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Chapter 1

Temporal Logic Modeling of Dynamical
Behaviors: First-Order Patterns and Solvers

This chapter describes how quantitative temporal logic formulae can be
used to formalize imprecise dynamical behaviors of biological systems, and
how such a formal specification of experimental observations can be used to
calibrate models to real data, in a more versatile way than with curve fitting
algorithms.

Temporal logics are modal logics which extend classical logic with modal
operators to reason about time. After their initial introduction by philoso-
phers in the 1950’s, they were proposed in 1977 by Amir Pnueli [PNU 77]
to reason about computer programs, either to verify their correctness, or to
synthesize programs from their specifications in temporal logic. In the early
days of systems biology, propositional temporal logic was soon proposed by
computer scientists to formalize the Boolean properties of the behavior of
biochemical reaction systems [EKE 02, CHA 03] or gene regulatory networks
[BER 04, BAT 05]. In this approach, it is possible to evaluate qualitatively
what may or must happen in interaction networks of large size (e.g. of one
thousand reactions and species), and to compute initial conditions (i.e. design
biological experiments) to exhibit particular behaviors. This can be achieved
by using the powerful model-checking tools [CLA 99, CIM 02] designed over
the last decades for circuit and program verification.

Chapter written by François Fages and Pauline Traynard.
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Generalizing these techniques to quantitative models can be done in two
ways: either by discretizing the different regimes of the dynamics in piece-
wise linear or affine models [JON 04, BAT 10], or by relying on numerical
simulations and taking a first-order version of temporal logic with constraints on
concentrations, as query language for the numerical traces [ANT 03, FAG 08].
In this chapter we present methods for the second approach. We illustrate
their power for estimating parameters in high dimension [RIZ 09, RIZ 11], and
calibrating quantitative models with respect to experimental data. We describe
useful patterns of first-order temporal logic formulae to facilitate their use by
the modelers, present efficient solvers dedicated to them, and illustrate their
use to build a coupled model of the cell cycle and the circadian molecular clock
with period and phase constraints.

1.1. Temporal Logic FO-LTL(Rlin)

1.1.1. Syntax

The Linear Time Logic LTL is a temporal logic [CLA 99] which extends
classical logic with modal operators for qualifying when a formula is true in a
series of timed states. The temporal operators are X (“next”, for at the next
time point), F (“finally”, for at some time point in the future), G (“globally”,
for at all time points in the future), U (“until”, for a first formula must be
true until a second one becomes true), and W (“ weak until”, a dual operator
of U). These operators enjoy some simple duality properties, ¬Xφ = X¬φ,
¬Fφ = G¬φ, ¬Gφ = F¬φ, ¬(ψ U φ) = (¬φ W ¬ψ), ¬(ψ W φ) = (¬ψ U ¬φ),
and we have Fφ = true U φ, Gφ = φ W false.

In this paper we consider a first-order version of LTL, denoted by FO-
LTL(Rlin), with variables and linear constraints over R, and quantifiers. The
grammar of FO-LTL(Rlin) formulae is defined as follows:
φ ::= c | ¬φ | φ ⇒ ψ | φ ∧ φ | φ ∨ φ | ∃x φ | ∀x φ | Xφ | Fφ | Gφ | φUφ |
φWφ
where c denotes linear constraints between molecular concentrations (written
with upper case letters) their first derivative (written dA/dt), free variables
(written with lower case letters), real numbers, and the state time variable,
denoted by Time.

For instance, the formula F(A ≥ 0.2) expresses that the concentration of
molecule A gets greater than 0.2 at some time point in the future (F). If
needed, the precise time values where the concentration of A gets greater than
the threshold value can be expressed by introducing a free variable t with an
equality constraint to the real time variable, with the formula

F(A ≥ 0.2 ∧ t = Time).
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Constraints between time variables can also relate the time of different events.
For instance, the formula

G(Time ≤ t1 ⇒ [A] < 1 ∧ Time ≥ t2 ⇒ [A] > 10) ∧ (t2 − t1 < 60)

expresses that the concentration of molecule A is always less than 1 up to some
time t1, always greater than 10 after time t2, and the switching time between
t1 and t2 is less than 60 units of time.

A local maximum for molecule concentration A can be defined with the
formula

F(A ≤ x ∧X(A = x ∧XA ≤ x))

where x is a free variable denoted to maximum value. ALternatively, local
maxima can also be defined using the derivatives with the formula

F(dA/dt > 0 ∧X(dA/dt ≤ 0 ∧ x = A)).

These formulae can be used to define complex oscillation properties, with period
constraints defined as time separation constraints between the local maxima
of the molecule, as well as phase constraints between different molecules, as
described in Section 1.2.

1.1.2. Semantics: Validity Domains of Free Variables

Temporal logic formulae are classically interpreted in a Kripke structure,
i.e. a transition relation over a set of states such that each state has at least
one successor [CLA 99]. In this paper, we consider finite traces obtained either
by biological experiments in the case of real data, or by numerical integration in
the case of simulated data over a finite time horizon. To give meaning to LTL
formulae, a finite trace (s0, ..., sn) is thus complemented in an infinite trace by
adding a loop on the last state, (s0, ..., sn, sn, ...). In this interpretation over
finite traces, the formula Gφ is thus true in the last state if φ is true in the last
state.

The semantics of formulae containing free variables is given by the validity
domains of the variables.

Definition 1. The validity domain D(s0,...,sn),φ of the free variables of an FO-
LTL(Rlin) formula φ on a finite trace (s0, ..., sn), is a vector of least domains
for the variables, noted D(s0,...,sn),φ, satisfying the following equations:

– D(s0,...,sn),φ = Ds0,φ,
– Dsi,c(x) = {v ∈ Rk | si |= c[v/x]} for a constraint c(x),
– Dsi,φ∧ψ = Dsi,φ ∩ Dsi,ψ,
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– Dsi,φ∨ψ = Dsi,φ ∪ Dsi,ψ,
– Dsi,¬φ = { Dsi,φ,
– Dsi,∃xφ = ΠxDsi,φ,
– Dsi,∀xφ = Dsi,¬∃x¬φ,
– Dsi,Xφ = Dsi+1,φ if i < n,
– Dsn,Xφ = Dsn,φ,
– Dsi,Fφ =

⋃n
j=iDsj ,φ,

– Dsi,Gφ =
⋂n
j=iDsj ,φ,

– Dsi,φUψ =
⋃n
j=i(Dsj ,ψ ∩

⋂j−1
k=i Dsk,φ).

where { is the set complement operator over domains, and Πx is the domain
projection operator out of x, restoring domain R for x.

An FO-LTL(Rlin) formula is false if the validity domain of one variable
is empty, valid if the validity domains of all variables are R, and satisfiable
otherwise.

Example 1. For instance, on the numerical trace of Figure 1.1, the validity
domain, depicted in Figure 1.2, of the formula F(A ≥ y1 ∧ F(A ≤ y2)), where
y1 and y2 are free variables, is the domain y1 ≤ 10 ∧ y2 ≥ 2.

The two points φ1 = (7, 3) and φ2 = (7, 0) in this space correspond to
the values of y1 and y2 in the closed formulae F(A ≥ 7 ∧ F(A ≤ 3)) and
F(A ≥ 7 ∧ F(A ≤ 0)) respectively. In the first case, the formula is true since
the point is inside the validity domain, and the second formula is false since
the point is outside the validity domain. The distance to the validity domain is
used in Section 2 to define a continuous satisfaction degree for FO-LTL(Rlin)
formulae.

Figure 1.1: Numerical trace for the evolution of the concentration of molecule
A over time.
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Figure 1.2: Validity domain of the formula F(A ≥ y1 ∧ F(A ≤ y2)) on the
trace of Figure 1.1.

1.1.3. Generic Solver

The recursive definition of validity domains (Definition 1) can be directly
implemented to compute the validity domains of the free variables in each point
of the numerical trace, starting from the last to the first. In this computation
the LTL subformulae are considered in the bottom-up order, i.e. first from the
linear constraints at the leaves, to finally the root of the syntactic tree.

For instance, to evaluate the formula F(A ≥ y1 ∧ F(A ≤ y2)) of Example
1, the validity domains of y1, y2 for the subformulae A ≥ y1 and A ≤ y2 are
first computed in each time point of the trace, then the validity domains for
F(A ≤ y2) in each time point from the last to the first, and last for the complete
formula by composing the results for the subformulae from the last time point
to the first.

Linear constraints over the Reals have a simple geometrical interpretation:
a conjunctive state constraint represents a (possibly non-closed) convex polyhe-
dron in the state variables’ space and a disjunctive state constraint represents a
(non convex) finite union of convex polyhedra. Domain operations with linear
constraints can thus be implemented quite straigthforwardly with a polyhedra
manipulation library. In our implementation in BIOCHAM [CAL 06a], we use
the Parma Polyhedra Libray, PPL [BAG 08], using set operations for dealing
with finite unions of polyhedra.

The conjunction of linear constraints is represented by the intersection poly-
hedron of the polyhedra associated to the constraints. The existential quan-
tification of a variable is directly implemented by the projection operation of a
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polyhedron on the subspace of the space without that variable. A disjunction
of polyhedra is represented by a finite set of polyhedra. The complementary of
a polyhedron p is computed by the unions of the negated constraints describing
p. The universal quantification is implemented by double complementation of
the existential quantification.

Crucial to the efficiency of the set-based implementation of disjunctive con-
straints is the elimination of redundant constraints. The subsumption check
between finite sets of linear state constraints is co-NP hard, since checking
whether one convex polyhedron is contained in a finite union of convex poly-
hedra is co-NP complete [SRI 93]. On the other hand, the local subsumption
check, i.e. checking whether one convex polyhedron is contained in another one,
can be done by linear programming in polynomial time.

1.1.4. Complexity

Bound constraints, i.e. constraints of the form x ≤ c or x ≥ c where x is a
variable and c a constant, define boxes as a particular kind of polyhedra. In
that case, the validity domains are finite union domains of boxes, since they
are obtained by intersection, union, complementation and projection of boxes.

However, it is worth noticing that even in the case of bound constraints,
the validity domain of a temporal formula can contain an exponential number
of polyhedra [FAG 08]. Let us define the size of a finite union of boxes D, as
the least integer k such that D =

⋃k
i=1Ri where the Ri’s are boxes.

Proposition 1. On a trace of length n, the validity domain of a FO-LTL(Rlin)
formula of size f containing v variables and only bound constraints, is a union
of boxes of size less than (nf)2v.

Proof. Let us consider the number of possible bounds appearing in the validity
domain Dφ of a formula φ for a given variable x.

Let us first consider the case where φ is a bound constraint x ≤ c or c ≤ x.
Such a constraint is evaluated on each time point of the trace, by creating at
most n different bounds for x. Hence the maximum number of bounds in that
case for variable x, is n times the number of occurrences of x in φ which is less
or equal to n × f . Note that this maximum number of bounds is reached for
the formula F ([A] = u ∨ [A] + 1 = u ∨ · · · ∨ [A] + f = u) for instance.

Now, the validity domains for the logical connectives, quantifiers and tem-
poral operators are defined by union, intersection, projection and complemen-
tation operations, which do not create new bound values for the variables.
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As a box is a cartesian product of intervals, it is defined by two bounds for
each variable. With less than n× f bounds per variable, one can thus form at
most (nf)2v boxes. Therefore, the solution domain computed by the algorithm
is a union of boxes of size less than (nf)2v.

As for the tightness of these bounds, note that the following formula

F ([A1] = X1 ∨ [A1] + 1 = X1 ∨ ... ∨ [A1] + f = X1) ∧ ...

∧ F ([Av] = Xv ∨ [Av] + 1 = Xv ∨ ... ∨ [Av] + f = Xv)

has a solution domain of size (nf)v on a trace of n values for the [Ai]’s such
that the values [Ai] + k are all different for 1 ≤ i ≤ v and 0 ≤ k ≤ f .

We will see in Section 1.2 that this exponential complexity in the number
of free variables does not show up in the formula patterns, since they contain
only a limited number of variables, and that in many cases the dedicated solvers
compute the validity domain in linear time.

1.1.5. Trace Simplification

A strategy to speed-up the computation of validity domains is to simplify
the trace over which the domain is computed by filtering off redundant time
points. Indeed, the validity domain is found by combining the subdomains of
each time point, and this combination step can be very time consuming when
the number of combinations is high. Thus discarding some irrelevant points
can lead to significantly faster computation.

In Section 1.3.9, we give some performance figures obtained in a large model
with the trace simplification strategy that consists in keeping only the points
that are a local extremum for at least one of the molecules involved in the
temporal logic formula, as shown in figure 1.3. For each extrema the two
successive temporal points corresponding to the derivative change of sign are
kept in the trace. It is worth noting however that these simplifications are not
correct in general since they may change the validity domains of the variables
in complex formulae.

1.1.6. Continuous Satisfaction Degree in [0,1]

The true/false valuation of FO-LTL(Rlin) formulae makes it possible to scan
the parameter space and check for each parameter set whether the temporal
specification is satisfied. However, such generate-and-test methods have an



18 Logical Modeling of Biological Systems

Figure 1.3: Trace simplification by discarding the temporal points that are
not local extrema for at least one molecule

exponential complexity in the number of parameters. They are thus limited to
two or three parameters and do not scale up.

Calculating a continuous satisfaction degree in the interval [0, 1] for an FO-
LTL(Rlin) specification is particularly useful for parameter inference, since
comparing the satisfaction degrees obtained with different parameter sets gives
a direction to follow in the parameters’ space. A continuous satisfaction degree
able to measure progress towards satisfaction makes it possible to move from
generate-and-test procedures for parameter scanning, to powerful continuous
optimization methods for computing several tenths of parameter values in one
run, for instance by using evolutionary algorithms with the satisfaction degree
as fitness function.

This is the strategy implemented in BIOCHAM [CAL 06a] for parameter
search, where where we use the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [HAN 01] with the satisfaction degree of the temporal specifi-
cation as fitness function [RIZ 11].

Definition 2. Let π be a numerical trace. The violation degree

vd(φ,v) = d(v, Dπ,ψ)

of a formula φ with free variables x with respect to objective values v is the
Euclidean distance between the point of coordinates v and the validity domain
(Dπ,ψ) if it is not empty, and +∞ if Dπ,ψ is empty. The satisfaction degree
of φ w.r.t. v is

sd(φ,v) = 1
1 + vd(φ,v)

The robustness degree
rb(φ,v) = vd(¬φ,x)

is the violation degree of the negation of φ, i.e. the distance to the complement
of the validity domain.
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Example 2. Going back to example 1, we have

vd(φ1) = 0, sd(φ1) = 1, ro(φ1) = 1,

and
vd(φ2) = 2, sd(φ2) = 1/3, ro(φ2) = 0).

The absolute values of the satisfaction degree are not meaningful but the relative
values make it possible to compare different parameter sets, and improve them
in the most promising direction.

The robustness degree is defined here as the distance between the objective
and the complement of the validity domain. Indeed, this distance indicates a
degree of robustness of the temporal properties under the assumption that if
the validity domain boundaries are far from the objective, the validity domain
obtained after slightly changing some parameters are close to the first one, and
are thus likely to satisfy the specification. However, in non-linear systems this
assumption may be violated, and the robustness of the system must be more
accurately estimated by sampling the parameter space around the parameter
set [RIZ 09].

1.2. Formula Patterns and Dedicated Solvers

Defining and implementing common patterns is useful for achieving two
goals:

– provide user-friendly macros to define a dynamical behavior for biologists
who are not familiar with temporal logic [MON 08],

– assign to each pattern a more efficient solver than the generic solver, in
order to speed up the computation of validity domains and parameter search.

In this section , we first recall the temporal operator patterns of [MON 08] and
introduce first-order patterns with free variables for some important behavior
constraints. Each pattern is defined as a macro and is given with a dedicated
solver which is compared to the generic solver.

1.2.1. Temporal Operator Patterns

First, it is useful to define macros for operators that apply to one or sev-
eral temporal logic formulae, given as input to the macro. Table 1.1 lists the
operators proposed in [MON 08].
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Behavior Formula Macro
Occurence of φ F(φ) Occurs(φ)
Exclusion G(¬φ) Excludes(φ)
Invariance G(φ) Invariates(φ)
Sequence:
φ occurs before ψ F(φ ∧ F(ψ)) WeakSequence(φ,ψ)
Sequence:
φ immediately before ψ F(φ ∧X(ψ)) ExactSequence(φ,ψ)
Sequence:
φ always occurs until ψ G(φU(ψ)) Sequence(φ,ψ)
Consequence:
if φ then later ψ G(φ⇒ F(ψ)) Consequence(φ,ψ)
Implication:
φ implies ψ at the same time G(φ⇒ ψ) Implication(φ,ψ)

Table 1.1: Some common operators for temporal logic formulae

1.2.2. Thresholds

We define a first pattern to test whether a concentration threshold is reached
by a molecule: reached(molecule,value). The equivalent LTL(Rlin) formula and
the dedicated solver are given below.

– Macro: Reached(A,v)
– Behavior: Reachability
– Equivalent LTL(Rlin) formula: F(A ≥ v)
– Dedicated validity domain
– Dedicated solver (validity domain, violation degree and robustness):

- D = ]−∞;maxA]
- vd = max(0, v −maxA)
- ro = max(0,maxA− v)
- Time complexity: O(n)

The figure 1.4 compares the solving procedures of the generic solver and
the dedicated solver: while the generic solver computes a validity domain for
the variable v for each time point and performs a set of unions to obtain the
validity domain on the whole trace, the dedicated solver finds the maximum
value of the trace and uses it to define direct functions for the validity domain,
the violation degree and the robustness.

The dual pattern unreached(molecule,value) is satisfied when the threshold
is not reached. Its validity domain is complementary to the validity domain of
reached(molecule,value).

– Macro: Unreached(A,v)
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Figure 1.4: Left: the computation procedure followed by the generic solver to
test a concentration threshold. Right: the dedicated functions defined by the
dedicated solver

– Behavior: Non-reachability
– Equivalent LTL(Rlin) formula: G(A ≤ v)
– Dedicated solver (validity domain, violation degree and robustness):

- D = [maxA; +∞[
- vd = max(0,maxA− v)
- ro = max(0, v −maxA)
- Time complexity: O(n)

1.2.3. Amplitudes

The pattern MinAmpl(molecule,value) specifies when the molecule has an
amplitude bigger than the specified value or at least equals to it.

– Macro: MinAmpl(A,a)
– Behavior: Minimal amplitude
– Equivalent LTL(Rlin) formula: ∃v F(A ≤ v) ∧ F(A ≥ v + a)
– Dedicated solver (validity domain, violation degree and robustness):

- D = ]−∞; amplA[
- vd = max(0, a− amplA)
- ro =max(0, amplA− a)
- Time complexity: O(n)
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The equivalent LTL(Rlin) formula need two variables to define the amplitude: a
which is the amplitude and v which is the minimal value of the molecule. There-
fore the validity domain computed with the generic solver has two dimensions,
and finding the possible values for the amplitude requires a projection on the
variable a, as shown on the figure 1.5. On the other hand the dedicated solver
directly computes the one-dimension validity domain in one run.

Figure 1.5: Left: the 2-dimensional validity domain computed by the generic
solver for the minimal amplitude pattern, and the projection on the a-axis to
obtain the violation degree. Right: the functions defined directly with the trace
amplitude in the dedicated solver

The pattern MaxAmpl(molecule,value) expresses a stability property: it is
satisfied when the amplitude of the molecule is equal to or smaller than the
specified value. The validity domains of these two patterns are complementary.

– Macro: MaxAmpl(A,a)
– Behavior: Maximal amplitude
– Equivalent LTL(Rlin) formula: ∃v G(A ≥ v ∧A ≤ v + a)
– Dedicated solver (validity domain, violation degree and robustness):

- D = ]amplA; +∞[
- vd = max(0, amplA− a)
- ro = max(0, a− amplA)
- Time complexity: O(n)
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1.2.4. Local Maxima

The pattern LocalMax(molecule) tests the existence of a local maximum:
its validity domain is either empty or the universe. For this kind of validity
domains, the robustness measure has no sense when the specification is satisfied
since the domain is a singularity. In this case we define it arbitrarily to +∞.

– Macro: LocalMax(A):
– Behavior: Existence of a local maximum
– Equivalent LTL(Rlin) formula: F( ddtA > 0 ∧X( ddtA ≤ 0))
– Dedicated solver (validity domain, violation degree and robustness):

- D = Ω if there is a local max, ∅ otherwise
- vd = 0 if there is a local max, +∞ otherwise
- ro = +∞ if there is a local max, 0 otherwise
- Time complexity: O(n)

The pattern LocalMax(molecule,time point) is satisfied when there exists a
local maximum at a precise time point.

– Macro: LocalMax(A,t)
– Behavior: Existence of a local maximum at the time point t
– Equivalent LTL(Rlin) formula:
F( ddtA > 0 ∧X( ddtA ≤ 0 ∧ Time = t))
– Dedicated solver (validity domain, violation degree and robustness):

- D =
⋃

({t′}/ ddtA(t′-dt) > 0 ∧ d
dtA(t′) ≤ 0)

- vd = +∞ if there is no local max, otherwise mint′∈D(|t− t′|)
- ro = +∞ if there is a local max at time t, 0 otherwise
- Time complexity: O(n)

The pattern LocalMax(molecule,time interval lower bound, time interval up-
per bound) is satisfied when there exists a local maximum in the specified time
interval.

– Macro: LocalMax(A,t1,t2)
– Behavior: Existence of a local maximum between the times t1 and t2
– Equivalent LTL(Rlin) formula:
F( ddtA > 0 ∧X( ddtA ≤ 0 ∧ Time ≥ t1 ∧ Time ≤ t2))
– Generic solver (validity domain, violation degree and robustness):

- D =
⋃

(]−∞, t′[× ]t′,+∞[ / ddtA(t′-dt) > 0 ∧ d
dtA(t′) ≤ 0)

- vd = +∞ if there is no local max,
mint′localmax

√
max(0, t1 − t′)2 +max(0, t′ − t2)2 otherwise
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- ro = 0 if there is no local max,
min(maxt′∈D(max(0, t′ − t1),maxt′∈D(max(0, t2 − t′))) other-

wise
- Time complexity: O(n)

1.2.5. Monotony

The pattern IncrInterv(molecule,time interval lower bound, time interval
upper bound) specifies an interval where the molecule derivative should be al-
ways positive.

– Macro: IncrInterv(A,t1,t2)
– Behavior: Interval of increase
– Equivalent LTL(Rlin) formula: G((t1 < Time < t2)⇒ d

dtA ≥ 0)
– Dedicated solver (validity domain, violation degree and robustness):

- D = {(t1, t2) ∈ ]−∞;T1[× ]T2; +∞[ /∀t ∈ [T1, T2] , ddtA(t) > 0}
- vd = min(T1,T2)∈D

√
max(0, t1 − T1)2 +max(0, T2 − t2)2

- ro = min(maxT1(max(0, T1 − t1),maxT2(max(0, t2 − T2)))
- Time complexity: O(n)

The pattern IncreasingSwitch(A,t,v1,v2) specifies that the molecule concen-
tration should increase from smaller than v1 to greater than v2 during a time
interval of length t, without looking at the derivative.

However this pattern contains too many variables to have a directly com-
putable validity domain. The validity domain of this pattern is a set of polyhe-
drons delineating the possible concentration values taken by the molecule and
the time duration between both values:
D = {({t} × [A(t); +∞[× ]−∞, A(t+ d)] /A(t+ d) > A(t)}
Computing this validity domain requires to compute each possible combination
of values that the variables (t,v1,v2) can take, which is exactly what the generic
solver does.

– Macro: IncreasingSwitch(A,t,v1,v2)
– Concentration switch
– Equivalent LTL(Rlin) formula: ∃t1, t2 G((Time ≤ t1 ⇒ A < v1) ∧

(Time ≥ t2⇒ A > v2) ∧ v2 > v1 ∧ t2− t1 = t)
– Validity domain
– D = {({t} × [A(t); +∞[× ]−∞, A(t+ d)] /A(t+ d) > A(t)},

computed with the generic solver
– The violation degree vd and the robustness ro are also computed with the

generic solver
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1.2.6. Peaks

Qualitative specifications of oscillating systems can be particularly various:
one might search for the existence of any local maximum (peaks) in the trace,
or for a precise time distance between either successive peaks or independent
peaks, from one molecule trace or as phaseshifts between different traces.

DistancePeaks(molecule,d) checks that there are two local maxima distant
by the time distance d.

– Macro: DistancePeaks(A,d)
– There should be two peaks of A distant by d
– Equivalent LTL(Rlin) formula:
∃t1, t2 F( ddtA ≥ 0
∧X( ddtA < 0 ∧ Time = t1
∧F( ddtA ≥ 0
∧X( ddtA < 0 ∧ Time = t2
∧(t2 > t1) ∧ (t2− t1 = d))))

– Dedicated solver (validity domain, violation degree and robustness):
- D = {di,j = Tj − Ti, i ∈ [|1;n|] , j ∈ [|i;n|]} where {Ti} is the set of

local maxima times of the trace
- vd = +∞ if there is no or one local max, mini,j∈[|1;n|](|d − di,j |) oth-

erwise
- ro = 0 if there is no or one local max, otherwise +∞
- Time complexity: O(n2)

DistancePeaks(molecule,d1,d2) checks that there are two local maxima dis-
tant by the time distance between d1 and d2.

– Macro: DistancePeaks(A,d1,d2)
– There should be two peaks of A distant by a value between d1 and d2

– Equivalent LTL(Rlin) formula:
∃t1, t2 F( ddtA ≥ 0
∧X( ddtA < 0 ∧ Time = t1
∧F( ddtA ≥ 0
∧X( ddtA < 0 ∧ Time = t2
∧(t2 > t1) ∧ (t2− t1 < d2 ∧ t2− t1 > d1))))

– Dedicated solver (validity domain, violation degree and robustness):
- D = {(d1, d2) ∈ ]−∞,maxi,j(di,j)[ × ]mini,j(di,j),+∞[} with di,j =

Tj − Ti, i ∈ [|1;n|] , j ∈ [|i;n|] where {Ti} is the set of local maxima times of
the trace

- vd = +∞ if there is no or one local max,
otherwise

√
max(0, d1 −maxi,jdi,j)2 +max(0,mini,j di,j − d2)2
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- ro = 0 if there is no or one local max,
otherwise min(max(0,maxi,jdi,j − d1),max(0, d2 −mini,j di,j))

- Time complexity: O(n2)

These two patterns do not require the local maxima to be successive, but
it is needed in the pattern DistanceSuccPeaks(molecule,d) below.

– Macro: DistanceSuccPeaks(A,d)
– There should be successive two peaks of A distant by d
– Equivalent LTL(Rlin) formula:
∃t1, t2, t3, t4, t5
t1 > 0∧t3 > t2+1∧t2 > t1+1∧t4 > t3+1∧t5 > t4+1∧t5 < 200∧t4−t2 = d
∧G((t1 < Time ∧ Time =< t2 ∧ t2 > t1 + 1)− > (d([A])/dt >= 0))
∧G((t2 < Time ∧ Time =< t3 ∧ t3 > t2 + 1)− > (d([A])/dt =< 0))
∧G((t3 < Time ∧ Time =< t4 ∧ t4 > t3 + 1)− > (d([A])/dt >= 0))
∧G((t4 < Time ∧ Time =< t5 ∧ t5 > t4 + 1)− > (d([A])/dt =< 0))
– Dedicated solver (validity domain, violation degree and robustness):

- D = {di = Ti+1 − Ti, i ∈ [|1;n− 1|]} where {Ti} is the set of local
maxima times of the trace

- vd = +∞ if there is no or one local max, mini∈[|1;n−1|](|di− d|) other-
wise

- ro = 0 if there is no or one local max,+∞ otherwise
- Time complexity: O(n)

Finally, the pattern DistancePeaks(molecule, molecule, distance) checks the
time distance between two local maxima belonging to two different molecule
traces. This pattern can be used to determine the phaseshift between two
oscillating molecules.

– Macro: DistancePeaks(A,B,d)
– There should be a peak of A and a peak of B distant by d
– Equivalent LTL(Rlin) formula:
∃t1, t2 F( ddtA ≥ 0 ∧X( ddtA < 0 ∧ Time = t1))
∧F( ddtB ≥ 0 ∧X( ddtB < 0 ∧ Time = t2 ∧ t2− t1 = d))
– Dedicated solver (validity domain, violation degree and robustness):

- D = {di,j} with di,j = TAj − TBi, i ∈ [|1;n|] , j ∈ [|i;n|] where {TAi} is
the set of local maxima times for the trace of A and {TBi} is the set of local
maxima times for the trace of B

- vd = +∞ if there is no or one local max,
otherwise vd = mini,j∈[|1;n|](|d− di,j |)

- ro = 0 if there is no or one local max, +∞ otherwise
- Time complexity: O(n2)
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1.2.7. Oscillations

Additional constraints can be used to look only for peaks similar in ampli-
tude or in time distance.

MaxDiffDistancePeaks(molecule,maxdifference) is a pattern constraining the
maximal difference between the successive peak-to-peak distances in the trace.
This maximal difference should be smaller or equal to the specified value. The
satisfaction of this constraint ensures that the oscillations are regular enough.

Interestingly, this pattern sets a constraint on each peak of the trace, which
is hard to transcribe into a LTL(Rlin) formula. Indeed, in order to constrain
every peaks in a trace with a formula one should either know the number
of peaks in the trace before defining the formula, or should write a set of
subformulas constraining each a different number of peaks and combine them
with the operator or. Here we show such a formula taking into account only
three successive peaks in the trace.

– Macro: MaxDiffDistancePeaks(A,d)
– Behavior: The variation of successive peak-to-peak distances for A should

be smaller than d
– LTL(Rlin) formula for three peaks:
∃t1, t2, t3, t4, t5, t6, t7, t8, t9, d1, d2, d3
t1 > 0 ∧ t3 > t2 + 1 ∧ t2 > t1 + 1 ∧ t4 > t3 + 1 ∧ t5 > t4 + 1 ∧ t6 > t5 + 1
∧t7 > t6+1∧ t8 > t7+1∧ t9 > t8+1∧ t9 < 200∧ t4− t2 = d1∧ t6− t4 = d2
∧t8− t6 = d3∧ d2− d1 =< d∧ d1− d2 =< d∧ d3− d2 =< d∧ d2− d3 =< d
∧G((t1 < Time ∧ Time =< t2 ∧ t2 > t1 + 1)− > (d([A])/dt >= 0))
∧G((t2 < Time ∧ Time =< t3 ∧ t3 > t2 + 1)− > (d([A])/dt =< 0))
∧G((t3 < Time ∧ Time =< t4 ∧ t4 > t3 + 1)− > (d([A])/dt >= 0))
∧G((t4 < Time ∧ Time =< t5 ∧ t5 > t4 + 1)− > (d([A])/dt =< 0))
∧G((t5 < Time ∧ Time =< t6 ∧ t6 > t5 + 1)− > (d([A])/dt >= 0))
∧G((t6 < Time ∧ Time =< t7 ∧ t7 > t6 + 1)− > (d([A])/dt =< 0))
∧G((t7 < Time ∧ Time =< t8 ∧ t8 > t7 + 1)− > (d([A])/dt >= 0))
∧G((t8 < Time ∧ Time =< t9 ∧ t9 > t8 + 1)− > (d([A])/dt >= 0))
– Dedicated solver (validity domain, violation degree and robustness):

- D =
[
max(i)∈[|1,n|]|Ti+2 − 2 ∗ Ti+1 + Ti|,+∞

[
where {Ti} is the set of local maxima times of the trace

- vd = +∞ if there is no or one local max,
otherwise max(0,max(i)∈[|1,n|]|Ti+2 − 2 ∗ Ti+1 + Ti| − d)

- ro = 0 if there is no or one local max,
otherwise max(0, d−max(i)∈[|1,n|]|Ti+2 − 2 ∗ Ti+1 + Ti|)

- Time complexity: O(n)
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MaxDiffAmplPeaks(molecule,maxdifference) works the same way for the max-
imal difference between the amplitudes of the peaks in the trace. The amplitude
of each peak is computed as the difference between the peak level and the pre-
vious local minium level. The satisfaction of this constraints ensures that the
peaks are similar in amplitude, which is useful to filter out damped oscillations.

– Macro: MaxDiffAmplPeaks(A,d)
– Behavior: The variation of peaks amplitudes for A should be smaller than

d
– LTL(Rlin) formula for three peaks:
∃t1, t2, t3, t4, t5, t6, t7, a1, a2, a3,m1,m2,m3,m4,m5,m6
t1 > 0∧ t3 > t2+1∧ t2 > t1+1∧ t4 > t3+1∧ t5 > t4+1∧ t6 > t5+1∧ t7 >

t6 + 1 ∧ t7 < 200
∧G((t1 < Time ∧ Time =< t2 ∧ t2 > t1 + 1)− > (d([A])/dt >= 0))
∧G((t2 < Time ∧ Time =< t3 ∧ t3 > t2 + 1)− > (d([A])/dt =< 0))
∧G((t3 < Time ∧ Time =< t4 ∧ t4 > t3 + 1)− > (d([A])/dt >= 0))
∧G((t4 < Time ∧ Time =< t5 ∧ t5 > t4 + 1)− > (d([A])/dt =< 0))
∧G((t5 < Time ∧ Time =< t6 ∧ t6 > t5 + 1)− > (d([A])/dt >= 0))
∧G((t6 < Time ∧ Time =< t7 ∧ t7 > t6 + 1)− > (d([A])/dt =< 0))
∧F(Time = t1 ∧ [A] = m1)
∧F(Time = t2 ∧ [A] = m2) ∧m2 = m1 + a1
∧F(Time = t3 ∧ [A] = m3)
∧F(Time = t4∧ [A] = m4)∧m4 = m3 + a2∧ a2− a1 =< d∧ a1− a2 =< d
∧F(Time = t5 ∧ [A] = m5)
∧F(Time = t6∧ [A] = m6)∧m6 = m5 + a3∧ a2− a3 =< d∧ a3− a2 =< d

– Dedicated solver (validity domain, violation degree and robustness):
- D =

[
max(i,j)∈[|1,n|]2 |ai − aj |,+∞

[
where {ai} is the set of amplitudes

of the local maxima for the trace of A, defined as the difference between the
local maximum value and the preceding local minimum value

- vd = +∞ if there is no or one local max,
otherwise max(0,max(i,j)∈[|1,n|]2 |ai − aj | − d)

- ro = 0 if there is no or one local max,
otherwise max(0, d−max(i,j)∈[|1,n|]2 |ai − aj |)

- Time complexity: O(n)

Example 3. An example of a pattern combination is:
DistanceSuccPeaks(A,24) ∧ MaxDiffDistancePeaks(A,3)
∧ MaxDiffAmplPeaks(A,5) ∧ DistancePeaks(B,24)
∧ IntervDistancePeaks(A,B,6,10)
This combination specifies that the trace of the molecule A should exhibit peaks
similar in amplitude (with a maximum difference of 5) and in peak-to-peak
distance (with a maximum difference of 3), with two successive peaks distant by
24 hours. The trace of the molecule B should exhibits at least two peaks distant
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by 24 hours, not necessarily successive, and there should be a peak of A and a
peak of B distant by a time between 6 and 10.

1.3. Study Case: Coupled Model of the Cell Cycle and the Circadian Clock

In many organisms, spontaneous gene expression oscillations with a period
close to 24 hours have been observed. A biochemical clock present in each
cell is responsible for maintaining these oscillations at this period. The central
circadian clock in the suprachiasmatic nucleus (SCN) is sensitive to light and
entrained by the day-night alternance, allowing molecular clocks in peripheric
tissues to be synchronised by central signals. Indeed, Schibler and Nagoshi
[NAG 04] have shown that in absence of synchronisation by the central clock,
autonomous circadian oscillators are maintained in peripheric tissues with the
same period, although they are progressively desynchronized.

Recent studies have put in evidence autonomous self-sustained circadian os-
cillators in individual fibroblasts [NAG 04], and proved the existence of several
molecular links between the circadian clock and the cell cycle. All these links
establish a control of the cell cycle by the circadian clock, and several models
of these coupling have been studied to assess the conditions of entrainment in
period of the cell cycle length by the circadian clock [GÉR 12].

ODE models yeld precise dynamic properties but contain many kinetic pa-
rameters whose values can sometimes be roughly estimated with biological con-
siderations but are usually unknown. Here as well, the parameter values have
been chosen semi-arbitrarily in order to obtain the desired dynamical behav-
ior. The question remains whether the model could yield a different relevant
dynamic behavior with a different set of parameter values. Using LTL(Rlin)
constraints, we can query the model to know which qualitative properties are
true or false for a given set of parameters, and how far the trace is from the
specification. This provides a quantitative comparison between different sets of
parameters. However as we will see on a few examples temporal logic formulae
for oscillation constraints are very complex and solving the validity domain
and satisfaction degree of a trace regarding this kind of property is very time
consumming. In this context the use of defined patterns with specific solvers
turns out to be particularly useful.

1.3.1. Circadian Molecular Clock Model

In mammalian cells, two major proteins are transcribed in a circadian man-
ner, CLOCK and BMAL1 which bind to form a heterodimer responsible for the
transcription of per (period) and cry (cryptochrome). The two newly-formed
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proteins then bind and as soon as the activity of the complex reaches a thresh-
old, PER/CRY associates with the complex CLOCK/BMAL1, inhibiting its
activity and therefore the transcription of the two proteins PER and CRY.
This negative feedback loop gives rise to sustained oscillations.

We use a model proposed by Leloup and Goldbeter [LEL 03] for the mam-
malian circadian clock. This model consists of 50 reaction rules over 19 molecu-
lar species leading to 19 differential equations. The model incorporates the reg-
ulatory effets exerted on gene expression by the PER, CRY, BMAL1, CLOCK,
and REV-ERBα proteins, as well as post-translational regulation on these pro-
teins by reversible phosphorylation. We keep the parameter values as published
so the period of the circadian rythm is 24h.

Figure 1.6: Schema of the circadian clock coupled to the cell cycle

1.3.2. Cell Cycle Model

The cell cycle of somatic cells is composed of four phases : DNA replication
(S phase) and chromosome segregation or mitosis (M phase), separated by two
gap phases (G1 and G2). At the center of the cell cycle regulation, there is a
group of proteins, the cyclin-dependent kinases, which are complexes composed
of a kinase and a cyclin partner determining the specificity of the complex. Each
phase of the cell cycle is controled by a specific cylin-dependent kinase.

For our purpose, we use a model proposed by Qu et al. (2003) [QU 03],
describing a generic cell cycle and focusing on the G2-M transition during which
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the protein WEE1 plays a significant role. The cell cycle is thus divided in two
different phases, the G1-S-G2 and M phases. The M phase is triggered by the
complex CDC2/cyclinB. This complex appears in two forms, an active form
called MPF (M-phase Promoting Factor) and a phosphorylated, inactive form
called preMPF. MPF is phosphorylated and inactivated by the kinase WEE1,
and dephosphorylated and activated by the phosphatase CDC25. Both the
kinase and phosphatase activites are themselves regulated byMPF, respectively
inactivated and activated by the complex.

1.3.3. Coupling of the Cell Cycle with the Circadian Clock through WEE1

The kinase WEE1 establishes a link between the cell and circadian cycles
during the G2-M transition. Indeed, the wee1 gene promoter is activated by
the complex CLOCK/BMAL1 and inhibited by PER/CRY [MAT 03]. There
are other links by which the circadian rythm influences the cell cycle. In partic-
ular, the protein REV-ERBα can inhibit the transcription of the Cdk inhibitor
p21 [GRÉ 08], or repress the gene c-myc that induces the expression of cyclin
E [PÉR 97]. However, the mechanisms involved require a very detailed descrip-
tion of the cell cycle. We will thus restrict our study to the link established
throughWEE1, which will allow us to rely on a simpler and more generic model
of the cell cycle, focused on mitosis.

The coupling of the cell cycle model to Leloup and Goldbeter’s circadian
clock model via WEE1 has been implemented by Calzone and Soliman in
2006 [CAL 06b], by adding to the basal synthesis rule of mWee1 with kinetic
parameter ksweemp

_
ksweemp

−→ mWee1

the following synthesis rule controlled by BMAL1 as activator and PERCRY
as inhibitor:

_
ksweem∗Bmal1nucl/(Kweem+kwpcn∗P ERCRYnucl)

−→ mWee1

This coupling leads to a gating effect of the mitosis to precise circadian
phases, as the Mitosis Promoting Factor (MPF) can reach its action level when
its inhibitor WEE1 is low, that is when the level of the activator BMAL1 is
low as well.

Under this rule the system exhibits an entrainment of the cell cycle by the
circadian clock, as seen in the figure 1.7. In this figure the first plot represents
a simulation of the model when the coupling is disabled by setting the param-
eter ksweem corresponding to the synthesis of WEE1 activated by BMAL1,
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to 0. The cell cycle (represented by MPF) and the circadian clock (the other
molecules) are then independant and they have a slightly different period close
to 24h. The second plot is the simulation of the coupled model, and the cell
cycle is entrained to the same exact period as the circadian clock.

Figure 1.7: Trace of some components of the cell cycle and the circadian clock.
Left: the cell cycle and the circadian clock are independant. Right: the cell
cycle is entrained by the circadian clock through WEE1.

1.3.4. Successive Peak-to-Peak Distances

Temporal logic can be used to check the validity of any dynamic behavior
and obtain quantitative values about this behavior. On the left plot of figure
1.7 showing the model without coupling, we could for example assess the sta-
bility of each component concentration, that is its amplitude, and its period of
oscillation. Let us focus for example on the cell cycle component MPF.

The LTL(Rlin) formula for the stability is:
G([MPF ] ≥ v ∧ [MPF ] ≤ v + a)
The validity domain of this formula gives the values for v and a such that MPF
amplitude is smaller than a. For this trace the result is:

domains (G( ( [MPF]>=v ) &([MPF]=<v+a ) ) ) .
v + a >= 0.837557 , v =< 0.0016107
Time e lapsed : 48 ms
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This formula can be replaced by the pattern maxAmpl(MPF,a) which gives
the same result for a and is easier to write for users who are not familiar with
LTL(Rlin) syntax. The computation is also faster: less than 1ms.

domains (maxAmpl ( [MPF] , [ a ] ) ) .
a >= 0.835946
Time e lapsed : 0 ms

However the domain is directly defined in 1 dimension for the variable a and
does not give the corresponding value for v, that is the minimum value of MPF.

The result for the oscillation period using the pattern distanceSuccPeaks(MPF,d)
is:

d = 23.3555
|
d = 23.1196
|
d = 23.0935
|
d = 23.119

The computation of the validity domain with the generic LTL(Rlin) solver
takes 27s, and only 0.33s with the dedicated solver.

1.3.5. Oscillations with Precise Phaseshifts and Imprecise Amplitudes

The previous formula takes into account successive peak-to-peak distances,
which does not allow complex oscillations with small peaks alternating with
high peaks. For some parameter values however this kind of behavior can
appear, as can be seen on figure 1.8, and is biologically significant.

The pattern DistanceSuccPeaks applied on this formula for the complexe
Per-Cry in the nucleus (named CRY_n-PER_n in BIOCHAM) would return
in the validity domain the distances between the successive peaks, but not the
distances between the big peaks which is the real period. In this case it is
better to use the pattern DistancePeaks which takes into account the distances
between any peak.

We can compare the satisfaction degrees obtained in BIOCHAM with Dis-
tanceSuccPeaks and DistancePeaks when the objective is 17h:
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Figure 1.8: Trace for a set of parameters leading to 17h-period oscillations of
the system with intermediate peaks for PerCry

s a t i s f a c t i o n _ d e g r e e ( d i stanceSuccPeaks ( [CRY_n−PER_n] , [ d ] ) , [ d
] , [ 1 7 ] , 6 0 ) .

Distance D=6.00455 computed in 0 .29 s
S a t i s f a c t i o n degree 0 .14

s a t i s f a c t i o n _ d e g r e e ( d i s tancePeaks ( [CRY_n−PER_n] , [ d ] ) , [ d ] , [ 1 7 ] , 6 0 ) .
Distance D=0.206333 computed in 0 .28 s
S a t i s f a c t i o n degree 0 .82

The satisfaction degree is better with distancePeaks. It is not exactly 1 because
the period is not exactly 17h but 17.2h.

This is the equivalent formula to be used with the generic solver:

s a t i s f a c t i o n _ d e g r e e (
F( d ( [ CRY_nucl−PER_nucl ] ) /dt>=0

& X( d ( [ CRY_nucl−PER_nucl ] ) /dt<0
& Time=t1
& X( F( d ( [ CRY_nucl−PER_nucl ] ) /dt>=0
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& X( d ( [ CRY_nucl−PER_nucl ] ) /dt<0
& Time=t2
& t2>t1 & t2−t1=d) ) ) ) )

, [ d ] , [ 1 7 ] , 6 0 ) .
Distance D=0.206931 computed in 0 .29 s
S a t i s f a c t i o n degree 0 .82

For this pattern the computation time is roughly the same with the generic
solver and the dedicated solver.

1.3.6. Filtering out Damped Oscillations

With the previous formulae one can evaluate the time distances between
peaks in a trace, but the evaluation does not take into account the regularness
of the oscillations. Thus a trace with damped oscillations like the one shown
on figure 1.9 will be ranked well if there is a peak-to-peak distance satisfying
the user’s specification. To take into account as a rank penalty the varia-
tion between peak-to-peak distances and peak amplitudes, we use the patterns
maxDiffDistancePeaks and maxDiffAmplPeaks presented in section 1.2.7.

We use it in combination with the previous macro:

domains ( d is tanceSuccPeaks ( [CRY_n−PER_n] , [ d1 , d2 ] )
& maxDiffDistancePeaks ( [CRY_n−PER_n] , [ m1 ] )
& maxDiffAmplPeaks ( [CRY_n−PER_n] , [ m2 ] ) ) .

d1 < 17 .4984 , d1 − d2 < 0 , m1 > 6.54756 , d2 > 10 .9785 , m2 >
1.90466

Time e lapsed : 2836 ms

The validity domain shows that the successive peak-to-peak distances vary in
a 6h range between 11h and 17h, while the peak amplitudes vary in a 2 units
range.

1.3.7. Phase Constraints

To express a phase constraint between two molecules we use the pattern
distancePeaks(A,B,d) which finds the time distance between the peaks of the
molecules A and B.

In order to find a set of parameter values leading to oscillations for both the
cell cycle and the circadian clock and a phase constraint between both system,
we can use the following combination:
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Figure 1.9: Trace for a set of parameters leading to damped oscillations for
PerCry

distanceSuccPeaks ( [MPF] , [ d1 , d2 ] ,
& maxDiffDistancePeaks ( [MPF] , [ m1 ] )
& maxDiffAmplPeaks ( [MPF] , [ m2 ] ) ) .
& dis tancePeaks ( [CRY_n−PER_n] , [ d3 , d4 ] )
& maxDiffDistancePeaks ( [CRY_n−PER_n] , [ m3 ] )
& maxDiffAmplPeaks ( [CRY_n−PER_n] , [ m4 ] )
& dis tancePeaks ( [MPF,CRY_n−PER_n] , [ d ] )

We assume that the molecules of each module oscillate synchronously, that
is if we find a set of parameters such that PER/CRY, which is part of the
circadian clock module, oscillates to a certain period then the other molecules
of the circadian clock will do the same. Thus we can apply constraints on only
two molecules, one from each module: PER/CRY from the circadian clock and
MPF from the cell cycle.

The formula presented below is the kind of formula that we can use to
express the same set of constraints:
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– The trace of PER/CRY in the nucleus exhibits two local maxima and two
local minima where the sign of the derivative changes.

– The maxima are distant by the period p.
– The difference between each maximum and its following minimum is

greater than the minimal amplitude a.
– The same constraints are set on the trace of MPF.
– The distance between each molecule’s first peak is the phaseshift d.

This formula can be completed to specify more local extrema in order to
filter out more efficiently traces with damped oscillations.

F( d
dt [CRY _n− PER_n] ≥ 0
∧ X( d

dt [CRY _n− PER_n] < 0 ∧ Time = t1 ∧ [CRY _n− PER_n] = max1
∧ X( F( d

dt [CRY _n− PER_n] < 0
∧ X( d

dt [CRY _n− PER_n] ≥ 0 ∧ [CRY _n− PER_n] = min1
∧ max1−min1 > a
∧ X( F( d

dt [CRY _n− PER_n] ≥ 0
∧ X( d

dt [CRY _n− PER_n] < 0 ∧ Time = t2 ∧ [CRY _n− PER_n] =
max2

∧ t2 > t1 ∧ t2− t1 > p− 0.5 ∧ t2− t1 < p + 0.5)
∧ X( F( d

dt [CRY _n− PER_n] < 0
∧ X( d

dt [CRY _n− PER_n] ≥ 0 ∧ [CRY _n− PER_n] = min2
∧ max2−min2 > a

))))))))
∧ F( d

dt [MPF ] ≥ 0
∧ X( d

dt [MPF ] < 0 ∧ Time = t3 ∧ [MPF ] = max3
∧ t3 > t1 ∧ t3− t1 < d + 0.5 ∧ t3− t1 > d− 0.5
∧ X( F( d

dt [MPF ] < 0
∧ X( d

dt [MPF ] ≥ 0 ∧ [MPF ] = min3
∧ max3−min3 > a
∧ X( F( d

dt [MPF ] ≥ 0
∧ X( d

dt [MPF ] < 0 ∧ Time = t4 ∧ [MPF ] = max4
∧ t4 > t3 ∧ t4− t3 > p− 0.5 ∧ t4− t3 < p + 0.5)
∧ X( F( d

dt [MPF ] < 0
∧ X( d

dt [MPF ] ≥ 0 ∧ [MPF ] = min4
∧ max4−min4 > a

))))))))

This formula is evaluated on the trace in 36s while the combination of
patterns takes only 2.4s.

1.3.8. Model Calibration to Real Data

Here we illustrate the parameter optimization procedure presented in Sec-
tion 1.1.6 to adjust some parameters of the model so that the phaseshift between
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the two coupled system will be consistent with the one observed experimen-
tally. Indeed, it has been observed experimentally that cell divisions occur at
preferential time windows regarding the circadian phase [NAG 04]. It is thus
interesting to verify that the structure of the model allows such phases, by
trying to find a set of parameter values that keep the dynamical behavior of
the system with oscillations and entrainment of the cell cycle, and satisfy at
the same time a given phaseshift between MPF as a marker of mitosis, and
REVERB which is the circadian protein observed experimentally.

The optimization method chooses 95 sets of parameter values for 6 parame-
ters involved in the control of the cell cycle by the circadian clock, and evaluate
the violation degree of each simulation with the dedicated violation degree used
with the combination of patterns:
DistanceSuccPeaks(MPF,24) ∧ MaxDiffAmplPeaks(MPF,0.2)
∧ DistancePeaks(REVERB_n) ∧ MaxDiffAmplPeaks(REVERB_n,0.2)
∧ DistancePeaks(MPF,REVERB_n,10,14).

This specifies that MPF and REVERB should follow periods of 24h with
peaks similar in amplitude and should have a phaseshift between 10 and 14h.
The results on the population are used to choose the parameter distributions
for the next iteration.

After 24 iterations, a satisfying result is found. The simulation obtained for
this set of parameter values is shown in figure 1.10. Each molecule oscillates
with a 24h period, and the phaseshift between MPF and REVERB_nucl is
13h.

1.3.9. Comparison of Solvers

In this section we use the introduced model to compare the different solvers
on simulation traces over a time horizon 200 time units (hours), obtained using
Rosenbrock’s implicit method with variable step-size for numerical integration.
This simulation contains 869 time points. The traces are periodic with a 24h-
period. We evaluate the satisfaction degree of this trace for several dynamical
behaviors specifified for the molecule MPF, and shown in table 1.2. For each
specification we evaluate the trace with three methods:

– with the generic solver on the whole trace (869 points).
– with the generic solver on the optimized trace: only two points for each

extremum of the molecules present in the formula are kept in the trace. The
optimization is performed in 8ms and keep 32 points out of 869 when only
MPF is present in the formula, and is performed in 12ms and keep 64 points
when REVERB_nucl is also present. The time in this column is the sum of
the optimization time and the generic solver on the simplified trace.
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Figure 1.10: Result of the parameter search for a phaseshift between MPF
and REVERB_nucl around 12h.

– with the dedicated solver applied on the whole trace (869 points).

1.4. Related Work

Compared to the patterns of temporal logic formulae defined in [MON 08],
we have basically added a first-order setting with free variables, which make it
possible to extract interesting values from a trace, define continuous satisfaction
degrees, and beyond verification, see temporal formulae as constraints and use
efficient parameter optimization procedures for model building.

The Signal Temporal Logic STL is a similar formalism that has been suc-
cessfully used in [STO 13] to build a model of TRAIL-induced apoptosis and
revisit the classification of T-cells.

A temporal logic specification of timing constraints in a model of a genetic
switch was successfully used in [RIZ 09] with our method in BIOCHAM to
compute global sensitivity indices and improve the design of a synthetic switch.
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Pattern Generic
solver

with trace
simpl. Dedicated

solver
Reached(MPF,1) 0.18 0.26 < 0.01
Unreached(MPF,1) 0.18 0.25 < 0.01
MinAmpl(MPF,1) 0.24 0.25 < 0.01
DistantPeaks(MPF,20) 1.76 0.32 0.52
DistantSuccPeaks(MPF,20) 17.97 3.01 0.88
DistantPeaks(MPF,20) & Dis-
tantPeaks(REVERB_n,20)
& Distant-
Peaks(MPF,REVERB_n,6)

6.78 0.73 1.16

DistantPeaks(MPF,20) &
MaxDiffAmplPeaks(MPF,0.1) &
DistantPeaks(REVERB_n,20)
& MaxDiffAmpl-
Peaks(REVERB_n,0.1) & Dis-
tantPeaks(MPF,REVERB_n,6)

36.64 3.17 1.83

Table 1.2: Times in seconds for computing the validity domains of different
formula patterns on a trace of 869 time points (32 with trace simplification),
compared between the generic solver, without and with trace simplification,
and the dedicated solver on the full trace.

The method described in this chapter has also been used in cell signaling to
elucidate the complex dynamics of GPCR signaling in [HEI 12]. In this study,
the failure to fit with these techniques some response curves in a model of GPCR
signaling, was the key to revisit the structure of GPCR signaling interactions,
and propose a different mechanism that has been verified experimentally.

1.5. Conclusion

Temporal logic provides a powerful language for describing the important
properties of the dynamical behavior of a biological system. While curve fitting
methods assume a precise specification of the dynamics given by a complete
curve, it is possible with temporal logic formulae to specify imprecise behaviors
in a semi-qualitative semi-quantitative manner.

The full first-order setting presented in this chapter makes it possible to ex-
tract interesting information from numerical traces, e.g. on periods and phases
of irregular oscillations, through the computation of validity domains for the
free variables of the formulae. In addition, we have shown how these validity
domains can be used to define a continuous satisfaction degree in the interval
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[0, 1] for temporal logic formulae, and how this can be combined with pow-
erful continuous optimization algorithms to search parameter values in high
dimension.

We believe that the first-order patterns of formulae defined in this chapter,
together with their efficient dedicated constraint solvers, will facilitate the use
of this approach by modeler, and its implementation in computational systems
biology tools.
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