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Abstract. Biologists use diagrams to represent interactions between
molecular species, and on the computer, diagrammatic notations are also
more and more employed in interactive maps. These diagrams are funda-
mentally of two types: reaction graphs and activation/inhibition graphs.
In this paper, we study the formal relationship between these graphs.
We consider systems of biochemical reactions with kinetic expressions,
as written in the Systems Biology Markup Language SBML, and inter-
preted by a system of Ordinary Differential Equations over molecular
concentrations. We show that under a general condition of increasing
monotonicity of the kinetic expressions, and in absence of both activation
and inhibition effects between a pair of molecules, the influence graph
inferred from the stoichiometric coefficients of the reactions is equal to
the one defined by the signs of the coefficients of the Jacobian matrix.
Under these conditions, satisfied by mass action law, Michaelis-Menten
and Hill kinetics, the influence graph is thus independent of the precise
kinetic expressions, and is computable in linear time in the number of
reactions. We apply these results to Kohn’s map of the mammalian cell
cycle and to the MAPK signalling cascade. Then we propose a syntax
for denoting antagonists in reaction rules and generalize our results to
this setting.

1 Introduction

Biologists use diagrams to represent interactions between molecular species, and
diagrammatic notations like the ones introduced by Kohn in his map of the mam-
malian cell cycle [2] are also employed on the computer in interactive maps, like
for instance MIM!. This type of notation encompasses two types of information
: interactions (binding, complexation, protein modification, etc.) and regulations
(of an interaction or of a transcription).

The Systems Biology Markup Language (SBML) [3] uses a syntax of reaction
rules with kinetic expressions to define reaction models in a precise way, and more

* This paper provides a direct presentation and a generalization of one theorem shown
in [1] among other results in the framework of abstract interpretation which is not
used here.
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and more models are described in such a formalism, like in the biomodels.net
repository. This type of language is well suited to describe interactions (and
in a limited manner their regulations through the notion of modifiers) but not
directly molecule to molecule activations and inhibitions.

On the other hand, formal influence graphs for activation and inhibition have
been introduced in the setting of gene regulatory networks [4] as an abstraction
of complex reaction networks. These graphs completely abstract from the precise
interactions, especially at post-transcriptional level, and retain only the activa-
tion and inhibition effects between genes. In these influence graphs, the existence
of a positive circuit (resp. a negative circuit) has been shown to be a necessary
condition for multistationarity (resp. oscillations) in different settings [5-9], as
conjectured by Thomas [10].

There are nowadays several tools providing different kinds of analyses for
either reaction models or influence graphs. However the only formal relationship
relating the two seems to be the extraction of the influence graph from the
Jacobian matrix derived from the reaction model, when equipped with precise
kinetic expressions and parameter values.

In this paper, we study more systematically the formal relationship between
reaction models and activation/inhibition influence graphs. We consider systems
of biochemical reactions with kinetic expressions, as written in the Systems Bi-
ology Markup Language SBML, and interpreted by systems of Ordinary Differ-
ential Equations over molecular concentrations. We show that under the general
condition of strongly increasing monotonicity of the kinetic expressions, and in
absence of both activation and inhibition effects from one molecule to the same
target, the influence graph inferred from the stoichiometric coefficients of the re-
actions, called the syntactical influence graph, is identical to the influence graph
defined by the signs of the coefficients of the Jacobian matrix, called the dif-
ferential influence graph. Under these conditions, satisfied by mass action law,
Michaelis-Menten and Hill kinetics, the influence graph is thus independent of
the kinetic expressions for the reactions, and is computable in linear time in the
number of reactions.

We show that this remarkable property applies to the transcription of Kohn’s
map of the mammalian cell cycle control [2] into an SBML model of approx. 800
reactions [11]. On this example, the syntactical influence graph is computed in
less than one second, and our equivalence theorem shows that this influence
graph would be the same as the differential influence graph for any standard
kinetics and any (non zero) parameter values. The same property of indepen-
dence from the kinetic expressions holds for the influence graph inferred from the
MAPK signalling model of Levchenko et al. [12]. This influence graph exhibits
positive as well as negative feedbacks that are hidden in the purely directional
cascade of the reaction graph [13], and that have been the reason for an erro-
neous interpretation of Thomas’ rules when applied to the MAPK cascade in
[14].



Finally, we consider generalized reaction rules, where inhibitors can be indi-
cated in the syntax of the rules, and generalize our results to this setting for a
large set of kinetic expressions.

2 Reaction Models

Following SBML and BIOCHAM [15, 16] conventions, a model of a biochemical
system is formally a set of reaction rules of the form e for S => S’ where S
is a set of molecules given with their stoichiometric coefficient, called a solu-
tion, S’ is the transformed solution, and e is a kinetic expression involving the
concentrations of molecules (which are not strictly required to appear in S).

We will use the BIOCHAM operators + and * to denote solutions as 2*A
+ B, as well as the syntax of catalyzed reactions e for S =[C]=> S’ as an
abbreviation for e for S+C => S’+C.

Classical kinetic expressions are the mass action law kinetics

n
l;
i=1

for a reaction with n reactants x;, where [; is the stoichiometric coeflicient of x;
as a reactant, Michaelis-Menten kinetics

Vin % s /(K + x5)

for an enzymatic reaction of the form zs = [x.] => xp, where? V,,, = k  (z. +
Ze *x s/ Ky, ), and Hill’s kinetics

Vin x 2" [(Kpp, + 25")

of which Michaelis-Menten kinetics is a special case with n = 1.

A set of reaction rules {e; for S; => S/}, . , over molecular concentra-
tion variables {z1,..., 2}, can be interpreted under different semantics. The
traditional differential semantics interpret the rules by the following system of
Ordinary Differential Equations (ODE):

n

dog/dt =Y ri(zp) « e — > (k) *e;
i—1

i=1 i

where r;(x) (resp. I;) is the stoichiometric coefficient of xj, in the right (resp.
left) member of rule i.

The differential semantics will be the only interpretation of reaction models
considered here. In this paper, we shall not consider the other interpretations of

2 Loy / Ko is the concentration of the enzyme-substrate complex, supposed constant

in the Michaelian approximation and ze + xe * s/ Ky, is thus the total amount of
enzyme



reaction rules used in BIOCHAM [1], namely the stochastic semantics, where the
kinetic expressions are interpreted as transition probabilities, the rule set as a
continuous-time Markov chain that can be simulated with Gillespie’s algorithm
[17], or the boolean semantics which simply forgets the kinetic expressions and
interpret the rules as a non-deterministic (asynchronous) transition system over
boolean states representing the absence or presence of molecules.

3 Influence Graphs of Activation and Inhibition

Influence graphs for activation and inhibition have been introduced for the anal-
ysis of gene expression in the setting of gene regulatory networks [4]. Such influ-
ence graphs are in fact an abstraction of complex reaction networks, and can be
applied as such to protein interaction networks. However the distinction between
the influence graph and the reaction (hyper)graph is crucial to the application
of Thomas’s conditions of multistationarity and oscillations [4,7] to protein in-
teraction network, and there has been some confusion between the two kinds of
graphs [14].

Here we consider two definitions of the influence graph associated to a reac-
tion model, and show their equivalence under general assumptions.

3.1 Definition from the Jacobian Matrix

In the differential semantics of a reaction rule model M = {e; for l; => r; | i €
I} we have @), = dxy/dt = (ri(z) — li(xx)) = ;. The Jacobian matrix J is
formed of the partial derivatives J;; = 0%;/0x;.

Definition 1. The differential influence graph associated to a reaction model is
the graph having for vertices the molecular species, and for edge-set the following
two kinds of edges:

{A activates B | 0x'g/0x4 > 0 in some point of the space}

U{A inhibits B | 0x'g/0xa < 0 in some point of the space}

Both activation and inhibition edges may exist between two molecular species

in reaction models such as for instance:
kixAfor A => B

kox Ax Bfor A+ B => C
We have indeed dB/dt = k1 x A — ko x* Ax B and 83/814 = k1 — ko * B, hence A
inhibits B and A activates B both belong to the differential influence graph in
such an example.

3.2 Definition from the Stoichiometric Coefficients

Definition 2. The syntactical influence graph associated to a reaction model M
1s the graph having for vertices the molecular species, and for edges the following
set:



{A inhibits B | 3(e; for I; => r;) € M,
ZZ(A) >0 and Tl(B) — ll( ) < O}
U{A activates B | 3(e; for I; => r;) € M,

In particular, we have the following influences for elementary reactions of
complexation, modification, synthesis and degradation:
a({A+B=>C})={ A inhibits B, A inhibits A, B inhibits A,

B inhibits B, A activates C, B activates C}
a({A =[C] => B}) = { C inhibits A, A inhibits A, A activates B, C activates B}
a({A = [B] => _}) = { B inhibits A, A inhibits A}
a({- = [B] => A}) = { B activates A}

The inhibition loops on the reactants are justified by the negative sign in
the Jacobian matrix of the differential semantics of such reactions. Unlike the
differential influence graph, this graph is clearly trivial to compute by browsing
the syntax of the rules:

Proposition 1. The syntactical influence graph of a reaction model of n rules
is computable in O(n) time.

3.3 Over-approximation Theorem

Comparing the differential influence graph and the syntactical influence graph
requires that the information in the kinetic expressions and in the reactions
be compatible. This motivates the following definition where the first property
forbids the presence of purely kinetic inhibitors not represented in the reaction,
and the second property enforces that the variables appearing in the kinetic
expressions do appear as reactants or enzymes in the reaction.

Definition 3. In a reaction rule e for I=>r, we say that a kinetic expression
e is increasing iff for all molecules xy we have

1. de/0xy > 0 in all points of the space,
2. l(xg) > 0 if Oe/Ixy, > 0 in some point of the space.

A reaction model has an increasing kinetics iff all its reaction rules have an
increasing kinetics.

One can easily check that:

Proposition 2. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are increasing.

On the other hand, negative Hill kinetics of the form ki /(k} + y™) are not
increasing. They represent an inhibition by a molecule y not belonging to the
reactants, and thus not reflected in the syntax of the reaction.

Theorem 1. For any reaction model with an increasing kinetics, the differential
influence graph is a subgraph of the syntactical influence graph.



Proof. If (A activates B) belongs to the differential influence graph then dB/9A >
0. Hence there exists a term in the differential equation for B, of the form
(r;(B) — 1;(B)) % e; with 0e;/0A of the same sign as r;(B) — l;(B).

Let us suppose that r;(B) — l;(B) > 0 then de;/0A > 0 and since e; is
increasing we get that [;(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary r;(B) — ;(B) < 0 then de;/0A < 0, which is not
possible for an increasing kinetics.

If (A inhibits B) is in the differential graph then dB/9A < 0. Hence there
exists a term in the differential semantics, of the form (r;(B) — [;(B)) * e; with
0e; /A of sign opposite to that of r;(B) — I;(B).

Let us suppose that r;(B) —1;(B) > 0 then de;/0A < 0, which is not possible
for an increasing kinetics. If on the contrary r;(B) — [;(B) < 0 then de; /A > 0
and since e; is increasing we get that [;(A) > 0 and thus that (A activates B) is
in the syntactical influence graph.

Corollary 1. For any reaction model with an increasing kinetics, the differential
influence graph restricted to the phase space w.r.t. some initial conditions, is a
subgraph of the syntactical influence graph.

Proof. Restricting the points of the phase space to those points that are acces-
sible from some initial states, restricts the number of edges in the differential
influence graphs which thus remains a subgraph of the syntactical influence
graph.

It is worth noticing that even in the simple case of mass action law kinetics,
the differential influence graph may be a strict subset of the syntactical influence
graph. For instance let x be the following model :

kix*Afor A=>B

ko Afor _=[A]l=>A
In the syntactical influence graph, A activates B, A activates A and A inhibits
A, however A = (k2 — k1) * A, hence 6A/8A can be made always positive or
always negative or always null, resulting in the absence of respectively, A inhibits
A, A activates A or both, in the differential influence graph.

3.4 Equivalence Theorem

Definition 4. In a reaction rule e for l=>r, a kinetic expression e is strongly
increasing iff for all molecules xy we have

1. de/0xy > 0 in all points of the space,
2. l(xg) > 0 if and only if there exists a point in the space s.t. de/dxy > 0

A reaction model has a strongly increasing kinetics iff all its reaction rules have
a strongly increasing kinetics.

Note that strongly increasing implies increasing.

Proposition 3. Mass action law kinetics for any reaction, as well as Michaelis
Menten and Hill kinetics for enzymatic reactions, are strongly increasing.



Proof. For the case of Mass action law, the kinetics are of the form:

m
l;
e; = ki * Ha:l (@)
1=1

with k; > 0 and [;(z;) > 0. We thus have de;/dxz, = 0 if [;(xx) = 0 and
8€i/f(333)k = ki x li(zg) *xﬁj(“)*l [T xﬁi(ml) otherwise, which clearly satisfies (1)
and (2).

In the case of Hill kinetics (of which Michaelis Menten is a subcase), we have:

o — Vi * 2%
= s
K+ an

for the reaction zs + x, => x, + z. and where V,,, = ko x 2f%" = ko * (z, +
k1 xxe *xs/(k—1+ ko)) from the steady state approximation. It is obvious that
0e;/0xy, = 0 for all x, other than z, and x. since they do not appear in e; and
one can easily check that with all the constants n, k1, k_1, ko strictly positive,
both de;/0x. and Je;/dxs are greater than 0 at some point in the space.

Lemma 1. Let M be a reaction model with a strongly increasing kinetics,

If (A activates B) is an edge in the syntactical influence graph, and not (A
inhibits B), then (A activates B) belongs to the differential influence graph.

If (A inhibits B) is an edge in the syntactical influence graph, and not (A
activates B), then (A inhibits B) belongs to the differential influence graph.

Proof. Since dB/0A = 3" (r;(B) — l;(B)) * de;/0A and all ¢; are increasing
we get that B/0A = 2 (i<nil(a)>0} (1i(B) = li(B)) * de; [0A.

Now if (A activates B) is in the syntactical influence graph, but not (A
inhibits B), then all rules such that I;(A) > 0 verify r;(B) —;(B) > 0 and there
is at least one rule for which the inequality is strict. We thus get that dB/9A
is a sum of positive numbers, amongst which one is such that r;(B) —;(B) > 0
and [;(A) > 0 which, since M is strongly increasing, implies that there exists a
point in the space for which de;/0A > 0. Hence 8B/BA > 0 at that point, and
(A activates B) is thus in the differential influence graph.

For inhibition the same reasoning applies with the opposite sign for the
r:(B) — 1;(B) and thus for the partial derivative dB/0A.

This lemma establishes the following equivalence result:

Theorem 2. In a reaction model with a strongly increasing kinetics and where
no molecule is at the same time an activator and an inhibitor of the same target
molecule, the differential and syntactical influence graphs coincide.

This theorem shows that for standard kinetic expressions, the syntactical
influences coincide with the differential influences based on the signs of the co-
efficients in the Jacobian matrix, when no molecule is at the same time an acti-
vator and an inhibitor of the same molecule. The theorem thus provides a linear
time algorithm for computing the differential influences in these cases, simply by
computing the syntactical influences. It shows also that the differential influence
graph is independent of the kinetic expressions.



Corollary 2. The differential influence graph of a reaction model of n rules
with a strongly increasing kinetics is computable in time O(n) if no molecule is
at the same time an activator and an inhibitor.

Corollary 3. The differential influence graph of a reaction model is independent
of the kinetic expressions as long as they are strongly increasing, if no molecule
is at the same time an activator and an inhibitor.

4 Application to Kohn’s Map of the Mammalian Cell
Cycle Control

Kohn’s map of the mammalian cell cycle control [2] has been transcribed in
BIOCHAM to serve as a large benchmarking example of approx. 500 species
and 800 rules [11].

On Kohn’s map, the computation of activation and inhibition influences takes
less than one second CPU time (on a PC 1,7GHz) for the complete model,
showing the efficiency of the syntactical inference algorithm. The influence graph
is composed of 1231 activation edges and 1089 inhibition edges.

Furthermore in this large example no molecule is both an activator and an
inhibitor of the same target molecule. Theorem 2 thus entails that the computed
influence graph is equal to the differential graph that would be obtained in any
kinetic model of Kohn’s map for any standard kinetic expressions and for any
(non zero) parameter values.

Since there is a lot of kinetic data missing for such a big model, the possibility
to nevertheless obtain the exact influence graph without having to estimate
parameters or even to choose precise kinetic expressions is quite remarkable,
and justifies the use of purely qualitative models for the analysis of feedback
circuits.

5 Application to the Signal Transduction MAPK
“cascade”

Let us consider the MAPK signalling model of [12]. Figure 1 depicts the reac-
tion graph as a bipartite graph with round boxes for molecules and rectangular
boxes for rules. Figure 2 depicts the syntactical influence graph, where activation
(resp. inhibition) is materialized by plain (resp. dashed) arrows.

This computed graph reveals the negative feedbacks that are somewhat hid-
den in a purely directional signalling cascade of reactions. Furthermore, as no
molecule is at the same time an activator and an inhibitor of a same molecule,
this graph is largely independent of the kinetics of the reactions, and would be
identical to the differential influence graph for any standard kinetic expressions
with any (non zero) kinetic parameter values.

These negative feedbacks, a necessary condition for oscillations [4, 8, 9], have
been formally analyzed in [13] and interpreted as enzyme sequestration in com-
plexes. Furthermore, oscillations in the MAPK cascade model have been shown
in [18].



Fig. 1. Reaction graph of the MAPK model of[12].

The influence graph also exhibits positive circuits. These are a necessary con-
dition for multistationarity [4,7] that has been observed in the MAPK model,
and experimentally in Xenopus oocytes [14]. Note that the absence of circuit in
the (directional) reaction graph of MAPK was misinterpreted as a counterex-
ample to Thomas’ rule in [14] because of a confusion between both kinds of
graphs.

6 Adding a Syntax for Antagonists in Reaction Rules

The over-approximation theorem 1 may suggest to provide a syntax for antag-
onists (i.e. inhibitors) in reaction rules, and generalize the result to this set-
ting. Note that the mixing of mechanistic reaction models with non-mechanistic



Fig. 2. Influence graph inferred from the MAPK reaction model.

information on the inhibitors of some reactions, is a common practice in dia-
grammatic notations which often combine reaction edges with activation and
inhibition edges.

Let us denote by (e for I =[/al=> r) a generalized reaction rule with an-
tagonists a. Reaction rules with catalysts, of the form (e for I =[c/al=> r),
will remain an abbreviation for (e for [+ ¢ =[/al=> r + ¢). This notation for
antagonists thus provides a counterpart for denoting the inhibitory effect of some
agent on a reaction, symmetrically to the activation effect of the catalysts of the
reaction.

Definition 5. The syntactical influence graph associated to a generalized re-
action model M is the graph having for vertices the molecular species, and for
edges the following set:



{A inhibits B |
l
l

A(e;for I; =[/a;1=> r;) € M,
i(A) >0 and r;(B) — [;(B) < 0}
A(e;for I; =[/a;]=> r;) € M,
‘ El(eifor l; =[/a;1=> 7"1‘) € M,
a;(A) > 0 and r;(B) — I;(B) < 0}
| I(eifor I; =[/a;1=> r;) € M,
a;(A) >0 and r;(B) — l;(B) > 0}

U{A4 activates B |
U{4 activates B

U{A inhibits B

For instance, the set of syntactical influences of the generalized reaction rule
A =[/I]1=> B} is {A inhibits A, I activates A, A activates B, I inhibits B}. On
the other hand, note that the definition of the differential influence graph applies
to generalized reaction models as it is based on the kinetic expressions only.

Definition 6. In a generalized reaction rule e for | =[/al=> r, a kinetic ex-
pression e is compatible iff for all molecules x) we have

1. l(zx) > 0 if there exists a point in the space s.t. Oe/dxy > 0,
2. a(xy) > 0 if there exists a point in the space s.t. Oe/dxy, < 0.

A generalized reaction model has a compatible kinetics iff all its reaction rules
have a compatible kinetics.

For instance, a kinetics of the form k1*Mdm2/ (k2+P53) for the generalized
reaction rule Mdm2 =[/P53]=> Mdm2p expressing the phosphorylation of Mdm2
that is inhibited by P53 (see [19]) is compatible.

Note that for a reaction model, strongly increasing implies compatible. Fur-
thermore, we have:

Theorem 3. For any generalized reaction model with a compatible kinetics, the
differential influence graph is a subgraph of the syntactical influence graph.

Proof. If (A activates B) belongs to the differential influence graph then §B/9A >
0. Hence there exists a term in the differential equation for B, of the form
(r;(B) — 1;(B)) * e; with 0e;/OA of the same sign as r;(B) — [;(B).

Let us suppose that r;(B) — [;(B) > 0 then Ode;/0A > 0, and since e; is
compatible we get that [;(A) > 0 and thus that (A activates B) in the syntactical
graph. If on the contrary r;(B) — [;(B) < 0 then de;/0A < 0, and since e; is
compatible we get that a;(A) > 0 and thus that (A activates B) is in the
syntactical influence graph.

If (A inhibits B) is in the differential graph then dB/8A < 0. Hence there
exists a term in the differential semantics, of the form (r;(B) — ;(B)) * e; with
Oe; /OA of sign opposite to that of r;(B) — I;(B).

Let us suppose that ;(B) — [;(B) > 0 then de;/0A < 0, and since e; is com-
patible we get that a;(A) > 0 and thus that (A inhibits B) is in the syntactical
influence graph. If on the contrary r;(B) —I;(B) < 0 then de;/9A > 0, and since
e; is compatible we get that [;(A) > 0 and thus that (A activates B) is in the
syntactical influence graph.



This theorem shows that in this setting which mixes reaction rules with in-
formation on antagonists, the syntactical influence graph still over-approximates
the differential influence graph for any standard kinetics.

7 Conclusion

This work shows that to a large extent, the influence graph of a reaction model is
independent of the kinetic parameters and kinetic expressions, and that it can be
computed in linear time simply from the syntax of the reactions. This happens for
strongly increasing kinetics such as classical mass action law, Michaelis-Menten
and Hill kinetics, when no molecule is at the same time an activator and an
inhibitor of a same target molecule.

The inference of the syntactical influence graph from a reaction model has
been implemented in BIOCHAM, and applied to various models. On a transcrip-
tion of Kohn’s map into approx. 800 reaction rules, this implementation shows
that no molecule is at the same time an activator and an inhibitor of a same
molecule, and therefore, our equivalence theorem states that the differential in-
fluence graph would be the same for any standard kinetics with any parameter
values.

On the MAPK signalling cascade that does not contain any feedback reaction,
the implementation does reveal both positive and negative feedback circuits
in the influence graph, which has been a source of confusion for the correct
application of Thomas’ rules. Furthermore, in this example again, no molecule
is at the same time an activator and an inhibitor of another molecule, showing
the independence of the influence graph from the kinetics.
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