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Abstract. This paper presents a comparative analyzes between three
search algorithms, named Fish School Search, Particle Swarm Optimiza-
tion and Covariance Matrix Adaptation Evolution Strategy applied to
ill-conditioned problems. We aim to demonstrate the effectiveness of the
Fish School Search in the optimization processes when the objective
function has ill-conditioned properties. We achieved good results for the
Fish School Search and in some cases we obtained superior results when
compared to the other algorithms.
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1 Introduction

Several real world problems are modeled through ill-conditioned functions due
to the complexity of the relation between their components. An ill-conditioned
function is a type of function that has variables which can generate great im-
pact on the final results upon minimal adjustments. Hansen et al. [1] presented
a comprehensive study on the performance of different search algorithms under
different conditions of optimization when tackling problems with ill-conditioned
characteristics. Hansen et al. investigated the performance of two stochastic
search methods in ill-conditioned functions and non-separable problems for a
set of benchmark functions with a different number of conditions. They assessed
a particular version of the PSO (particle swarm optimization) [2][3] and also an
implementation of the CMA-ES (covariance matrix adaptation evolution strat-
egy) algorithm [4] [5] [6] .

Recently, Bastos-Filho and Lima-Neto [7][8] proposed a swarm intelligence
technique for searching and optimization, called Fish School Search (FSS). FSS
was inspired by the gregarious behavior of fish schools and it can tackle mul-
timodal problems in high dimensional search spaces. In this paper, we assess
the performance of the FSS algorithm when applied to problems with specific
properties, such as ill-conditioning and non-separability. We also compare the
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performance of the FSS to the performance of two other approaches, S-PSO and
CMA-ES.

The remainder of the paper is organized as follows: in section 2 we present
an overview of the FSS algorithm. The concepts about ill-conditioned functions
are described in section 3. The simulation setup, the benchmark functions and
some other aspects are addressed in section 4. In section 4, we also present an
analysis regarding a great number of parameter combinations for the simulated
functions. In section V we give our conclusions.

2 FSS - Fish School Search

Fish School Search (FSS) is a bio-inspired algorithm for searching in high-
dimensional and multimodal search spaces. The FSS functionality is based on
a population of limited-memory individuals, called fish. FSS has two classes of
operators [9], the feeding operator and the swimming operators. The fish school
aims to achieve a collective goal that is to find food. Food is a metaphor for
the fitness function, which measures the quality of the current solution. The
pseudocode of the FSS algorithm can also be found in [9].

2.1 FSS Operators

Feeding Operator: The feeding operation is executed after the individual
movement of the fish. Depending on the individual movement, the weight of the
fish may increase or decrease, which indicates if this movement was successful
or not. Bastos-Filho et al. [9] proposed to use an initial weight equal to 1, and it
can vary up to a maximum scale value (Wscale). The weight is updated based on
the current value of the weight summed to the normalized difference between the
current fitness and the fitness at the new position considering the whole school.
The weights of the fish are updated once in every FSS cycle by the feeding
operator, according to equation (1):

Wi(t+ 1) = Wi(t) +
Δfi

max(Δf)
, (1)

where Wi(t) is the weight of the fish i, Δfi is the difference between the fitness
value at the new position and the fitness value at the current position of each
fish. max(Δf) is the maximum value of Δfi in the iteration considering the
whole school.

Swimming Operator. In nature, animals react instinctively to environmental
stimuli. For the fish, swimming is directly related to all significant individual
and collective behaviors of the school, such as feeding, reproduction, escape from
predators, move to safer positions of the aquarium or just stay grouped. In FSS,
swimming is a vectorial composition of three movements: individual, collective-
instinctive and collective-volitive. These movements are detailed below.
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i. Individual movement: The individual movement operator is executed for
all fish at each iteration of the algorithm. Each fish calculates randomly a
new position within the search space in its neighborhood and evaluates the
new position using the fitness function. If the fitness of the neighbor position
is better, then the fish moves to the new position. Otherwise, the fish remains
in the current position.

The neighbor position is calculated by adding to each component of the
current position a random value generated by an uniform distribution in the
interval [-1,1] multiplied by a step as shown in equation (2).

ni(t) = xi(t) + rand(−1, 1) stepind, (2)

in which xi(t) is the current position of the ith fish, ni(t) is the candidate
position of the fish and rand() is a vector of random number generated
in each iteration. stepind is given as a percentage of the search space and
decays linearly with the iterations. The individual step size of the fish is
updated according to the equation (3) in order to allow more exploration in
the beginning and more exploitation in the end of the search process.

stepind(t+ 1) = stepind(t)− (stepind initial − stepind final)

iterations
, (3)

in which iterations is the total number of iterations, stepind initial and
stepind final are the initial and final steps, respectively.

ii. Collective-Instinctive movement: After the individual movement of all
fish, the algorithm calculates the weighted movement of the whole school for
fish that performed the individual movement. The resultant direction (I(t))
is more influenced by the fish that have highest weights. I(t) is calculated
according to the equation (4). Then, all the fish update their positions by
using equation (5).

I(t) =

∑N
i=1 ΔxiΔfi
∑N

i=1 Δfi
, (4)

xi(t+ 1) = xi(t) + I(t). (5)

iii. Collective-Volitive movement: After the two former movements, the al-
gorithm calculates if the weight of the whole school had increased. If it is the
case, we have an indication that the search process had success in the itera-
tion and the radius of the school should contract to allow more exploitation.
Otherwise, the radius should increase in order to allow the school to get out
of local minima and find better regions of the search space. This operator
balances the exploration/exploitation trade-off.

The expansion or contraction of the school is applied as a small adjust-
ment for each position of the fish with respect to the barycenter of the
school. The calculation of the school barycenter is obtained by a weighted
average position of all fish weighted by its respective weight, as shown in
equation (6).
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B(t) =

∑N
i=1 xiWi(t)

∑N
i=1 Wi(t)

. (6)

The expansion or contraction of the radius of the school is calculated by
comparing the weight of the school in the previous iteration and the current
iteration. If the weight of the school had increased, the fish must update their
positions according to (7). Otherwise, all fish must update their positions
using equation (8).

x(t+ 1) = x(t)− stepvol rand(0, 1)
(x(t)−B(t))

distance(x(t),B(t))
, (7)

x(t+ 1) = x(t) + stepvol rand(0, 1)
(x(t)−B(t))

distance(x(t),B(t))
, (8)

in which distance() is a function that calculates the Euclidean distance be-
tween the barycenter and the current position of the fish. stepvol is the step
size used to control the movement of fish to or from the barycenter. We used
stepvol = 2stepind.

3 Ill-Conditioned Functions

In [1], Hansen et al. investigate the behavior of PSO (particle swarm optimiza-
tion) [2][3] and CMA-ES (covariance matrix adaptation evolution strategy) [4]
[5] [6] on ill-conditioned and non-separable objective functions.

An objective function is separable with respect to coordinate i if the opti-
mal value for the ith coordinate does not depend on the values for the other
coordinates. A separable optimization problem in dimension n can be solved
by solving n optimization problems in one dimension. Separable problems are
thus easy to solve with a linear complexity in the dimension of the problem,
while non-separable problems are hard to solve and may involve an exponential
complexity in the number of dimensions.

Furthermore, ill-conditioned functions correspond to situations where small
differences in variables, i.e. in different directions in the search space, can gener-
ate very different results for the evaluation function, by several orders of magni-
tude. Ill-conditoned objective functions can hardly guide the search of optimal
solutions and thus provide challenges for any optimization methods.

4 Comparing FSS to CMA-ES and S-PSO

4.1 Simulation Setup

In [1], a benchmark of hard non-separable ill-conditioned functions was tried
with two well-established optimization methods, each of them with a specific
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bio-inspired stochastic search: swarm intelligence (PSO) and evolutionary strat-
egy (CMA-ES). In this section, we present the results obtained with FSS on this
benchmark.

The objective functions are given in Table 1. The search space domain is
[−20, 80]n in both cases. According to the original paper, in the Rosenbrock
function the parameter α tunes the width of the bent ridge that guides to the
global optimum. In the classical Rosenbrock function α equals 100. For smaller
α the ridge becomes wider and the function becomes less difficult to solve. The
α value will be vary between one and 108. Rastringin function was implemented
and tested without any kind of modifications.

Table 1. Test functions rosenbrock and rastrigin and target function values

Function ftarget

FRosenbrock(x) =
n∑

i=1

[α(xi+1 − x2
i )

2 + (1− xi)
2] 10−9

FRastrigin(x) = 10n+

n∑

i=1

[x2
i − 10cos(2πxi)] 10−9

For the configuration setup and tests, we used all parameters according to the
S-PSO presented in the original paper. We used 10 dimensions for both bench-
mark functions. For the Rosenbrock function, we used 16 fish. For the Rastrigin
function, we used the following swarm sizes 10, 16, 30, 100, 300 and1000. The
simulations were performed using 21 runs of the algorithm, for each configura-
tion in both functions. In each of the executions of the algorithm, the evaluation
function call was 107 times. The stopping criterion for each run is when the max-
imum number of function evaluations was reached. The FSS implementation was
based on the FSS-Vanilla JavaTMversion1.

4.2 Simulation Results

Table 2 is a summary of the results obtained from the simulations using FSS
for both benchmark functions. The table depicts the average and the (standard
deviation) values for the fitness and the execution time for all simulations. We
just achieved the target value for the optimization process in the Rastrigin func-
tion using 16 and 30 fish. One can observe that the target value (10−9) was not
reached for the Rastrigin function for the other configuration settings. We be-
lieve that 10 fish are not enough to provide the proper exploration of the entire
search space, whereas too many fish can mitigate the exploitation capacity. We
did not achieved the target value for the Rosenbrock function in any case.

1 Published: http://www.fbln.pro.br/fss/versions.htm

http://www.fbln.pro.br/fss/versions.htm
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Table 2. FSS simulations summary, considering fitness value (average and std devia-
tion) and time, for each configuration

FSS Fitness Time(ms)

Function Dimensions Size α Average Std Dev Average Std Dev

Rosenbrock 10 16

1 2,76E-03 4,76E-04 3,11E+05 7,04E+02

10 2,44E-02 4,88E-03 3,21E+05 4,64E+03

100 2,67E-04 3,74765E-05 2,67E-04 3,74765E-05

300 5,54E+00 3,94E-01 3,23E+05 1,21E+03

1000 2,28E-04 3,51995E-05 2,28E-04 3,51995E-05

Rastrigin 10

10 - 3,05E-06 6,65E-07 2,35E+05 4,93E+02

16 - 1,75514E-10 2,49508E-11 1,75514E-10 2,49508E-11

30 - 8,38232E-11 1,80445E-11 8,38232E-11 1,80445E-11

100 - 1,82707E-07 3,64708E-08 2,34E+06 2,06E+04

300 - 4,56812E-08 7,84523E-09 7,09E+06 2,67E+05

1000 - 9,56496E-09 1,37591E-09 2,38E+07 8,98E+04

Table 3 shows the results for the analysis of the effectiveness and (number of
times the algorithm obtained the fitness target - maximum is 21 trials) consid-
ering the FSS, S-PSO and CMA-ES. Although the standard version of the FSS
is not able to solve configurations tests, one can observe that the FSS can solve
the problem with low number of fish, while the S-PSO and the CMA-ES need
300 particles and 1000 individuals, respectively, to solve the same problem.

Table 3. Analysis of the effectiveness (number of times the algorithm obtained the
fitness target) considering the FSS, S-PSO and CMA-ES

Entities 10 16 30 100 300 1000

S-PSO - - 5%(1) 71%(15) 100%(21) 100%(21)

CMA-ES - - - 24%(5) 76%(16) 100%(21)

FSS - 100%(21) 100%(21) - - -

5 Conclusions

In this paper we assessed the performance of the FSS for two well known ill-
conditioned functions, Rastrigin and Rosenbrock. We compared the results with
the results obtained by CMA-ES and S-PSO. The overall results were some-
how counterintuitive, since FSS excelled for the apparently more ill-conditioned
function (Rastrigin), producing excellent results for situations in which the two
competing techniques not even could produce anything. And this could be due
to the built-in set of mechanisms that endow FSS to perceive ‘ill-conditions’ of
problems.
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On the other hand, the topology of Rosenbrock function, with the global
minimum inside a long parabolic shaped flat valley, makes it hard to spot the
global minimum during the optimization process. The poor results obtained with
FSS (for that particular function) are likely due to a premature convergence of
the search process convergence in local minima. Though FSS has a mechanism to
self-adjust exploration and exploitation modes, the topology of this apparently
simple function does not allow FSS to escape from local minima. We hypothesize
that the premature convergence of the FSS can be related to the linear decreasing
of search steps for Individual and Volitive movement operators. In a future work,
this kind of problem will be addressed.

Another point quite interesting is that FSS method is rather easy to adjust,
as many parameters can be left without change. One reason for example is due
to its self-control of exploration and exploitation modes.

Although counterintuitive, the increase of the number of fish may compro-
mise the performance of the FSS method because not-directly it adds on the
granularity of the search. This eventual artifact of acceleration of convergence is
subject to change in the next release of FSS.
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