

�

> (M1; N1) v< T

+

�

; T

�

�

> (M2; N2).

4.4. Proposition. IfM \N = ; and (M;N) v< T

+

�

; T

�

�

> (M;N) then there

exists a �xed point (M

0

; N

0

) of < T

+

�

; T

�

�

> such that (M;N) v (M

0

; N

0

) and

M

0

\N

0

= ;.

4.5. Proposition. If (M;N) is a �xed point of < T

+

�

; T

�

�

>, M \N = ; and

M [N = B

H

then M is a Herbrand model of comp(�).

Proof. As M \ N = ; and M [N = B

H

we have T

+

�

(M;N) = T

�

(M) by

de�nition. As (M;N) is a �xed point of < T

+

�

; T

�

�

> we have T

+

�

(M;N) =M .

Therefore M is a �xed point of T

�

, i.e. a model of comp(�) by 4.1. ut

At this point it is clear that the useful properties of pair mappings and

order-consistency exploited in [17] on �nite logic programs are met by in�nite

logic programs. Therefore one can check that through the same series of lemmas

with the same proofs as in [17] we get:

4.6. Theorem. If an in�nite logic program � is order-consistent then comp(�)

has a Herbrand model.

On the other hand, note that the proof of existence of a Herbrand model for

completed negative cycle free programs in [17] does make use of the compactness

theorem of �rst-order classical logic, hence it cannot be lifted to in�nite logic

programs. In fact there exist in�nite negative cycle free programs, like

f:P (s

i

(x))! P (x) j i > 0g;

which have an inconsistent Clark's completion.

5 Existence of Stable Models, Part 2

This section makes use of the characterization due to [5] of the stable

models of a logic program � by the Herbrand models of its �xpoint completion.

We recall here the basic de�nitions with our notations.

9

A quasi-interpretation Q is a possibly in�nite set of ground rules without

positive premise, i.e. of the form

:A

1

; :::;:A

n

! A

where n � 0, and A and the A

i

's are ground atoms formed over a �nite alpha-

bet.

Given a (�nite) logic program �, the immediate consequence operator T

�

is de�ned on quasi-interpretations by

T

�

(Q) = fneg(R

1

); :::;neg(R

n

); neg(R)! A j R 2 Ground(�)

concl(R) = A; pos(R) = fA

1

; :::; A

n

g; n � 1;

8i; 1 � i � n; R

i

2 Q; concl(R

i

) = A

i

g

T

�

is a continuous operator in the lattice of quasi-interpretations [5]. The least

�xed point of T

�

is denoted by fix(�), i.e.

fix(�) =

[

i�0

T

�

" i

In general fix(�) is an in�nite quasi-interpretation, its Clark's completion is

then de�ned as in the previous section. We shall use the equivalence theo-

rem of [5] that relates the stable models of � with the Herbrand models of

comp(fix(�)).

5.1. Theorem [5]. The Herbrand models of comp(fix(�)) are exactly the

stable models of �.

5.2. Lemma. Let � and �

0

be two (in�nite) logic programs based on the same

alphabet. The relation �

+

(resp. �

�

) in G(�) is included in �

+

(resp. �

�

) in

G(�

0

) if and only if for each rule R 2 Ground(�) with concl(R) = B, for every

A 2 pos(R) (resp. A 2 neg(R)), we have A �

+

B (resp. A �

�

B) in G(�

0

).

Proof. If �

+

(resp. �

�

) in G(�) is included in �

+

(resp. �

�

) in G(�

0

) then

for any rule R 2 Ground(�) with concl(R) = B, and for every A 2 pos(R)

(resp. A 2 neg(R)) we have A �

+

B (resp. A �

�

B) in G(�). Thus by

hypothesis we get A �

+

B (resp. A �

�

B) in G(�

0

).

Conversely if A � B in G(�) then there is a path from A to B in G(�). For

each positive (resp. negative) edge (A

i

; A

i+1

) in that path there exists a rule

R 2 Ground(�) with concl(R) = A

i+1

and A

i

2 pos(R) (resp. A

i

2 neg(R)).

So by hypothesis we have A

i

�

+

A

i+1

(resp. A

i

�

�

A

i+1

) in G(�

0

). Therefore

if A �

+

B (resp. A �

�

B) in G(�), there is an even (resp. odd) number of

negative edges in the path, thus we get A �

+

B (resp. A �

�

B) in G(�

0

). ut

10

5.3. Lemma. If A �

�

B in G(fix(�)) then A �

�

B in G(�).

Proof. By 5.2 it su�ces to show that for any rule R 2 fix(�), i.e. for any i � 0

and any R 2 T

�

" i, we have A �

�

B in G(�) if concl(R) = B and A 2 neg(R)

(the case A 2 pos(R) does not arise as fix(�) is a quasi-interpretation). The

proof is by induction on i.

The base case is trivial. Let R 2 T

�

" i+ 1, let A 2 neg(R) and

concl(R) = B. By de�nition of T

�

" i+ 1 there exists a rule S 2 Ground(�)

with concl(S) = B and either A 2 neg(S) or A 2 neg(R

0

) with R

0

2 T

�

" i

and concl(R

0

) 2 pos(S). In the former case we get immediately A �

�

B in

G(�). In the latter case we get A �

�

concl(R

0

) in G(�) by induction. As

concl(R

0

) �

+

B in G(�) we conclude again A �

�

B in G(�). ut

5.4. Theorem. An order-consistent logic program has a stable model.

Proof. If a logic program � is order-consistent then as fix(�) is a quasi-

interpretation, �

0

is the identity relation, so we get by lemma 5.3 that fix(�) is

also order-consistent. Therefore by theorem 4.6 comp(fix(�)) has a Herbrand

model, hence � has a stable model by theorem 5.1 . ut

6 Conclusion

We have shown that the main syntactic criteria that ensure the consistency

of Clark's completion of logic programs [10] [18] [17] [2], ensure also the

existence of stable models for these programs, with the noticeable exception of

negative cycle free programs that can have no stable model. The most general

conditions (order-consistency on one hand, negative cycle freeness and positive-

order-consistency on the other hand) are probably undecidable, but they have a

checkable counterpart, namely call-consistency. This can be directly exploited

by logic programming tools based on the stable model semantics, as in Truth

Maintenance Systems [7] [6] or in Deductive Data Bases [20] [23], to detect

semantic errors statically.

One remaining problem is to �nd a direct proof of the existence of stable

models for order-consistent logic programs. For example every stable model of

a logic program can be obtained as an ordinal power of the justi�cation main-

tenance operator associated to the program under a suitable strategy [7]. One

would like to exhibit for order-consistent programs a class of strategies under

11

which the ordinal powers of the justi�cation maintenance operator are increas-

ing, whence reach a stable model. In [7] it is shown that any fair strategy

constructs the 2-valued well-founded model of the program if it exists. Here

the proof of existence of a stable model under the order-consistency assumption

suggests another trans�nite process: �rst construct the �xpoint completion by

iterating T

�

up to ordinal !, then choose a signing, that gives a stable model,

for example by iterating the justi�cation maintenance operator under any con-

servative strategy (i.e. any strategy that selects in priority the rules which do

not have for e�ect to retract an atom). A fundamental problem underlying

these di�culties is the logical complexity of stable models for restricted classes

of programs [19].

The existence of stable models for order-consistent (or call-consistent) logic

programs can be transcripted in various theories of non-monotonic reasoning

developed in AI. In Truth Maintenance System terminology, we have shown

that if a set of justi�cations contains no odd loop in its dependency network

then there exists a state of beliefs with well-founded supporting justi�cations,

or equivalently (see [7]) there exists a strategy under which the Truth Main-

tenance procedure converges. In Reiter's default logic we get that an order-

consistent default theory is consistent. In Moore 's autoepistemic logic, we get

the existence of a stable autoepistemic expansion for any call-consistent set of

premises.

Finally we conjecture that although negative cycle free programs can have

no stable model, their Clark's completion is always consistent. In case of a

positive answer to the conjecture, negative cycle freeness would subsume the

other conditions that ensure the consistency of the Clark's completion, but with

no guarantee on the existence of canonical model for the program.

References

[1] K.R. Apt, H.A. Blair, A. Walker, Towards a theory of declarative knowledge,

in Foundations of deductive databases and logic programming, Minker, J. (ed.),

Morgan Kaufmann, Los Altos (1987).

[2] A. Cortesi, G. Fil�e, Graph properties for normal logic programs, Proc. 5th Conv.

Nat. sulla Programmazione Logica GULP'90, Padova, (1990).

[3] L. Cavedon, J.W. Lloyd, A completeness theorem for SLDNF-resolution, Journal

of Logic Programming, 7(3), pp.177-192 (1989).

[4] J. Doyle, A truth maintenance system, Arti�cial Intelligence, vol. 12, pp.231-272

(1979).

[5] P.M. Dung, K. Kanchanasut, A �xpoint approach to declarative semantics of logic

programs, NACLP'89. MIT Press (1989).

12

[6] C. Elkan, A rational reconstruction of nonmonotonic truth maintenance systems,

Journal of Arti�cial Intelligence, vol. 43, pp.219-234 (1990).

[7] F. Fages, A new �xpoint semantics for general logic programs compared with

the well-founded and the stable model semantics, 7th International Conference

on Logic Programming, Jerusalem. MIT Press (June 1990). To appear in the

Journal of New Generation Computing.

[8] M.R. Fitting, A Kripke-Kleene semantics for logic programs, J. of Logic Program-

ming 2, pp.295-312 (1985).

[9] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, Proc.

of the 5th Logic Programming Symposium, pp.1070-1080, MIT press (1988).

[10] K. Kunen, Signed data dependencies in logic programs, Journal of Logic Program-

ming, 7(3), pp.231-245 (1989).

[11] J.W. Lloyd, Foundations of Logic Programming, Springer Verlag (1987).

[12] W. Marek, V.S. Subrahmanian, The relationship between logic program semantics

and non-monotonic reasoning, Proc. Sixth International Conference on Logic

Programming, Lisbon (1989).

[13] W. Marek, M. Truszcinski, Stable semantics for logic programs and default theo-

ries, NACLP'89. MIT Press (1989).

[14] T. Przymusinski, On the declarative and procedural semantics of logic programs,

Journal of Automated Reasoning, 5, pp.167-205 (1989).

[15] T. Przymusinski, On the declarative semantics of strati�ed deductive data-bases

and logic programming, in Foundations of deductive databases and logic program-

ming, Minker, J. (ed.), Morgan Kaufmann, Los Altos (1987).

[16] R. Reiter, A logic for default reasoning, Arti�cial Intelligence, 13, pp.81-132

(1980).

[17] T. Sato, Completed logic programs and their consistency, Journal of Logic Pro-

gramming, vol.9 (1), pp.33-44 (1990).

[18] T. Sato, On the consistency of �rst-order logic programs, ETL technical report

TR-87-12, (1987).

[19] J.S. Schlipf, The expressive powers of the logic programming semantics, PODS'90,

pp.196-204, (1990).

[20] D. Sacca, C. Zaniolo, Stable models and non-determinism in logic programs with

negation, PODS'90, pp.205-217, (1990).

[21] A. Van Gelder, Negation as failure using tight derivations for general logic pro-

grams, in Foundations of deductive databases and logic programming, Minker,

J. (ed.), Morgan Kaufmann, Los Altos (1987). Also in J. of Logic Programming

1989 pp.109-133.

[22] A. Van Gelder, K. Ross, J.S. Schlipf, Unfounded sets and well-founded seman-

tics for general logic programs, Proc. of the Symp. on Principles of Databases

Systems, ACM-SIGACT-SIGCOM (1988).

[23] D.S. Warren, The XWAM: a machine that integrates Prolog and deductive database

query evaluation, Technical Report 89/25, Suny at Stony Brook, NY (1989).

