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Abstract. Systems biology aims at understanding complex biological
processes in terms of their basic mechanisms at the molecular level in
cells. The bet of applying theoretical computer science concepts and
software engineering methods to the analysis of distributed biochemical
reaction systems in the cell, designed by natural evolution, has led to
interesting challenges in computer science, and new model-based insights
in biology. In this paper, we review the development over the last decade
of the biochemical abstract machine (Biocham) software environment
for modeling cell biology molecular reaction systems, reasoning about
them at different levels of abstraction, formalizing biological behaviors
in temporal logic with numerical constraints, and using them to infer
non-measurable kinetic parameter values, evaluate robustness, decipher
natural biochemical processes and implement new programs in synthetic
biology.

1 Introduction

At the end of the 90s, with the end of the human genome project, research
in bioinformatics started to evolve, passing from the analysis of the genomic se-
quence and structural biology problems, to the analysis of complex post-genomic
interaction networks: expression of RNA and proteins, protein-protein interac-
tions, transport, signal transduction, cell cycle, etc. Systems biology [31] is the
name given to a new pluridisciplinary research field, involving biologists, com-
puter scientists, mathematicians, physicists, to promote a change of focus to-
wards system-level understanding of high-level functions of living organisms,
from their biochemical bases at the molecular level. The main outcome of this
effort has been the creation of, and easy access to,

– databases and ontologies of cell components [2];
– repositories of models of cell processes [11], through the definition of common

exchange formats such as the Systems Biology Markup Language (SBML)
[28,27];

– model editors [33,19] and simulation tools [24,37], making it possible to repro-
duce in silico analyses in articles, with models published as supplementary
material;

– and the construction of a whole cell predictive computational model of the
bacterium Mycoplasma genitalium including its 525 genes by Karr et al.[29].



Formal methods from theoretical computer science have been successfully
applied in systems biology to master the complexity of biological networks and
decipher biological processes, mostly at the molecular and cellular levels. The
distinction between syntax and semantics is particularly fruitful for designing
modeling languages and for reasoning about biological systems at different lev-
els of abstraction. While interaction diagrams are the key for interacting with
biologists, their transcription in formal graphs or formal languages compels the
modeler to eliminate any ambiguity, and enables the use of a wide variety of
structural or dynamic analysis tools. In these approaches, the mathematical for-
malisms of ordinary differential equations (ODE) and partial derivate equations
(PDE) appear as low-level languages on top of which high-level languages can
be designed to directly reflect the structure of the interactions, and apply novel
static analysis methods.

The use of Petri nets to model chemical processes was proposed in [39] to-
gether with standard Petri net tools for static analyses. The notion of T-invariant
is a key tool for analyzing extreme fluxes and optimizing metabolic networks [50],
and provides a definition of modules in biochemical networks [21]. P-invariants
provide structural conservation laws that can be directly used to eliminate vari-
ables in mathematical models based on ordinary differential equation models
[47]. The notion of siphons and traps provide sufficient conditions for persis-
tence and accumulation of molecular species in a network of reactions [1,36].
Petri nets have also been generalized to handle continuous dynamics [34,35,44]
and to model gene regulatory networks [10]. The use of process calculi from
concurrency theory was also proposed in [41] and inspired subsequent work in
several directions including stochastic modeling [38,40], space and membrane
dynamics [8], and molecular biology combinatorics [15].

In this paper, we review the development over the last decade of the biochemi-
cal abstract machine (Biocham, http://contraintes.inria.fr/biocham) soft-
ware environment for modeling cell biology molecular reaction systems, rea-
soning about them at different levels of abstraction, formalizing biological be-
haviors in temporal logic with numerical constraints, and using them to infer
non-measurable kinetic parameter values, evaluate robustness, decipher natural
biochemical processes and design new biochemical programs in synthetic biology.

2 Biochemical Reaction Systems

Let S be a finite set of s molecular species. A reaction is a triple (s, s′, f), noted

s
f

−→ s′, where s, s′ : S → N are multisets over S (stoichiometric coefficients),
and f : Rs → R is a mathematical function over molecule quantities, called
the rate function. Multisets are used for representing reactants and products in
reactions, and a reaction is fundamentally a multiset rewriting rule. The chemical
metaphor based on multiset rewriting has been proposed in computer science to
program concurrent processes [4,5] and to reason about concurrent programs
[7]. However in biochemistry, the reaction rates of the reactions may differ by
several orders of magnitude, and it is crucial for many properties to consider the
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continuous-time dynamics of the reactions. Each reaction is thus supposed to be
given with a rate function.

A limited number of reaction schemas occurs in biochemical reaction net-
works. Binding reactions of the form

A,B
kAB

−→ C

bind two molecular compounds together, such as the complexation of two proteins
or complexes to form a bigger complex, or the binding of a promotion factor
(resp. an inhibitor) on a gene to activate (resp. inhibit) its transcription. The
mass action law kinetics used in that reaction states that the rate of the reaction
is proportional to the number of its reactants. The rate constant k represents the
affinity of the two molecules to bind together. The inverse unbinding reaction is
of the form

C
k.C

−→ A,B

with again a mass action law kinetics, where the rate constant characterizes the
stability of the complex.

A molecular species like a protein can also be modified under the action of
an enzyme, such as a kinase for a phosphorylation reaction, or a phosphatase for
a dephosphorylation reaction. This is represented by a reaction of the form

A
v.A/(k+A)

−→ B

with a Michaelis-Menten kinetics. That rate function for enzymatic reactions
results in fact from the reduction of the three elementary reactions with mass
action law kinetics,

A,E
k1.A.E
−→←−
k2C

C
k3.C

−→ B,E

by quasi-steady state approximation [45]. The same reaction schema can also be
used to model the active transport of a molecule A from one compartment, to
another compartment where A is denoted by B.

Synthesis reaction, such as the synthesis of an RNA by a gene activated by
its promotion factor, are of the form

A
v.An/(k+A)n

−→ A,B

with a Hill kinetics of order n. That rate function provides a sigmoidal response,
i.e. a switch-like behavior to the synthesis process, and comes from the reduction
of a system of n cooperative reactions.

Degradation reactions of the form

A
k.A

−→

have the empty multiset as product, and either a mass action law kinetics in the
case of spontaneous degradation, or a Michaelis-Menten or Hill kinetics in the
case of an active degradation process under the action of other molecules.



These formal systems of reactions can be interpreted at different level of
abstraction in a hierarchy of semantics. The most concrete interpretation is
provided by the Chemical Master Equation (CME), which defines the probability
of being in a state x at time t as

d

dt
p(t)(x) =

∑
j:x−rj≥0

fj(x− vj).p(t)(x− vj)−
n∑
j=1

fj(x− vj).p(t)(x)

where vj is the change vector s′j − sj of reaction j and fj(x) is the propensity
of reaction j in state x defined by the rate function.

The differential semantics of a reaction system is a deterministic interpreta-
tion, which describes the time evolution of the mean E[X(t)] by an ODE. The
ODE derives from the CME by a first-order approximation. We have

d

dt
E[X(t)] =

∑
x

d

dt
p(t)(x) =

n∑
j=1

vj .E[f(X(t))]

which gives, by first-order approximation of the Taylor series about the mean,

d

dt
µ =

n∑
j=1

vj .f(µ).

Given initial concentrations for species, such an ODE can be simulated by stan-
dard numerical methods for stiff systems.

For instance, the ODE associated to the reaction system

S,E
10.S.E

−→ C
10.C

−→ P,E, P
P

−→ S

is dS/dt = k3.P − k1.E.S, dE/dt = k2.C − k1.E.S, dC/dt = k1.E.S − k2.C,
dP/dt = k2.C − k3.P . Figure 1 shows the amplification of the input E in the
output P , in a simulation of that ODE with initial concentration 10 for S and
a cosine function of time for the input E.

The stochastic semantics of a reaction system is defined by a Continuous
Time Markov Chain (CTMC) over integer numbers of molecules (discrete con-
centration levels). The rate functions of the reactions lead to state transition
probabilities after normalization by the sum of the propensities of each reaction
in each state. The Stochastic Simulation Algorithm of Gillespie [20] provides a
simulation method which computes numerical traces, most often similar to the
ODE simulation for large numbers of molecules, but may exhibit qualitatively
different behaviors in the case of small numbers of molecules, for instance in the
case of gene expression as a gene usually is in one single copy in a cell.

The abstraction of the stochastic semantics by simply forgetting the proba-
bilities, gives the non-deterministic Petri net semantics of the reactions, where
the discrete states define the number of tokens in each place, and the transitions
consume the reactant tokens and produce the product tokens [39].



Fig. 1. Simulation of the time evolution of the concentration of output P in the differ-

ential semantics of the reaction system S,E
10.S.E

−→ C
10.C

−→ P,E, P
P

−→ S, with initial
concentration 10 for S, and a cosine function of time (depicted by Esin) for input E.

The abstraction of the Petri net semantics in the Boolean semantics defined
by the Boolean abstraction function over integers, β : N −→ {0, 1} with β(0) = 0
and β(x) = 1 if x > 0, is a non-deterministic asynchronous Boolean transition
system suitable for reasoning on the presence/absence of molecules. In Biocham,
the Boolean semantics of the reactions associates several Boolean transitions to
one reaction. For instance, a complexation reaction like A,B −→ B, is inter-
preted by 4 Boolean transitions, one for each possible complete consumption of
the 2 reactants: A ∧ B −→ C ∧ ±A ∧ ±B. This is necessary for the abstrac-
tion result to hold with respect to the Petri net or stochastic semantics. It is
worth noticing that with a Boolean abstraction defined by a threshold value θ,
i.e. βθ(x) = 0 if x < θ and βθ(x) = 1 if x ≥ θ, several Boolean transitions must be
introduced for the products as well, for instance the complexation reaction gives
rise to 16 Boolean transitions for taking into account the possible production of
the 2 products, either below or above the threshold value.

In [18], all these discrete and stochastic trace semantics of reactions systems
have been related by formal abstraction relationships (Galois connections) in
the framework of abstract interpretation [14]. This shows that if a behavior is
not possible in the Boolean semantics for instance, then it is not realizable in
the Petri net or stochastic semantics for any kinetic laws and kinetic parameter
values. This is a strong motivation for reasoning at a high level of abstraction
in the Boolean semantics of reaction systems, which may be sufficient to answer
questions about large interaction maps.



3 Symbolic Model-Checking of Biochemical Systems

Regulatory, signaling and metabolic networks are very complex mechanisms
which are far from being understood on a global scale. Data on the kinetics
of the individual reactions is also rare and unreliable, making the building of
quantitative models particularly challenging in many cases. In those situations,
qualitative analyses can however be conducted in the Boolean semantics of the
reactions, using the powerful model-checking tools developed for circuit and pro-
gram verification [13].

A Boolean state specifies the presence or absence of each molecule in the
system at a given time, and any set of states can be represented by a Boolean
constraint over the molecule variables. The Computation Tree Logic CTL∗ is a
modal logic that extends propositional logic with two path quantifiers, A and
E (Aφ meaning that φ is true on all computation paths, and Eφ that it is
true on at least one path), and several temporal operators, Xφ (meaning that
φ is true on the next state on a path), Fφ (meaning that φ is finally true on
some state on a path), Gφ (globally true on all states on a path), φUψ (until,
meaning that ψ is finally true and φ is always true before), and φRψ (release,
meaning that ψ is either globally true or always true up to the first occurrence
of ψ included). In this logic, Fφ is equivalent to trueUφ, Gφ to φRfalse, and we
have the following duality properties: ¬Xφ = X¬φ, ¬Eφ = A¬φ, ¬Fφ = G¬φ,
¬(φUψ) = ¬ψR¬φ.

The fragment CTL of CTL∗ imposes that a temporal opertor must imme-
diately follow a path quantifier. This logic CTL can express a wide variety of
properties of biochemical networks [9] like state reachability of φ (EFφ), stea-
dyness of φ (EGφ), stability (AGφ), reachability of a stable state (EFAGφ),
φ checkpoint for ψ (¬ψRφ), oscillations (EG(F¬φ ∧ Fφ) over-approximated in
CTL by EG(EF¬φ ∧EFφ)) etc.

Figure 2 reproduces Kohn’s map of the mammalian cell cycle [32] using some
graphical conventions introduced by K. Kohn to represent the different types of
interactions (complexation, binding, phosphorylations, modifications, synthesis,
etc.). This map has been transcribed in a reaction model of 732 reaction rules
over 165 proteins and genes, and 532 variables taking into account the different
forms of the molecular species [9]. The astronomical number of Boolean states
in this system, 2532, prevents the explicit representation of the state graph, how-
ever, a set of states in this space can nevertheless be represented symbolically by
a Boolean formula over 532 variables, and the transition relation by a Boolean
formula over twice that number of variables. For instance the formula false rep-
resents the empty set, true the universe of all states, x the set of 2531 states
where x is present, etc. Our first result in [9] was to show the performance of the
state-of-the-art symbolic model checker NuSMV [12] using the representation
of Boolean formulae by ordered binary decision diagrams (OBDD), on this non
standard transition system from biology. Table 1 shows that the compilation
of the whole 732 reactions into Boolean formulae took 29 seconds, and simple
reachability and oscillations properties could be checked in a few seconds. The



Fig. 2. Kohn’s map of the mammalian cell cycle control [32].

negative answer to the query concerning the oscillation of cyclin B revealed the
omission of the synthesis of cyclin B in Kohn’s map.

The encoding of biological properties in temporal logics provides a logical
paradigm for systems biology that makes a bridge between theoretical models
and biological experiments, through the following identifications:

biological model = transition system,
biological property = temporal logic formula,

model validation = model-checking,
model inference = constraint solving.

A formula φ, learned from biological experiments, can be tested in a model M
by model-checking techniques to determine whether M |= φ. Furthermore, a
model-checker can also compute the set of initial states for which a formula is
true, and suggest biological experiments to verify a CTL property predicted by
the model, on the real biological object [6]. In particular, the checkpoints proved
in a model of the cell cycle, or of a signaling network, provide possible drug
targets to block the cell cycle, or a signaling cascade.



CTL query Answer CPU time whitness time

compilation of the reactions - 29 -
reachable SL1(p) yes 29 124
reachable cycE yes 2 22
reachable cycD yes 1.9 11.5

reachable pcna-cycD yes 1.7 48.7
cdc25C(Nterm) checkpoint cdk1-cycB(Thr161)) no 2.2 49.22

oscillation cycA yes 31.8 -
oscillation cycB no 6 -

Table 1. Runtime in seconds obtained on Kohn’s map with NuSMV in 2002 on a
Pentium 3 at 600MHz, for checking simple CTL reachability and oscillation properties
in a state corresponding to phase G2 of the cell cycle. The absence of possibility of
oscillation for cycB corresponds to the omission of a reaction in Kohn’s map, for the
synthesis of cyclin B.

4 Quantitative Temporal Logic Constraints

4.1 Threshold and Timing Constraints

The temporal logic approach to the specification of imprecise dynamical prop-
erties of biological systems can also be made quantitative and applied to quan-
titative models over concentrations. The idea is to lift it to a first-order setting
with numerical (linear) constraints over the reals, in order to express threshold
or more complex constraints on the concentrations of the molecular compounds
and time.

For instance, the reachability of a threshold concentration for a molecule A
can be expressed with the formula F(A > v) for some value or free variable
v. Such formulae can then be interpreted on a finite numerical trace (extended
with a loop on the last state) obtained either from a biological experiment, or
from the numerical simulation of an ODE model, giving the concentrations of
the molecules at discrete time points, e.g. Figure3.

Fig. 3. Numerical trace depicting the time evolution of a protein concentration



In Biocham, we use the First-Order Linear Time Logic with linear constraints
over the reals (FO-LTL(Rlin)) to specify semi-qualitative semi-quantitative prop-
erties of a biological dynamical system. LTL is the fragment of CTL∗ without
any path quantifier and only time operators interpreted on a trace. The grammar
of FO-LTL(Rlin) formulae is summarized in Table 2.

φ ::= c | φ⇒ ψ | φ ∧ φ | φ ∨ φ | Xφ | Fφ | Gφ | φUφ | φRφ

Table 2. Grammar of FO-LTL(Rlin) formulae where c denotes linear constraints over
molecular concentrations, their first derivative, free variables and the time variable.

Timing constraints can be expressed with the time variable and free variables
to relate the time of differents events. For instance, the formula G(Time ≤ t1 ⇒
[A] < 1∧Time ≥ t2 ⇒ [A] > 10)∧(t2−t1 < 60) expresses that the concentration
of molecule A is always less than 1 up to some time t1, always greater than 10
after time t2, and the switching time between t1 and t2 is less than 60 units of
time.

A local maximum for molecule concentration A can be defined with the for-
mula F(A ≤ x ∧ X(A = x ∧ XA ≤ x)). This formula can be used to define
oscillation properties, with period constraints defined as time separation con-
straints between the local maxima of the molecule, as well as phase constraints
between different molecules.

In [43,17], it is shown how the validity domain D(s0,...,sn),φ of the free variables
of an FO-LTL(Rlin) formula φ on a finite trace (s0, ..., sn), can be computed by
finite unions and intersections of polyhedra, by a simple extension of the model-
checking algorithm, as follows:

– D(s0,...,sn),φ = Ds0,φ,

– Dsi,c(x) = {v ∈ Rk | si |= c[v/x]} for a constraint c(x),
– Dsi,φ∧ψ = Dsi,φ ∩ Dsi,ψ,
– Dsi,φ∨ψ = Dsi,φ ∪ Dsi,ψ,
– Dsi,Xφ = Dsi+1,φ,
– Dsi,Fφ =

⋃n
j=iDsj ,φ,

– Dsi,Gφ =
⋂n
j=iDsj ,φ,

– Dsi,φUψ =
⋃n
j=i(Dsj ,ψ ∩

⋂j−1
k=i Dsk,φ).

For instance, on the numerical trace of Figure 3, the validity domain, depicted
in Figure 4, of the formula F(A ≥ y1 ∧ F(A ≤ y2)), where y1 and y2 are free
variables, is y1 ≤ 10 ∧ y2 ≥ 2.

4.2 Parameter Optimization

One major difficulty in quantitative systems biology, is that the kinetic parame-
ter values of the biochemical reactions are usually unknown, and must be infered



Fig. 4. Validity domain of the formula F(A ≥ y1 ∧F(A ≤ y2)) on the trace of Figure
3. The two points correspond to the formulae φ1 = F(A ≥ 7 ∧ F(A ≤ 3)) (true) and
φ2 = F(A ≥ 7 ∧ F(A ≤ 0)) (false) respectively.

from the observable behavior of the system under various conditions (differences
of milieu, drugs, gene knock-outs or knock downs, etc.). In our quantitative tem-
poral logic setting, this problem amounts to solve the inverse problem of finding
parameter values for an ODE model such that an FO-LTL(Rlin) specification is
true.

However, the classical true/false valuation of a logical formula is not well
suited to guide the search. State-of-the-art continuous optimization algorithms
such as evolutionary algorithms, require a fitness function to measure progress
towards satisfiability. Such a continuous satisfaction degree in the interval [0, 1]
can be defined for FO-LTL(Rlin) formulae, by replacing constants by variables,
which was in fact our original motivation for considering formulae with free
variables.

Indeed, a specification of the expected behavior given by a closed formula,
for instance

φ2 = F(A ≥ 7 ∧ F(A ≤ 0)),

can first be abstracted in a formula with free variables by replacing constants
with free variables, e.g.

φ = F(A ≥ y1 ∧ F(A ≤ y2))

with the objective values 7 for y1 and 0 for y2. Then, the validity domain DT,φ
of the formula φ on a trace T obtained by simulation for some parameter values,
makes it possible to define the violation degree vd(T, φ, o) of the formula on T
with objective o, simply as the distance between the validity domain and the
objective point o, i.e. 2 in our example (see Figure 4). A continuous satisfaction
degree in the interval [0, 1] can then be defined by normalization as the inverse



of the violation degree d plus one,

sd(T, φ, o) =
1

1 + vd(T, φ, o)

i.e. 1/3 in our example.

Fig. 5. Landscape of the satisfaction degree of an oscillation property with amplitude
constraint, on a color scale from yellow to black, as a function of two parameters in a
quantitative model of the yeast cell cycle from [48]. The parameter sets kA, kB and k∗

2

satisfy the specification. The parameter sets kc and k2 violate the amplitude constraint.
CMA-ES iteratively samples the landscape to find a path in a random walk from k2

to k∗
2 for instance.

In Biocham, we use the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) of N. Hansen [22] as a black-box optimization algorithm, with the
satisfaction degree of an FO-LTL(Rlin) specification as fitness function, and un-
known kinetic parameter values (initial concentrations and control parameters)
as variables. On a quantitative model of the cell cycle [48], Figure 5 depicts the
landscape of the satisfaction degree of an oscillation property with amplitude
constraint, as a function of two parameters of the model. The landscape is iter-
atively sampled by CMA-ES to find a path towards satisfaction, and optimize
the model parameter values, for instance going from k2 to k∗2 in a few steps.

The FO-LTL(Rlin) satisfaction problem generalizes the classical curve fitting
problem, by providing a powerful language to express significant properties of
the dynamics, instead of requiring a complete curve that could over-specify the
behavior. This is particularly useful in biology where experimental data may be
imprecise in nature, with important cell-to-cell variability, irregular oscillation
periods and phases, and should not be taken as exact specification.

This strategy for optimizing parameters with respect to an FO-LTL(Rlin)
specification allowed us to solve a wide variety of problems in systems biology,



for fitting models to experimental data in high dimension (up to 100 parame-
ters), revisiting the structure of the reaction network in case of failure, making
new biological hypotheses based on simulation, and verifying them by new ex-
periments, for instance for deciphering the complex dynamics of a cell signaling
network in [23]. The same strategy for parameter optimization can also be used
to compute control parameters to achieve a desired behavior at the single cell of
cell population levels. This has been used for the model-based real-time control
of gene expression in yeast cells using a microfluidic device in [49], and at the
whole body scale, to couple models of cell cycle, circadian clock, drug effects,
DNA repair system, and optimize anti-cancer drug chronotherapeutics in [16,3].

4.3 Robustness Measure

In [30], Kitano gives a general definition of the robustness of a property φ of a
system S with respect to a set P of perturbations given with their probability
distribution, as the mean functionality of the system with respect to φ under
the perturbations, with the system’s functionality defined in an ad hoc way for
each property.

In our framework, this definition can be instanciated to a complete defini-
tion for FO-LTL(Rlin) properties, simply by taking their continuous satisfaction
degree as functionality measure, as follows [42]:

RS,φ,P =

∫
p∈P

prob(p) sd(Tp, φ) dp.

In a model, this definition of robustness can be evaluated by

1. sampling the perturbations according to their distribution;
2. measuring the satisfaction degree of the property for each simulation of the

perturbed model;
3. and returning the average satisfaction degree.

This methodology has been used in [42] to design and implement in synthetic
biology using a cascade of gene inhibitions, a robust switch satisfying some timing
constraints. Moreover, continuous parameter sensitivity indices can be computed
in this approach to determine the most important parameters for improving the
robustness of the design.

On the quantitative model of the yeast cell cycle [48] and the oscillation with
amplitude constraint depicted in Figure 5, the estimated degree of robustness
for parameters kA, kB and kC are respectively 0.991, 0.917 and 0.932. This is
consistent with the location of points kA, kB and kC . Perturbations around point
kA have high probabilities of staying in the region satisfying the specification
whereas perturbations around point kB have high probabilities of moving the
system to the region with no oscillation. kC is more robust than kB even though,
as opposed to kB , its violation degree is non null. This is explained by the abrupt
transition between oscillating and non oscillating regions near kB compared to
the smoother transition near kC .



5 Biochemical Programming

Synthetic biology prolongs systems biology with the aim of designing biologi-
cal systems that perform novel, useful tasks, and implementing them in vivo
by reengineering and optimizing existing natural organisms. This is achieved by
modifying the genes or integrating DNA constructs in living cells, or by creating
cell-free vesicles, using bioengineering techniques. Synthetic biology keeps model-
ing and the characterization of components as central methodology to achieve its
goals. Some successes of this nascent field include: the constitution of registries
of standard biological parts and the organization of the iGEM competition at
MIT; the creation by Craig Venter of a cell with a synthetic genome; the produc-
tion by Sanofi of artemisinin, an antimalarial drug, by a biosynthetic pathway
in a yeast chassis.

However, in order to design robust interaction networks and to be reliable in
a clinical context, synthetic circuits must progress in their biochemical imple-
mentation of logical tasks and simple operations.

One way to attack this problem is to study the compilation of imperative pro-
grams in biochemical reaction systems over proteins. In [46], Senum and Riedel
have shown how Boolean and arithmetic operations can be robustly implemented
with biochemical reactions using mass action law kinetics, and only two kinetic
rate constants s and f , for fast and slow reactions respectively. These transforma-
tions use an intermediate language of conditional reactions with preconditions.
The preconditions are logical expressions over Boolean variables associated to
each molecular species. The Boolean truth values are defined from the concen-
trations with a threshold function βθ as in Section 2.

For instance, a reaction with precondition A is simply transformed by adding
A as catalyst (i.e. both reactant and product). For a disjunctive precondition, A∨
B, two reactions are created, one with A and one with B as catalyst. A negation
in a precondition amounts to test the absence of a molecular species which cannot
be directly done in a biochemical reaction. The idea is to introduce a witness
molecule A′ for the absence of A without affecting A, using the following slow

and fast mass action law kinetic reactions:
s

−→ A′, A,A′
f.A.A′

−→ A, 2∗A′
f.A′2

−→ A.
For the copy instruction, B:=A, compiling it with just one reaction A −→ B

would destroy A. On the other hand, the reaction A −→ A,B would increase B
at each increment of A. In order to localize the computation for the copy, the
following conditional reactions are used

A −→ C precondition G
G −→ precondition ¬A
C −→ A,B precondition ¬G

where G is a start signal molecule for executing the instruction and which is con-
sumed in the process. This is the basic idea to implement arithmetic operations
and comparisons thourhg asynchronuous biochemical computation.

In [25], the authors further extend this approach to the compilation of pro-
gram control flows. For instance, the following program for the Euclidean division



of A by B, is compiled, first in a conditional reaction program where initially Q
is zero and C is initially of a unit amount:

Q:=0 A,B −→ D
while A>=B do C −→ Q,E precondition ¬B
begin D −→ F precondition ¬C

A:=A-B; E −→ G precondition ¬D
Q:=Q+1; F −→ B precondition ¬E

end; G −→ C precondition ¬F
R:=A D −→ R precondition B ∧ ¬A

and then into a system of biochemical reactions with only two fast and slow
mass action law kinetics. The execution with initial concentrations [A] = 20 and
[B] = 3 produces the result [Q] = 6, [R] = 2 as follows:

Fig. 6. Biochemical computation of the Euclidean division of A by B [25].

However, more work is needed on this schema to minimize the number of
involved molecular species [26]. This is crucial to accomplish a complex compu-
tation within a confined biochemical environment. The challenge of implement-
ing simple imperative programs with protein reaction systems in vesicles seems
atteinable in a near future with enormous applications for creating biosensors
and personalized therapeutics at the microscopic scale.



6 Conclusion

This line of research in systems biology based on the vision of cell as compu-
tation, aims at mastering the complexity of cell processes, through the use of
concepts and tools from theoretical computer science and the establishment of
formal computation paradigms tightly coupled to experimental settings in cell
biology. While for the biologist, as well as for the mathematician, the sizes of
the biological networks and the number of elementary interactions constitute
a complexity barrier, for the computer scientist the difficulty is not that much
in the size of the networks than in the unconventional nature of biochemical
computation. Unlike most programs, biochemical computation involve transi-
tions that are stochastic rather than deterministic, continuous-time rather than
discrete-time, poorly localized in compartments instead of well-structured in
modules, and created by evolution instead of by rational design. It is our belief
however that some form of modularity (functional if not structural) is required
by an evolutionary system to survive, and that the elucidation of these mod-
ules in biochemical computation is now a key to master the analog aspects of
biochemical computation, understand natural biochemical programs, and start
controlling the cell machinery.
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