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Abstract We study a new fixpoint semantics for logic programs with negation.
Our construction is intermediate between Van Gelder’s well-founded model and
Gelfond and Lifschitz’s stable model semantics. We show first that the stable
models of a logic program P are exactly the well-supported models of P , i.e.
the supported models with loop-free finite justifications. Then we associate to
any logic program P a non-monotonic operator over the semilattice of justified
interpretations, and we define in an abstract form its ordinal powers. We show
that the fixpoints of this operator are the stable models of P , and that its
ordinal powers after some ordinal α are extensions of the well-founded partial
model of P . In particular if P has a well-founded model then that canonical
model is also an ordinal power and the unique fixpoint of our operator. We
show with examples of logic programs which have a unique stable model but
no well-founded model that the converse is false. We relate also our work to
Doyle´ s truth maintenance system and some implementations of rule-based
expert systems.

1 Introduction

Recent results in foundations of logic programming and deductive data-
bases have greatly clarified the relationship between the procedural semantics
of logic programs and their declarative semantics in mathematical logic. The
theories of ”declarative knowledge” which have been developed in this frame-
work [37] [5] [2] [23] [1] [38] [30] [18] [39] appear to be closely related to
other theories of non-monotonic reasoning developed in AI [25] [32] [7] [26]
[29] [9]. The reason of this convergence is that logic programs do not rely on
logical negation, but use instead a non-monotonic operator called negation by
failure or negation by default.

The meaning of a logic program, its declarative semantics, can be defined
in the framework of first-order classical logic in two different ways. On the one
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hand the program can be viewed as a notation for a first-order formula obtained
by some transformations. The semantics of the program is then identified with
the class of its models. This approach is examplified by the Clark’s completion
semantics in which the rules are seen as definitions of predicates using the
equivalence symbol instead of the implication. On the other hand one can see
each rule of the program as a universally quantified implication, but identify
the logical semantics of the program with some canonical model instead of all
models. In this paper we follow the second approach. We study a new semantics
for logic programs which is intermediate between the well-founded semantics of
[39] and the stable model semantics of [18], and show its relationship with truth
maintenance systems. We recall here the basic definitions.
Definition. The Herbrand base BH denotes the set of ground atoms. A logic
program is a set of rules of the form

L1, ..., Ln → A

where A is an atom, called the conclusion and denoted by concl(R), and the
Li’s are literals (i.e. atoms or negated atoms), called the premises and denoted
by prem(R). We denote the subset of positive atoms in prem(R) by pos(R),
and the set of atoms under a negation by neg(R). The set of ground instances
of a logic program P is denoted by Ground(P ).

The most general notion of canonical model for a logic program or its
Clark’s completion, is the one of stable model [18].
Definition. A Herbrand interpretation I of a logic program P is a stable model
of P iff I = MH(P,I) where MH(P,I) denotes the least Herbrand model [37] of
the pure Horn program H(P, I) defined by the stability transformation:

H(P, I) = {pos(R)→ concl(R) | R ∈ Ground(P ) ∧ neg(R) ∩ I = ∅}

This transformation eliminates the rules of P which have inconsistent negative
premises w.r.t. I, and eliminates the negative premises in the remaining rules.
A model is stable if it derives itself by this transformation. A program P is said
to be well-behaved if it has a unique stable model.

Any stable model of a logic program P is a minimal Herbrand model of P
[18]. The stable models of P coincide with the default models of P in Reiter’s
default theory [27]. For well-behaved programs however the unique stable
model lacks a constructive definition. Significantly more constructive, but still
not effective, is the well-founded model semantics introduced in [39].
Definition. A partial interpretation is a couple of disjoint sets of atoms (T, F ),
atoms in T are interpreted as true, atoms in F are interpreted as false, and
the other atoms in BH\(T ∪ F ) are left uninterpreted.

The well-founded partial model of a logic program P is defined as the least
fixpoint [24] of the monotonic operator VP over the complete semilattice of
partial interpretations defined by:

VP (T, F ) = (TP (T, F ), FP (T, F ))
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where TP (T, F ) = {concl(R) | R ∈ Ground(P ) ∧ pos(R) ⊆ T ∧ neg(R) ⊆ F},
and where FP (T, F ) denotes the greatest unfounded set of P w.r.t. (T, F ).

A set of ground atoms S ⊆ BH is said to be an unfounded set of P w.r.t.
a partial interpretation (T, F ) iff for any atom A ∈ S, for any rule instance
R ∈ Ground(P ) with concl(R) = A, prem(R) is inconsistent with the partial
interpretation (T, F ) or with S, that is T ∩ neg(R) 6= ∅ or F ∩ pos(R) 6= ∅ or
S∩pos(R) 6= ∅. Intuitively the atoms of an unfounded set can be interpreted by
false. The union of two unfounded sets is again an unfounded set, the greatest
unfounded set is thus the union of all unfounded sets of P w.r.t. (T, F ). An
alternative constructive definition for FP is given in [29].

We denote by (TP,α, FP,α) = VP ↑ α the partial interpretation obtained as
the ordinal power α of VP . The well-founded partial model of P is equal to the
closure ordinal power of VP . When the well-founded partial model (TP,α, FP,α)
of P is a model, i.e. BH = TP,α ∪ FP,α, this model is called the well-founded
model of P . The well-founded model semantics for logic programs generalizes
the iterated least model semantics for stratified logic programs [1] [38] [30].

1.1. Theorem [39]. If P is (locally) stratifiable then P has a well-founded
model, which is identical to its iterated least model (perfect model).

1.2. Theorem [39]. If a logic program P has a well-founded model M then
M is also the unique stable model of P .

The well-founded model semantics is thus compatible with the stable model
semantics, but weaker in the sense that a well-behaved program may have no
well-founded model (only a partial model). For example

P1 = {¬p→ q,

¬r → p,

¬p,¬q → r}

has a unique stable model {p} but its well-founded partial model is (∅, ∅). Note
that {p} is also the unique model of the Clark’s completion of P1:

comp(P1) = {q ⇐⇒ ¬p, p ⇐⇒ ¬r, r ⇐⇒ ¬p ∧ ¬q}

In this paper we define a fixpoint semantics for logic programs based on a
non-monotonic and non-deterministic operator JP . We show that the fixpoints
of JP are the stable models of P (theorem 3.3), that each fixpoint can be
obtained as an ordinal power of JρP for some strategy ρ (theorem 3.4), and
that for any fair strategy ρ the ordinal powers of JρP after some ordinal α are
extensions of the well-founded partial model of P (theorem 4.2). We say a



4

Herbrand interpretation M is the rational model of a logic program P iff for
any fair strategy ρ, M is a fixpoint and an ordinal power of JρP . Therefore if P
has a well-founded model M then M is also a rational model of P . Conversely
we show that P1 is an example of a well-behaved program which has a rational
model but no well-founded model.

Although it is not effective our fixpoint semantics has also a strong opera-
tional connotation. In the last section of this paper we show that the bottom-up
procedure suggested by our construction can be considered as an alternative to
top-down SLDNF-resolution procedures augmented with loop-checks [40] [28]
[1] [38], when one has to implement the canonical model semantics instead of
the weaker semantics of program’s completion or of standard SLDNF-resolution
[5] [23] [6] [21]. In the last section we relate also our work to the truth main-
tenance system of [9] and some implementations of rule-based expert systems.

2 Well-Supported Interpretations

Definition. We say a Herbrand interpretation I is well-supported iff there exists
a strict well-founded partial ordering ≺ on I such that for any atom A ∈ I there
exists a rule R ∈ Ground(P ) with concl(R) = A, I |= prem(R) and for any
B ∈ pos(R), B ≺ A.

2.1. Theorem. For a general logic program P , the well-supported models of
P are exactly the stable models of P .

Proof. If M is a stable model of P , let ≺ be the strict well-founded partial
ordering on M defined by A ≺ B iff for some integer i, A ∈ TH(P,M) ↑ i and
B ∈ TH(P,M) ↑ i+ 1\TH(P,M) ↑ i, where TH(P,M) is the (monotonic) immediate
consequence operator associated with the program obtained by the stability
transformation. We show that ≺ establishes the well-supportedness of M . For
any A ∈ M there is an integer i > 0 with A ∈ TH(P,M) ↑ i, let i be the least
such integer. By definition of TH(P,M) there exists a rule R ∈ Ground(P ) with
concl(R) = A, neg(R) ∩ M = ∅ and pos(R) ⊆ TH(P,M) ↑ i− 1. Therefore
M |= prem(R) and as A 6∈ TH(P,M) ↑ i− 1 we have ∀B ∈ pos(R) B ≺ A, that
is M is a well-supported model of P .

Conversely we shall use the notion of a rank of an element e w.r.t. to
a strict well-founded partial ordering ≺, which is defined as the sup of the
ordinals α such that there exists a chain e0 ≺ e1 ≺ ... ≺ eα = e. If M is a
well-supported model of P , let ≺ be a strict well-founded partial ordering on M
that establishes the well-supportedness of M . We show by transfinite induction
on δ that for any atom A ∈M at rank δ w.r.t. ≺, there exists an integer i > 0
where A ∈ TH(P,M) ↑ i. In this way we get M ⊆ TH(P,M) ↑ ω. This suffices to
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prove that M is a stable model of P . Indeed since M is a model of P , M is also
a model of H(P,M), and since TH(P,M) ↑ ω is the least model of H(P,M) we
have TH(P,M) ↑ ω ⊆M .

1) In the base case, an atom A at rank 0 in M is supported by a rule
R ∈ Ground(P ) with pos(R) = ∅ and M |= neg(R), hence A ∈ H(P,M) and
A ∈ TH(P,M) ↑ 1.

2) An atom A at a successor or limit ordinal rank δ in M w.r.t. ≺ is
supported by a rule R such that A = concl(R), M |= prem(R) and ∀B ∈
pos(R) B ≺ A. We have (pos(R) → A) ∈ H(P,M). By transfinite induction
for any B ∈ pos(R) there exists an integer iB such that B ∈ TH(P,M) ↑ iB .
Let i be the sup of the iB ’s, as TH(P,M) is monotonic we get ∀B ∈ pos(R) B ∈
TH(P,M) ↑ i. Hence A ∈ TH(P,M) ↑ i+ 1. QED

This result has been shown independently by [12] in the case where P is
a propositional program. A propositional program like for example P2 = {p→
p, ¬p → q} has two supported minimal models, {p} and {q}, which are both
models of comp(P2), but only one well-supported model {q} (called a grounded
model in [12]) which is also the unique stable model and the iterated least
model in the stratified semantics of [1] [38].

In [1] it is proved that the models of comp(P ) are exactly the supported
models of P , so our characterization of the stable models of P as the well-
supported models of P clarifies the difference between the program’s completion
semantics and the stable model semantics. In particular if all supports for
positive atoms are necessarily finite and loop-free, as it is the case in hierarchical
programs or more generally in positive-order-consistent programs [13], both
semantics coincide: the stable models of P are exactly the Herbrand models
of comp(P ). We define now the set of justified interpretations on which our
fixpoint semantics is based, and show the equivalence with well-supportedness.

Definition. A justification is a finite set of ground literals. A justified atom is
a pair A/Γ where A is a ground atom and Γ is a justification not containing A.

The set of justified atoms is countable. Any subset S defines an interpre-
tation denoted by S which is obtained by forgetting justifications in S. In this
paper we shall consider only sets of uniquely justified atoms, that is sets S such
that any atom in S has a unique justification in S.

Definition. Let P be a general logic program. A justified interpretation J of
P is a set of uniquely justified atoms such that for any A/Γ ∈ J there exists
a rule instance R ∈ Ground(P ) such that concl(R) = A, J |= prem(R) and
Γ = prem(R)∪

⋃m
i=1 Γi where pos(R) = {A1, ..., Am}, Ai/Γi ∈ J for 1 ≤ i ≤ m,

and A 6∈ Γ. We say that an interpretation I is justifiable iff there exists a
justified interpretation J such that J = I.

Justified interpretations are similar to quasi-interpretations defined inde-
pendently in [10]. Here in a justified interpretation the justification attached
to an atom contains exactly the premises of some supporting rule together with
the justifications of the positive premises. The restriction to finite and loop-free
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justifications is motivated by the following lemma:

2.2. Lemma. An interpretation is well-supported if and only if it is justifiable.

Proof. If J is a justified interpretation, it is easy to check that the relation
defined on J by A ≺ B iff A/Γ ∈ J, B/∆ ∈ J and A ∈ ∆, proves that J is
well-supported. By definition of a justified interpretation, for any A ∈ J , let
A/Γ ∈ J , there exists a rule R ∈ Ground(P ) with concl(R) = A, J |= prem(R),
and for any B ∈ pos(R), B ∈ Γ, hence B ≺ A. Furthermore ≺ is transitive by
the definition of a justified interpretation, and ≺ admits no infinite decreasing
chain A1 � A2 � ..., since otherwise, let A1/Γ1 ∈ J,A2/Γ2 ∈ J, ..., we would
have an infinite chain of set inclusions, Γi ⊇ Γi+1∪{Ai+1}, contradicting either
the finiteness of the justifications, or the absence of loop Ai 6∈ Γi.

Conversely let I be a well-supported interpretation and ≺ be a strict well-
founded partial ordering on I that establishes the well-supportedness of I. Every
atom A ∈ I is supported by a rule RA ∈ Ground(P ) such that concl(RA) = A,
I |= prem(RA) and for any B ∈ pos(RA), B ≺ A.
Let J be the set of justified atoms defined by

J0 = {A/neg(RA) | A is a ≺-minimal element}
Ji+1 = Ji ∪ {A/Γ | pos(RA) = {A1, ..., An}, Ak/Γk ∈ Ji

Γ = prem(RA) ∪ {Γk | 1 ≤ k ≤ n} }
J =

⋃
i≥0 Ji

It is straightforward to verify that J is a justified interpretation of P and J = I.
QED

2.3. Corollary. A Herbrand model M of a logic program P is a stable model
of P if and only if there exists a justified interpretation J of P such that M = J .

The set of justified interpretations of P , denoted by JIP , together with set
inclusion forms a complete semilattice, i.e. a partially ordered set endowed with
a least element, such that every non-empty subset has a greatest lower bound
glb, and every chain (i.e. every totally ordered subset) has a least upper bound
lub. In the following we study fixpoint equations in this domain.

3 The Non-Monotonic Justification Maintenance Operator JP

Definition. For a logic program P and an interpretation I we define the set
of satisfied rules SP (I) as

SP (I) = {R ∈ Ground(P ) | I |= prem(R)}
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and the conflict set CP (I) as

CP (I) = {R ∈ SP (I) | concl(R) 6∈ I}

Definition. Let P be a logic program, R ∈ Ground(P ), pos(R) = {A1, ..., Am}
and concl(R) = {A}. The application of the justification maintenance operator
associated with R, denoted by JR, to a justified interpretation J is defined by:
JR(J) = J if R 6∈ CP (J), otherwise
JR(J) = (J ∪ {A/(prem(R) ∪

⋃m
i=1 Γi)})\{B/Γ | ¬A ∈ Γ}

where Ai/Γi ∈ J for 1 ≤ i ≤ m.
It is straightforward to verify that JR is an operator on JIP .
Definition. We say a logic program P is well-formed iff there is no rule instance
R ∈ ground(P ) with concl(R) ∈ neg(R).

The technical reason to reject rules of the form ...¬A...→ A lies in the fol-
lowing proposition, and the subsequent identification of the fixpoints of JP with
the stable models of P . If P is not well-formed JP can have pathological fix-
points which are not stable models of P . This condition is not a real restriction,
a rule for which the conclusion is unifiable with one of its negative conditions
can be rewritten in two well-formed rules by introducing a new constant or a
new function symbol that duplicates the conclusion. For instance a rule like
p(x, y),¬q(x), r(y)→ q(y) can be rewritten in p(x, y),¬q(x), r(y)→ f1(y) and
f1(y)→ q(y). Furthermore our results on the relationship between the ordinal
powers of JρP and the well-founded (partial) model semantics of logic programs
are not restricted to well-formed programs.

3.1. Proposition. If P is a well-formed logic program then for any R ∈ CP (J)
we have R 6∈ CP (JR(J)).

Proof. Let R ∈ CP (J). If concl(R) ∈ JR(J) then R 6∈ CP (JR(J)). Otherwise
by the definition of JR we have ¬concl(R) ∈ prem(R)∪

⋃m
i=1 Γi where pos(R) =

{A1, ..., Am} and Ai/Γi ∈ J for 1 ≤ i ≤ m. As P is a well-formed program
¬concl(R) 6∈ prem(R), so ¬concl(R) ∈

⋃m
i=1 Γi. For some i ¬concl(R) ∈ Γi so

Ai 6∈ JR(J). Hence we get R 6∈ SP (JR(J)) thus R 6∈ CP (JR(J)). QED

Definition. For a logic program P we denote by JP : JIP → 2JIP the non-
deterministic operator on JIP defined by:
JP (J) = {J} if CP (J) = ∅
JP (J) = {JR(J) | R ∈ CP (J)}

We say that a justified interpretation J is a fixpoint of JP if JP (J) =
{J}. The next proposition shows that the fixpoints of JP are exactly those
interpretations for which the conflict set is empty.
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3.2. Proposition. Let J be a justified interpretation of a well-formed logic
program P . J is a fixpoint of JP iff CP (J) = ∅.

Proof. If CP (J) = ∅ then by definition JP (J) = {J}. Conversely the proof
is by contradiction. Let J be a fixpoint of JP , let us suppose that CP (J) 6= ∅,
let R ∈ CP (J). By 3.1, R 6∈ CP (JR(J)), that is either concl(R) ∈ JR(J)
or JR(J) 6|= prem(R). In any case J 6= JR(J) thus we get the contradiction
JP (J) 6= {J}. QED

3.3. Theorem. For any well-formed logic program P the fixpoints of JP
coincide with the stable models of P .

Proof. J is a fixpoint of JP
iff J is a justified interpretation and CP (J) = ∅ (by 3.2), i.e. J is a justified
model of P ,
iff J is a well-supported model of P (by 2.3),
iff J is a stable model of P (by 2.1). QED

Although JP is not monotonic we shall use the idea of constructing solu-
tions to fixpoint equations by iterating the operator from the least element. For
example on P1 = {¬p→ q, ¬r → p, ¬p,¬q → r} all rule selection strategies
lead to the unique stable model of P1 that is {p}:
∅ . {q/¬p} . {p/¬r}
∅ . {p/¬r}
∅ . {r/¬p,¬q} . {q/¬p} . {p/¬r}
In the following we show that each stable model of P can be obtained as

an ordinal power of JρP for some particular strategy ρ, and that if P has a
well-founded model M then M is an ordinal power of JρP for any fair strategy
ρ. To this end we define now in an abstract form the ordinal powers of a
non-monotonic operator.
Definition. Let T be an arbitrary (non-monotonic) operator over a complete
semilattice L. We define the ordinal powers of T as:

T ↑ 0 = ⊥
T ↑ α+ 1 = T (T ↑ α)
T ↑ α = lub{Eβ |β < α} if α is a limit ordinal and (Eβ)β<α is the greatest

increasing chain contained in (T ↑ β)β<α, i.e. constructively Eβ = glb{T ↑
γ | β ≤ γ < α}.

The intuitive idea of this definition is that we retain at a limit ordinal
α only the information which was persistent in the preceding non-monotonic
iterations. We remark that if T is monotonic then in the definition of a limit
ordinal power we get Eβ = T ↑ β which makes our definition equivalent to the
classical definition for monotonic operators. If T is not monotonic we still have
that if A ∈ T ↑ α + i for any integer i then A ∈ T ↑ β for β the next limit
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ordinal after α. In particular if T ↑ α is a fixpoint of T then for any ordinal
β ≥ α, T ↑ β = T ↑ α.

This notion of non-monotonic induction has been introduced independently
for logic programs by [3] who proved that the non-monotonic operator TP of
a strongly determined program converges to the unique stable model of the
program. Strongly determined programs however form a restrictive class of
programs that does not include stratified programs. We show here that any
stable model of a general logic program P can be approximated by a sequence
of ordinal powers of the justification maintenance operator JP , yet the price to
pay is non-determinism: we have to consider all rule selection strategies. To
overcome this difficulty we shall study in the next section the case where the
unique stable model of the program is approximated by any fair strategy.

We denote by (JρP ↑ α)α≤β the transfinite sequence of ordinal powers of
JP under a rule selection strategy ρ, which gives the choice of the rule in the
conflict set used to obtain the successor element in the sequence.

3.4. Theorem. Let P be a well-formed logic program. M is a stable model of
P if and only if for some strategy ρ M = JρP ↑ ω and JρP ↑ ω is a fixpoint of JP .

Proof. If JρP ↑ ω is a fixpoint of JP then JρP ↑ ω is a stable model of P
by 3.3. Conversely if M is a stable model of P then by 2.3 there exists a
justified interpretation J such that J = M . Let

⋃
i≥0 Ji be an enumeration of

J . Notice that by the definition of a justified interpretation, for any couple of
elements, Ji = A/Γ, Jj = B/∆, such that B ∈ Γ and i < j, we have ∆ ⊆ Γ so
A 6∈ ∆. Let

⋃
i≥0 J

′
i be the enumeration obtained from

⋃
i≥0 Ji by repeatedly

exchanging such couples.
⋃
i≥0 J

′
i is an enumeration of J in which any justified

atom is preceded by its positive justifications. For any i ≥ 0 there exists a rule
Ri ∈ Ground(P ) such that J ′i = concl(Ri)/prem(Ri) ∪ Γ with J |= prem(Ri)
and Γ = {∆ | B ∈ pos(Ri), B/∆ ∈ Jj , j < i}. Let us consider the strategy ρ

which selects the rule Ri at step i. Clearly we have J = JρP ↑ ω so M = JρP ↑ ω,
and by 3.3, JρP ↑ ω is a fixpoint of JP . QED

4 The rational model semantics for general logic programs

In this section we define the notion of transfinite fairness and show how
the unique stable model of a logic program can be approximated by iterating
the justification maintenance operator under an arbitrary fair strategy. This
provides a simple method of constructing the iterated least model of a stratified
program, the unique perfect model of a locally stratified program and the two-
valued well-founded model of a program when it exists.
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Definition. We say a rule R ∈ Ground(P ) is treated at ordinal β if R 6∈
SP (JρP ↑ β) or R is selected at ordinal β or for any γ ≥ β concl(R) ∈ JρP ↑ γ.

We say a rule selection strategy ρ is fair iff whenever R ∈ SP (JρP ↑ α) for
some ordinal α, there exists an ordinal β ≥ α where R is treated.

4.1. Proposition. For any logic program P the transfinite ”first-in-first-out”
ordering of SP constitutes a fair strategy.

Proof. The transfinite FIFO ordering of SP (JρP ↑ α) for any ordinal α respects
the partial ordering in which rules were satisfied, that is for all rules R1, R2 ∈
SP (JρP ↑ α), if there exists an ordinal β ≤ α where R2 6∈ SP (JρP ↑ β) and for

any γ, β ≤ γ ≤ α, we have R1 ∈ SP (JρP ↑ γ), then R1 ≺ R2.

For any satisfied rule R ∈ SP (JρP ↑ α) at rank δ w.r.t. ≺, we show by
transfinite induction on δ that there exists an ordinal β ≥ α where R is treated.

1) In the base case δ = 0. If for some ordinal β ≥ α, concl(R) 6∈ JρP ↑ β,

let β be the least such ordinal, then either R 6∈ SP (JρP ↑ β) or R is selected at

ordinal β + 1. Otherwise ∀γ ≥ α concl(R) ∈ JρP ↑ γ. In any case R is treated
at some ordinal greater or equal than α.

2) If δ is a successor ordinal, the proof is similar. If for some ordinal β ≥ α
concl(R) ∈ JρP ↑ β, let β be the least such ordinal, then either R 6∈ SP (JρP ↑ β)
or R is selected at ordinal β+1, or another rule of lesser rank than R is selected
at ordinal β+ 1, so in this case the rank of R in SP (JρP ↑ β + 1) decreases, thus
by transfinite induction we get that R is treated. Otherwise ∀γ ≥ α concl(R) ∈
JρP ↑ γ. In all cases R is treated at some ordinal greater than or equal to α.

3) If δ is a limit ordinal, by transfinite induction all rules of rank δ′ < δ
are treated at some ordinal greater than or equal to α. Let β be the least
ordinal where all rules of rank δ′ < δ have been treated. Then either R has
been treated at an ordinal γ, α ≤ γ ≤ β, or by the definition of ρ R has rank 0
in SP (JρP ↑ β), in which case we get by induction that R is treated at an ordinal
greater than or equal to β. QED

On example
P3 = {¬b→ a,

¬a→ b,

a, b→ c,

¬c→ a}

from [39] as on example P1, any fair strategy leads to the unique stable model
{a} which is also the unique model of comp(P3), while the well-founded partial
model is empty,

∅ . {a/¬b}
∅ . {b/¬a} . {a/¬c}
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∅ . {a/¬c}
However there are still examples like

P4 = {¬b→ a,

¬a→ b,

b→ a}

which have a unique stable model, here {a}, while some fair strategies do not
reach a fixpoint:

∅ . {a/¬b}
∅ . {b/¬a} . ∅ . {a/¬b}
∅ . {b/¬a} . ∅ . {b/¬a} . ∅ . ...

The well-founded partial model of P4 is empty. The same situation arises with
example P5 = {¬b→ a, ¬a→ b, ¬p→ p, ¬b→ p} from [39].
Definition. We say that an interpretation M is the rational model of a general
logic program P if for any fair strategy ρ there exists an ordinal α such that
JρP ↑ α is a fixpoint of JP and M = JρP ↑ α.

4.2. Main theorem. Let P be a general logic program and ρ be a fair strategy.
After some ordinal β the ordinal powers of JρP are extensions of the well-founded
partial model of P . More precisely

∀α ∃β ∀γ ≥ β TP,α ⊆ JρP ↑ γ ∧ FP,α ∩ JρP ↑ γ = ∅

Proof. By transfinite induction on α.
1) The base case is trivial as VP ↑ 0 = (∅, ∅).
2) In the case of a successor ordinal, let VP ↑ α+ 1 = (TP,α+1, FP,α+1). By

transfinite induction ∃β ∀γ ≥ β TP,α ⊆ JρP ↑ γ ∧ FP,α ∩ JρP ↑ γ = ∅. We show

first that ∃β′ ≥ β ∀γ ≥ β′ Tα+1
P ⊆ JρP ↑ γ.

Let C = {R ∈ Ground(P ) | pos(R) ⊆ TαP ∧ neg(R) ⊆ FαP }, by definition

Tα+1
P = {concl(R) | R ∈ C}. By induction ∀R ∈ C ∀γ ≥ β JρP ↑ γ |= prem(R).

So for any R ∈ C, by the fairness of ρ there exists β′ ≥ β where R is treated,
that is in this case either ∀γ ≥ β′ concl(R) ∈ JρP ↑ γ, or R is selected at ordinal

β′ so again ∀γ ≥ β′ concl(R) ∈ JρP ↑ γ.

We show now that ∀γ ≥ β FP,α+1 ∩ JρP ↑ γ = ∅. By definition FP,α+1 =
FP (TP,α, FP,α), so for any A ∈ FP,α+1, for any R ∈ Ground(P ) with concl(R) =
A, we have

TαP ∩ neg(R) 6= ∅ and by induction JρP ↑ γ ∩ neg(R) 6= ∅,
or FαP ∩ pos(R) 6= ∅ and by induction pos(R) 6⊆ JρP ↑ γ,
or Fα+1

P ∩ pos(R) 6= ∅.
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Hence for any A ∈ Fα+1
P ∩ JρP ↑ γ, let A/Γ ∈ JρP ↑ γ, there must exist R ∈

Ground(P ) with concl(R) = A and prem(R) ⊆ Γ such that Fα+1
P ∩ pos(R) 6=

∅. Hence for any A ∈ Fα+1
P ∩ JρP ↑ γ there exists B ∈ Fα+1

P ∩ JρP ↑ γ with
B ≺ A, where ≺ is a strict well-founded partial ordering that establishes the
well-supportedness of JρP ↑ γ. Consequently FP,α+1 ∩ JρP ↑ γ = ∅, otherwise we
would have an infinite chain w.r.t. ≺.

3) In the case of a limit ordinal we have TαP =
⋃
δ<α TP,δ and FαP =⋃

δ<α FP,δ. By transfinite induction ∀δ < α ∃βδ ∀γ ≥ βδ TP,δ ⊆ JρP ↑ γ and

FP,δ ∩ JρP ↑ γ = ∅. Let β be the sup of the βδ’s for δ < α, we get for any

γ ≥ β, TP,α ⊆ JρP ↑ γ and FP,α ∩ JρP ↑ γ = ∅. QED

An immediate corollary is the following theorem of [39].

4.3. Corollary. Any stable model of P is an extension of the well-founded
partial model of P .

Proof. By 3.3 any stable model of a well-formed logic program P is a fixpoint of
JP (only the converse of this proposition needs the well-formedness assumption),
therefore by 4.2 we get that any stable of P is an extension of the well-founded
partial model of P . QED

4.4. Corollary. If a logic program has a two-valued well-founded model, then
that model is the rational model of the program.

Proof. Let P be a general logic program having a two valued well-founded
model. Let α be the closure ordinal of VP . By theorem 4.2, for any fair strategy
ρ we have ∃β ∀γ ≥ β TP,α ⊆ JρP ↑ γ and FP,α ∩ JρP ↑ γ = ∅. Since (TαP , F

α
P ) is a

model, T = BH\FP,α thus TP,α = JρP ↑ γ for any γ ≥ β. Therefore for any fair

strategy ρ there exists β such that JρP ↑ β is a fixpoint of JP and TP,α = JρP ↑ β,
i.e. TP,α is the rational model of P . QED

Examples P1 and P3 show that the converse of this corollary is false. In this
sense the rational model semantics generalizes the well-founded model semantics
for logic programs. However some well-behaved logic programs such as P4 and
P5 have no rational model. A fundamental question underlying this difficulty
is the logical complexity of the unique stable model of a well-behaved logic
program [33] [4] [22].

5 Operational Semantics and Relation to Truth Maintenance Systems
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General logic programs when interpreted by SLDNF-resolution as in stan-
dard Prolog implementations lack a fully equivalent declarative semantics. Un-
der strong restrictions on the use of variables and negation, SLDNF-resolution
is sound and complete w.r.t. comp(P ) [23] [6] [21]. In the general case it is
well known that SLDNF-resolution is sound but not complete w.r.t. comp(P ),
for example with P6 = {p→ p, p→ q, ¬p→ q}, q is a logical consequence of
comp(P6) but it cannot be obtained by SLDNF-resolution. Following [15], [22]
proposed another declarative semantics for which SLDNF-resolution is sound
but still not complete. For that semantics a complete interpreter does exist but
is not practical. In [34] an extension of the negation as failure rule is proved
sound and complete for a weak form of comp(P ).

For stratified logic programs [1] [38] the iterated least model semantics is a
very appealing declarative semantics but for which no complete interpreter can
exist. SLDNF-resolution is not sound w.r.t. that semantics. To achieve sound-
ness, [1] and [38] augment SLDNF-resolution with loop checks and ground
instantiation of subgoals. Completeness is obtained in the finite case, that is
when BH is finite (there are no function symbols only constants) or when P
satisfies the bounded term size property [38]. This interpreter is practical how-
ever only if ground instantiation of subgoals does not occur. This is the case
for instance for logic programs that satisfy in addition the ground derivation
property, then starting with a ground goal SLDNF-resolution (with loop checks)
always generates ground goals.

We describe here an alternative interpreter which is sound w.r.t. the ra-
tional model semantics, and complete if BH is finite. This interpreter differs
from the bottom-up evaluator proposed in [35] by the absence of backtracking.
When BH is finite it is more convenient to redefine fairness in order to force
satisfied rules to be treated in a finite number of steps. We say that a strategy
ρ is fair if whenever R ∈ SP (JρP ↑ α) for some ordinal α, there exists an integer
i such that R is treated at ordinal α+ i.

5.1. Lemma. If P has a rational model M and BH is finite, then JρP finitely
converges to M for any fair strategy ρ.

Proof. As BH and P are finite, JIP are finite. It is not true with our definition
of ordinal powers that a non-monotonic operator T over a finite semilattice
either converges finitely or none of its ordinal powers is a fixpoint. However one
can conclude by the definition of the limit ordinal powers of T that T ↑ ω ⊆
T ↑ j for all j greater than some integer i. Therefore there exists an integer i
such that JρP ↑ ω ⊆ JρP ↑ i. As JρP ↑ i is a justified interpretation, there exists

a strategy ρ′ which coincides with ρ on the finite powers, ∀k JρP ↑ k = Jρ
′

P ↑ k,

and for some integer j we have Jρ
′

P ↑ (ω+ j) = Jρ
′

P ↑ i. In this way for any limit

ordinal α we have Jρ
′

P ↑ α = JρP ↑ ω. As ρ is fair so is ρ′, hence by hypothesis
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we have that Jρ
′

P ↑ α is a fixpoint of JP for some ordinal α and M = Jρ
′

P ↑ α.

Henceforth M = JρP ↑ ω. Now JρP ↑ ω ⊆ JρP ↑ i and CP (JρP ↑ ω) = ∅ by 3.2, so
we get JρP ↑ ω = JρP ↑ i, that is JρP finitely converges to M . QED

If BH is finite and P has a rational model M , then the naive interpreter
which is sound and complete w.r.t. M, computes M as a finite power of JρP with
a fair strategy ρ and retrieves in M the answers to the query Q. From the point
of view of the worst-case time complexity, the size of M is bounded by the size
of BH , that is by r.ca if there are no function symbols and r denotes the number
of relation symbols, a the maximum arity and c the number of constants. An
example of a logic program with n rules (without negation) where SLDNF-
resolution is forced to enumerate in exponential time all of BH of size O(2n) is
given in [1]. Here the proof of termination of JρP under the assumption that a
rational model exists and BH is finite, is not informative. In fact the worst-case
time complexity of a logic program with negation can be a double exponential
in the number of rules, i.e. O(22

n

), but is still simply exponential under the
best strategy, that is when JρP is increasing.

To show this pathological behaviour we can modify the 3 bits counter
program from [1] by making a copy of the rules augmented with a negative
literal. Let
C3 = {c3(0, 0, 0),

c3(x, y, 0)→ c3(x, y, 1),
c3(x, 0, 1)→ c3(x, 1, 0),
c3(0, 1, 1)→ c3(1, 0, 0),
¬c3(1, 1, 1), c3(x, y, 0)→ c3(x, y, 1),
¬c3(1, 1, 1), c3(x, 0, 1)→ c3(x, 1, 0),
¬c3(1, 1, 1), c3(0, 1, 1)→ c3(1, 0, 0) }

By an obvious generalization let us consider the logic program Cn with 2n+ 1
rules. Under the worst (fair) strategy the rules with negation are selected first,
the enumeration of BH takes 2× ...× 2, 2n times, steps, that is O(22

n

). With
the best strategy the rules with negation are not selected, JρP is increasing, and
BH is enumerated optimally in O(2n) steps.

As it stands the naive interpreter is not practical and perfectly useless,
independently of any worst-case time complexity argument. To make that in-
terpreter ”practical” the idea is to direct the search as in a backward chaining
procedure by introducing in the rules metalevel conditions that match the cur-
rent goals.
Definition. For a given logic program P we denote by P̂ the logic program
obtained by transforming each rule with n ≥ 0 premises,

A1, ..., Am,¬Am+1, ...,¬An → A

in the following n+ 1 rules:

goal(A)→ goal(A1)
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goal(A), A1 → goal(A2)

...

goal(A), A1, ..., Am,¬Am+1, ...,¬An−1 → goal(An)

goal(A), A1, ..., Am,¬Am+1, ...,¬An → A

This transformation is reminiscent to the magic set method for deductive
databases [31]. Here the transformed rules share the same conditions, so they
constitute essentially only one rule when they are compiled in a data driven
fashion with Rete algorithm [17] [14].

Given a logic program P and a query Q, we call JρP -resolution the procedure

that consists of applying the naive interpreter on P̂ ∪{goal(Q)}. We say that an
atom A (resp. a negated atom ¬A) is derivable by JρP -resolution if Jρ

P̂∪{goal(A)}
finitely converges to a stable model M and A is true (resp. false) in M . It
is important to realize that in this bottom-up procedure not only the proof of
already established facts is factorized, as proposed for top-down procedures in
[36], but subgoals also are memorized, that is the search for a proof is equally
factorized and loop-checks of [40] [1] [38] are built-in. The drawback is in the
space complexity necessary to memorize all the current goals. The translation
into P̂ is however such that only the subgoals which are supported by the
preceding conditions are considered. From the point of view of worst-case time
complexity we still have a double exponential under the worst strategy and a
simple exponential under the best strategy when JρP is increasing.

5.2. Theorem. If P is a logic program having a rational model M then JρP -
resolution is sound w.r.t. M . Furthermore if BH is finite, JρP -resolution is a
complete interpreter w.r.t. M for every fair strategy ρ.

We see the transformation P̂ as the rationale of forward chaining as used
in rule-based expert systems for problem solving [16]. In these systems the
forward chaining rules for subgoaling are usually written by hand, and extra
control conditions can be added to direct the search even more accurately. Best-
first strategies that rely on fuzzy matching or on uncertainty coefficients can be
implemented also but they are generally not fair. In concrete implementations
of justification maintenance multiple justifications for a fact are allowed (the
conflict set is taken to be the set of satisfied rules). A common ”error” in
existent systems of this kind is that they omit loop checks in justifications for
efficiency reasons, so non well-supported models may be computed. The point
is that Rete algorithm can be easily extended to implement very efficiently the
maintenance of justifications without loop checks.

JρP -resolution for logic programs can be seen also as an instance of the
more general ”truth maintenance system” (TMS) of [9]. The TMS deals with
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logic programs extended principally with a new constant standing for ”incon-
sistency”. In a TMS when an inconsistency is encountered the current set of
”beliefs” is revised and ”intelligent backtracking” is performed by an analysis of
the sources of the contradiction. On the other hand the abductive extension of
logic programming in [11] can be compared with the ”assumption-based truth
maintenance system” (ATMS) of [8].

6 Conclusion

There are different semantics for logic programs that have their own merit
and that are not subsumed by one or another. The stable model semantics
provides a simple and natural definition for canonical models. Their charac-
terization as the well-supported models reinforces that claim and clarifies the
difference between the stable model semantics and the Clark’s completion se-
mantics. The well-founded semantics is a construction of stable models with
many nice properties, but it is revealed to be too weak on some examples. The
rational model semantics is intended to solve that problem while remaining a
reasonably intuitive and implementable semantics. On the other hand the strat-
ification of the program remains the principal decidable criterion that ensures
the existence of a unique stable model.

Our construction can be seen also as a particular instance of the ”truth
maintenance system” of [9]. Its previous formalization in a non-monotonic
logic based on a modal operator standing for non-monotonic provability was
criticized in [7]. The connection with logic programming sheds a new light on
the relationship between non-monotonic reasoning and logic programming, as
well as on some fundamental bottom-up procedures used in rule-based expert
systems. In this direction the problem to generalize the declarative semantics
of logic programs to allow negation in the conclusion of the rules, as studied
in [19], is directly relevant to the semantics of production rules used in expert
systems [16] and deductive databases.

The fixpoint technique we have used that relies on both non-monotonic
and non-deterministic induction, can also be of independent interest, see [3]
[20] [1] [24].
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