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Abstract. Recent progress in Biology and data-production technolo-
gies push research toward a new interdisciplinary field, named Systems
Biology, where the challenge is to break the complexity walls for reason-
ing about large biomolecular interaction systems. Pioneered by Regev,
Silverman and Shapiro, the application of process calculi to the descrip-
tion of biological processes has been a source of inspiration for many
researchers coming from the programming language community.
In this presentation, we give an overview of the Biochemical Abstract
Machine (BIOCHAM), in which biochemical systems are modeled using
a simple language of reaction rules, and the biological properties of the
system, known from experiments, are formalized in temporal logic. In
this setting, the biological validation of a model can be done by model-
checking, both qualitatively and quantitatively. Moreover, the temporal
properties can be turned into specifications for learning modifications or
refinements of the model, when incorporating new biological knowledge.

1 Introduction

Systems biology is a cross-disciplinary domain involving biology, computer sci-
ence, mathematics, and physics, aiming at elucidating the high-level functions
of the cell from their biochemical bases at the molecular level. At the end of
the Nineties, research in Bioinformatics evolved, passing from the analysis of
the genomic sequence to the analysis of post-genomic data and interaction net-
works (expression of RNA and proteins, protein-protein interactions, etc). The
complexity of these networks requires a large research effort to develop symbolic
notations and analysis tools applicable to biological processes and data.

Our objective with the design of the Biochemical Abstract Machine BIOCHAM
[1, 2] is to offer a software environment for modeling complex cell processes, mak-
ing simulations (i.e. “In silico experiments”), formalizing the biological proper-
ties of the system known from real experiments, checking them and using them
as specification when refining a model. The most original aspect of our approach
can be summarized by the following identifications:

biological model = transition system,
biological property = temporal logic formula,

biological validation = model-checking.



2 Syntax of Biomolecular Interaction Rules

The objects manipulated in BIOCHAM represent molecular compounds, ranging
from small molecules to proteins and genes. The syntax of objects and reaction
rules is given by the following grammar:
object = molecule | molecule :: location
molecule = name | molecule-molecule |molecule~{name,...,name}
reaction = solution => solution | kinetics for solution => solution
solution = | object | number*object | solution+solution
The objects can be localized in space with the operator “::” followed by a loca-
tion name, such as the membrane, the cytoplasm, the nucleus, etc. The binding
operator - is used to represent the binding of a molecule on a gene, the complex-
ation of two proteins, and any form of intermolecular bindings. The alteration
operator “∼” is used to attach a set of modifications to a protein, like for instance
the set of its phosphorylated sites (as long as they impact its activity).

Reaction rules express elementary biochemical interactions. There are essen-
tially seven main rule schemas :

– G => G + A for the synthesis of A by gene G,
– A => _ for the degradation of A,
– A + B => A-B for the complexation of two proteins A and B,
– A-B => A + B for the reversed decomplexation,
– A + B => A~{p} + B for the phosphorylation of protein A at site p catalyzed

by B,
– A~{p} + B => A + B for the reversed dephosphorylation,
– A::L => A::L’ for the transport of A from location L to L’.

The reaction rules can also be given with a kinetic expression, like for instance
0.1*[A][B] for A + B => A-B where a mass action law kinetics with constant
rate 0.1 is specified for the formation of the complex.

This rule-based language is used to model biochemical systems at three ab-
straction levels which correspond to three formal semantics: boolean, concentra-
tion (continuous dynamics) and population (stochastic dynamics).

A second language based on Temporal Logic [3] is used in BIOCHAM to
formalize the biological properties of the system, and validate a model by model-
checking [4, 5]. More precisely, symbolic and numerical model-checking tools are
used respectively for CTL in the boolean semantics, for LTL with constraints
over real numbers in the concentration semantics, and for PCTL with constraints
over integers in the stochastic semantics.

3 Boolean Semantics

The most abstract semantics is the boolean semantics which ignores kinetic ex-
pressions. In that semantics, a boolean variable is associated to each BIOCHAM
object, representing simply its presence or absence in the system. Reaction rules
are then interpreted as an asynchronous transition system over states defined by



the vector of boolean variables (similarly to the term rewriting formalism used in
[6]). A rule such as A + B => C + D defines four possible state transitions corre-
sponding to the possible consumption of the reactants: A∧B → A∧B ∧C ∧D,
A∧B → ¬A∧B ∧C ∧D, A∧B → A∧¬B ∧C ∧D, A∧B → ¬A∧¬B ∧C ∧D.
In that semantics, the choice of asynchrony and non-determinism is important
to represent basic biological phenomena such as competitive inhibition, where a
reaction “hides” another one because it consumes the reactants before the other
reaction can occur. Formally, the boolean semantics of a set of BIOCHAM rules
is defined by a Kripke structure K = (S, R) where S is the set of states defined
by the vector of boolean variables, and R ⊆ S × S is the transition relation
between states.

In that boolean semantics, Computation Tree Logic (CTL) formulae are used
to formalize the known biological properties of the system, and to query such
properties in a model. Given an initial state specifying the biological conditions
of the property, typical CTL formulae used in this context are :

– EF (P ), abbreviated as reachable(P), stating that the organism is able to
produce molecule P ;

– ¬E(¬Q U P ), abbreviated as checkpoint(Q,P), stating that Q is a checkpoint
for producing P ;

– EG(P ), abbreviated as steady(P), stating that the system can remain in-
finitely in a set of states described by formula P ;

– AG(P ), abbreviated as stable(P), stating that the system remains infinitely
in P and cannot escape;

– AG((P ⇒ EF ¬P ) ∧ (¬P ⇒ EF P )), abbreviated as oscil(P), a necessary
(yet not sufficient without strong fairness assumption) consition for oscilla-
tions w.r.t. the presence of molecule P ;

– AG((P ⇒ EF Q) ∧ (Q ⇒ EF P )), abbreviated as loop(P,Q), a necessary
condition for the alternance between states P and Q.

BIOCHAM evaluates CTL properties through an interface to the OBDD-based
symbolic model checker NuSMV [7]. This technology makes it possible to check
or query large models, like the model of the cell cycle control involving 165
proteins and genes, 500 variables and 800 reaction rules reported in [5].

4 Concentration Semantics

Basically the same scheme is applied to quantitative models, where each rule
is given with a kinetic expression. The concentration semantics associates to
each BIOCHAM object a real number representing its concentration. A set of
BIOCHAM reaction rules E = {ei for Si ⇒ S′

i}i=1,...,n with variables {x1, ..., xm},
is then interpreted by the following set of (non-linear) ordinary differential equa-
tions (ODE) :

dxk/dt =
n∑

i=1

ri(xk) ∗ ei −
n∑

j=1

lj(xk) ∗ ej



where ri(xk) (resp. li) is the stoichiometric coefficient of xk in the right (resp. left)
member of rule i. Given an initial state, i.e. initial concentrations for each of the
objects, the evolution of the system is deterministic and numerical integration
methods compute discrete time series (i.e. linear Kripke structures) describing
the evolution of the concentrations over time.

The concentration semantics being deterministic, Linear Time Logic (LTL)
is used here to formalize the temporal properties. A first-order fragment of LTL
is used to express numerical constraints on the concentrations of the molecules,
or on their derivatives. For instance, F([A]>10) expresses that the concentration
of A eventually gets above the threshold value 10. Oscillation properties, abbre-
viated as oscil(M,K), are defined here as a change of sign of the derivative of
M at least K times. These LTL formulae with constraints are checked with an
ad-hoc model-checker implemented in Prolog, using the trace of the numerical
integration of the ODEs associated to the rules.

5 Population Semantics

The population semantics is the most realistic semantics. It associates to each
BIOCHAM object an integer representing the number of molecules in the system,
and interprets reaction rules as a continuous time Markov chain. The kinetic
expression ei for the reaction i is converted into a transition rate τi (giving a
transition probability after normalization) as follows [8]:

τi = ei × (Vi ×K)(1−
∑m

k=1
li(xk)) ×

m∏
k=1

(!li(xk))

where li is the stoichiometric coefficient of the reactant xk in the reaction rule
i. Stochastic simulation techniques [9] compute realizations of the process. They
are generally noisy versions of those obtained with the concentration semantics,
however qualitatively different behaviors may also appear when small number of
molecules are considered, which justifies the use of a stochastic dynamics.

In this setting, LTL formulae can be evaluated with their probability using a
Monte Carlo method, which has proved to be more efficient than existing model-
checkers for the probabilistic temporal logic PCTL. However, both the stochastic
simulation and the model-checking are computationally more expensive than in
the concentration semantics.

6 Learning Reaction Rules from Temporal Properties

Beyond making simulations, and checking properties of the models, the tem-
poral properties can also be turned into specifications and temporal logic con-
straints for automatically searching and learning modifications or refinements of
the model, when incorporating new biological knowledge. This is implemented
in BIOCHAM by a combination of model-checking and search in the three ab-
straction levels.



This methodology is currently investigated with models of the cell cycle con-
trol (which regulates cell division) for the learning of kinetic parameter values
from LTL properties in the concentration semantics [10], and for the learning
of reaction rules from CTL properties in the boolean semantics [11]. A coupled
model of the cell cycle and the circadian cycle is under development along these
lines in BIOCHAM with applications to cancer chronotherapies.
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