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CRN:

k1*a for a => x+c

k2*b for b => y+c

k3*x*y for x+y => z 

k4*c*z for c+z => r

Theorem [F, Le Guludec, Bournez, Pouly CMSB 2017]

A real function is Turing-computable (in Ptime) if and only if  it can be computed by 

a CRN over a finite set of molecular species (with polynomial length trajectories)

Input: a, b Initialization: x=y=z=r=c=0    

Output: c

Computed function at steady state:

c(∞)= max(a(0),b(0))

Analog Computations with
Chemical Reaction Networks (CRN)
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ODE

da/dt=-k1.a

db/dt=-k2.b

dx/dt=k1.a-k3.x.y

dy/dt=k2.b-k3.x.y

dz/dt=k3.x.y-k4.c.z

dr/dt=k4.c.z

dc/dt=k1.a+k2.b-k4.c.zO
O

O



Rate-Independent CRN Computation

Input: a(0)=3 b(0)=1     Result c*=3 independently of the reaction rates

k1=0.1, k2=10.0, k3=1, k4=100.0:              k1=0.1, k2=0.1, k3=0.1, k4=0.1:

The I/O function computed by that CRN structure is independent of the kinetics

a => x+c

b => y+c

x+y => z

c+z => r
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c∗ = max(a(0),b(0)) = a(0)+b(0)−min(a(0),b(0))

x∗ = max(0,a(0)−b(0))

y∗ = max(0,b(0)−a(0))

r∗ = min(a(0),b(0))

z∗ = 0, a∗ = 0, b∗ = 0



Mathematical Characterization of the
Functions Computed by Rate-Independent CRNs

Theorem [Chen-Doty-Soloveichik 2014 ITCS]

A real function is computable by a rate-independent CRN if and only if it is positive-

continuous piecewise linear with rational coefficient. 

Theorem [Chalk Kornerup Reeves Soloveichik 2018 CMSB]

A real function is computable by a composable CRN if and only if it is

superadditive positive-continuous piecewise rational linear. 
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Simple Rate-Independent CRN Structures 

A => B

output B: computes the identity function B(∞)=A(0)+B(0) rate-independent !

output A: computes the zero function A(∞)=0 rate-independent !

A => C

B => C

output C: computes the sum C(∞)=A(0)+B(0)+C(0) rate-independent

output A: computes the zero function A(∞)=0 rate-independent !

C => A

C => B

output A: computes A(∞)=
𝛼

𝛽
C(0)+A(0) not rate-independent !

C => A

C => B

B => C

output A: computes the sum A(∞)=C(0)+B(0)+A(0) rate-independent !
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Rate-Independent CRN Structures 

A+B => C

output C: computes C(∞)=minimum(A(0),B(0))+C(0) rate-independent !

output B: computes B(∞)=max(0,B(0)-A(0)) rate-independent !

C => A+B

output A: makes copies A(∞)=C(0)+A(0) rate-independent !

A => X+C

B => Y+C Rate-independent on all species, why ?

X+Y => Z

C+Z => R

Definition A funnel CRN is a CRN that is:

– fork-free on species nodes

– circuit-free

– synthesis-free

Theorem A funnel CRN is rate-independent for any output species.

Sufficient condition, not a necessary condition (e.g. harmless fork with circuit)
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Global Rate-Independence Condition

Lemma The structure of a funnel CRN C is a DAG with no reaction source node

Lemma All steady fluxes of a funnel CRN C are equal to 0.

Proof: by induction on the topological order of the graph.

Definition We shall denote x+
i the total amount of species xi available in an 

execution of the corresponding ODE system.

Theorem The ODE system associated to a funnel CRN has a single steady

state x∗ that does not depend on the kinetic functions fi of C.

Corollary A funnel CRN is globally rate-independent for all species.

Theorem Any function computable by a rate-independent CRN is computable by 

a funnel CRN.

Proof: by Chen-Doty-Soloveichik’s characterization and Ovchinnikov’s max-min 

representation of piecewise linear functions
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Rate-Independence for « Persistent » Outputs

The harmless-fork-with-circuit CRN is rate-independent on outputs A, B, C

C => A C => B        B => C

Def. A species 𝑥

• is a product of a CRN if it can only increase: ∀𝑖 𝑅𝑖(𝑥) ≤ 𝑃𝑖(𝑥)

• is structurally persistent if it is covered by a P-invariant 𝑆, ∀𝑖 𝑆. 𝑅𝑖 = 𝑆. 𝑃𝑖 , and 

does not belong to a critical (gets empty) siphon (when empty remains empty)

Theorem. Any CRN is rate-independent on its structurally persistent products.

Proof: P-invariant covering ensures boundedness and convergence for products.

The species reaching 0 are localized in siphons and exclude persistent outputs.

Implemented in BIOCHAM using Constraint Logic Programming for computing

P-invariants and siphons [Nabli, Martinez, F, Soliman 2016 Constraints]
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Evaluation on 
BioModels

590 CRNs from SBML models

(many not well-formed CRNs)

[F Gay Soliman 2011 TCS]

94 with rate-independent products

29 with non trivial rate-ind. products

2 globally rate-ind. CRNs

Size of those 29 models: 

• 4-136 species

• 2-316 reactions

Constraint solving time:

• between 0.07 and 151 seconds

• except 2 timeouts >240s
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Biomodel# #species #reactions #products #RI #NTRI NTRI-product species Time (s)

037 12 12 2 2 2 Yi, Pi 0.950

104 6 2 3 3 1 species_4 0.074

105 39 94 11 3 1 AggP_Proteasome 63.366

143 20 20 4 1 1 MLTH_c 3.333

178 6 4 1 1 1 lytic 0.139

227 60 57 2 1 1 s194 17.299

259 17 29 1 1 1 s10 2.308

260 17 29 1 1 1 s10 2.310

261 17 29 1 1 1 s10 2.297

267 4 3 1 1 1 lytic 0.086

283 4 3 1 1 1 Q 0.053

293 136 316 14 4 3 aggE3, aggParkin,

AggP_Proteasome
>240

313 16 16 4 2 1 IL13_DecoyR 2.071

336 18 26 1 1 1 IIa 4.148

344 54 80 7 2 1 AggP_Proteasome >240

357 9 12 1 1 1 T 0.561

358 12 9 4 2 1 Xa_ATIII 0.892

363 4 4 1 1 1 IIa 0.067

366 12 9 4 2 1 Xa_ATIII 0.901

415 10 5 7 7 7 s10, s11, s12, s13, s14, s9, 

s15
0.894

437 61 40 22 8 1 T 16.109

464 14 10 6 3 1 s12 2.282

465 16 14 5 5 1 s23 59.554

525 18 19 8 3 1 p18inactive 33.479

526 18 19 8 3 1 p18inactive 33.858

540 22 11 12 11 8 s14, s15, s16, s17,

s18, s19, s20, s21

56.134

541 37 32 13 9 7 s14, s15, s16, s17, s18, s19, 

s21
31.573

559 90 136 18 2 2 s493, s502 150.954

575 76 58 9 1 1 DA_GSH 66.806



Conclusion

• Graphical conditions to ensure rate-independence of a CRN on all species

– « funnel » CRN structure: fork-free, circuit-free, synthesis-free

• Graphical condition to ensure rate-independence on CRN product species

– Non-standard use of Petri Net notions of P-invariant and siphon

– NP-hard problems implemented in BIOCHAM by Constraint Logic Programming

• Scales-up to models in BioModels

– Few timeouts for models with a hundred of species or reactions

– Possible improvements using SAT solvers

• Theory of analog computational complexity beyond Ptime characterization?

– Computational complexity class of rate-independent CRNs?

– Low time complexity class of funnel CRNs?
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Perspectives

• Rate-independence by design for Synthetic Biology

– Graphical constraints for CRN design

– Constraint-based synthesis method

• « Morally » rate-independent CRNs

– Rate-independent CRN kernel

– Plus reverse reactions breaking formal rate-independence (limited robustness)

– Boolean function CRNs for diagnosis [Courbet Amar F Renard Molina 2018 MSB]
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