
From Model-Checking to Temporal Logic
Constraint Solving

François Fages and Aurélien Rizk

EPI Contraintes, INRIA Paris-Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France.

Francois.Fages@inria.fr Aurelien.Rizk@inria.fr

http://contraintes.inria.fr

Abstract. In this paper, we show how model-checking can be general-
ized to temporal logic constraint solving, by considering temporal logic
formulae with free variables over some domain D, and by computing a
validity domain for the variables rather than a truth value for the for-
mula. This allows us to define a continuous degree of satisfaction for
a temporal logic formula in a given structure, opening up the field of
model-checking to optimization. We illustrate this approach with reverse-
engineering problems coming from systems biology, and provide some
performance figures on parameter optimization problems with respect to
temporal logic specifications.

1 Introduction

Temporal logics were introduced for program verification by Pnueli [30] as speci-
fication languages for expressing the behavior of sequential as well as concurrent
programs. Temporal logics essentially extend classical logic, used for describing
states, with temporal operators (X “at next state”, F “finally at some future
state”, G “globally at all future states”, U “until”) and computation path quan-
tifiers (E “on some path”, A “on all paths”). Temporal logics have proven useful
for formalizing and verifying the behavior of a broad variety of systems rang-
ing from electronic circuits to software programs, physical systems and more
recently biological systems, in either boolean [17, 10], discrete [6], stochastic [8,
24] or continuous [33, 19, 9, 2, 10, 4] settings.

There has been a large body of work for generalizing model-checking tech-
niques, initially developed for discrete systems [13, 14], to quantitative transition
systems [1, 7, 35, 25, 22, 28, 15, 16]. One common approach is to represent infinite
sets of states with finite structures, e.g. by symbolic or numerical constraints,
and develop decision or semi-decision procedures for checking the validity of
closed temporal logic formulae over such structures.

In computational systems biology however, one core problem is of a reverse-
engineering nature: it consists in inferring a mechanistic model of a cell process
from knowledge of the elementary interactions and from the observation of the
system’s global behavior under various conditions (milieu, stress, mutations etc.)

[9]. Beyond verifying whether an already built model does reproduce some dy-
namical properties specified in temporal logic, model-checking techniques need
thus be generalized to model-synthesis techniques, including parameter opti-
mization with respect to temporal specifications. Indeed, most kinetic parame-
ters cannot be measured and must be inferred from the global behavior of the
biological system. However, the boolean valuation of temporal logic formulae is
not very helpful to guide the search for kinetic parameter values since it does
not quantify how far a system is from satisfying its specification.

To answer this question, we generalize the model-checking problem, i.e. de-
ciding whether a closed temporal logic formula is true in a given structure, to
a constraint solving problem, i.e. determining the validity domain of the free
variables of a given temporal logic formula that make it true in a given structure
(see example 2). A continuous degree of satisfaction for a closed temporal logic
formula φ can then be defined for a given structure, as the distance between the
validity domain of a pattern formula ψ obtained by replacing the constants in φ
by variables, and the actual constant values in φ.

In this paper, we present a temporal logic constraint solving algorithm, in
a very general first-order setting of Quantifier-Free Computation Tree Logic
(QFCTL) formulae with constraints over some arbitrary computational domain
D. Then we describe our particular implementation in the Biochemical Abstract
Machine BIOCHAM 1 [21] using linear constraint solving over the reals and
numerical integration of (non-linear) parametric ordinary differential equations
(ODE), and provide some performance figures on a benchmark of kinetic pa-
rameter optimization problems with respect to temporal specifications, coming
from molecular systems biology.

Such ODE models were considered by Janssen, Van Hentenryck and Deville
in [26] for enclosing their solutions and finding their stable states by constraint
consistency methods. Our approach consists in using temporal logic to formalize
the dynamical properties of the solutions, in a much more flexible way than by
specifying their stable states, or than by curve fitting, allowing us to express
concentration or time thresholds or oscillation constraints for instance. In our
previous work in [9], we introduced the idea of searching parameter values by
model-checking with a generate and test algorithm that was limited in practice
to 2-3 parameters. In [19] we introduced a constraint solving algorithm for Linear
Time Logic (LTL) queries with interval constraints over the reals, interpreted
in a single finite trace. In [33] we used it for parameter search in higher dimen-
sions over a single trace and in [34] for robustness analysis using a solver for
linear constraints over the reals. Here we generalize this approach with a new
constraint solving algorithm for branching time logic (QFCTL), presented in an
abstract setting of constraints over some arbitrary domain D. The generaliza-
tion to branching time logic is not trivial since the labeling procedure must be
generalized to a fixpoint algorithm. We believe that this generality is important

1 BIOCHAM, and the examples of this paper, are available at
http://contraintes.inria.fr/BIOCHAM.

for relating model-checking to constraint solving independently of a particular
application.

The idea of allowing free variables in temporal logic formulae to extract
information from a model is however not new. It was introduced by William
Chan in [11] in the propositional case with the notion of temporal logic queries,
where one free variable stands as a place holder for a propositional formula
that makes the query true. Following Chan’s seminal paper, temporal queries
have been investigated by many authors, but to our knowledge, always in a
propositional setting and not in a first-order setting with constraints over some
computation domain allowing to compute validity domains for variables. In [31,
15], model-checking procedures for various infinite-state structures have been
presented as constraint-solving procedures, however the question of generaliz-
ing model-checking to constraint solving for temporal logic formulae containing
free variables was not mentioned. Furthermore, the procedures inspired from
logic programming were semi-decision procedures, whereas we shall present here
decision procedures.

The rest of the paper is organized as follows. Section 2 presents the quantifier
free fragment of first-order computation tree logic with constraints over some do-
main D, noted QFCTL(D), and transpose the propositional CTL model-checking
algorithm to this setting. Section 3 describes a QFCTL constraint solving algo-
rithm which computes validity domains for variables by fixpoint iteration in
quadratic time in the size of the structure. Section 4 studies the case where
the underlying constraint domain D is a metric space, and defines in this case
a real-valued degree of satisfaction of a QFCTL formula in a given structure.
This continuous valuation in [0, 1] of temporal logic formulae is defined using
the validity domain of a QFCTL formula with free variables. This opens up
the field of model-checking to continuous optimization with respect to temporal
logic specifications over the reals. Section 5 describes our implementation in the
Biochemical Abstract Machine BIOCHAM [21] of a QFCTL constraint solver
over the reals, restricted to non branching traces, and evaluate its performance
on a benchmark of systems biology parameter optimization problems.

2 Quantifier-Free Computation Tree Logic QFCTL

2.1 Syntax

In this paper, we consider a general setting of first-order temporal logic formulae
without quantifiers, interpreted in some fixed structure. Let Σ be a signature of
constant, function and predicate symbols interpreted over some fixed computa-
tion domain D. For the sake of simplicity, we assume that the predicate symbols
are closed under negation, i.e. each predicate p comes with its dual p such that
for all e1, . . . , en ∈ D, |=D ¬p(e1, . . . , en) if and only if |=D p(e1, . . . , en).

Let V be an infinite set of variables, among which a finite set V ⊆ V of
state variables (also called rigid variables) is distinguished. An atomic constraint
is an atomic formula formed over Σ and V and a constraint, noted c, . . ., is a
conjunction of atomic constraints.

Quantifier-free first-order computation tree logic (QFCTL∗) formulae are
formed using the atomic constraints, the logical connectives ¬, ∨, ∧, ⇒, the
path quantifiers: E (exists a path), A (forall paths) and the temporal opera-
tors: X (next), F (finally, at some time point), G (globally, at all time points),
U (until), W (weak until). QFCTL denotes the fragment of QFCTL∗ in which
the temporal operators are immediately preceded by a path quantifier.

The set of variables occurring in a formula φ is denoted by V (φ). We say
that a formula φ is closed if V (φ) ⊆ V , i.e. if it contains only state variables.

Example 1. Let us consider inequality constraints over the reals and the QFCTL∗

formula EF (x = v1 ∧X (x = v2 ∧ v1 < v2 ∧X (x = v3 ∧ v3 < v2))), where x
is a state variable and v1, v2, v3 are free variables. This formula expresses that
on some path (E), at some time point (F), the value of x is v1, and at next
time point (X), x gets a greater value v2, and at next time point (X), x gets
a lesser value, i.e. v2 is local maximum for x.

2.2 Semantics

QFCTL∗ formulae are interpreted in branching structures, called Kripke struc-
tures, over some computation domain D. We assume that the constraint satisfi-
ability problem in D, i.e. whether |=D ∃X c for a constraint c where X = V (c),
is decidable. In the following, the notation ∃(c) stands for the existencial closure
of constraint c, i.e; ∃X c where X = V (c) \ V .

A state, s : V → D, is a snapshot of values of state variables at a given
time. A state is thus represented by a D-valuation of the variables in V . We
will write s(v) for the value of state variable v in state s, and by extension, s(e)
for the value of a closed expression e (made up of state variables, function and
constraint symbols) in state s. The set of states over V and D is denoted by
S(V,D), or simply S when V and D are implicit.

A Kripke structure over a set of variables V and a domain D is a quadruple
K = (S,R, V,D) where

– S ⊂ S(V,D) is a set of states over V and D,
– R ⊂ S×S is a left-total relation over S (i.e. ∀s ∈ S ∃t ∈ S (s, t) ∈ R) called

the state transition relation.

We say that a Kripke structure K = (S,R, V,D) is finite if S is finite, and finite
state if S(V,D) is finite (which implies that K and D are finite),

A path in K is an infinite sequence of states, noted π = (s0, s1, ...), such that
(si, si+1) ∈ R for all i ≥ 0. For such a path π and an integer k, πk denotes the
kth suffix path (sk, sk+1, ...).

Definition 1 A closed QFCTL∗(Σ,V,D) formula φ is true in a state s in a
Kripke structure K(S,R, V,D), if the relation K, s |=D φ holds following the
inductive definition given in Table 1.

K, s |=D c if c is an atomic constraint and |=D s(c),
K, s |=D E φ if for some path π starting from s, K,π |=D φ,
K, s |=D A φ if for all paths π starting from s, K,π |=D φ,
K,π |=D φ if K, s |=D φ where s is the first state of π,
K,π |=D X φ if K,π1 |=D φ,

K,π |=D F φ if there exists k ≥ 0 s.t. K,πk |=D φ,

K,π |=D G φ if for all k ≥ 0, K,πk |=D φ,

K,π |=D φU φ′ if there exists k ≥ 0 s.t. K,πk |=D φ′ and K,πj |=D φ for all 0 ≤ j < k.

K,π |=D φW φ′ if either for all k ≥ 0, K,πk |=D φ or there exists k ≥ 0 s.t.

K,πk |=D φ ∧ φ′ and for all 0 ≤ j < k, K,πj |=D φ.
K,π |=D ¬φ if K,π 6|=D φ,
K,π |=D φ ∧ φ′ if K,π |=D φ and K,π |=D φ′,
K,π |=D φ ∨ φ′ if K,π |=D φ or K,π |=D φ′,
K,π |=D φ⇒ φ′ if K,π |=D φ′ or K,π 6|=D φ,

Table 1. Inductive definition of the truth values of closed QFCTL∗ formulae in a
Kripke structure.

It is worth noting that the only difference between the inductive definition of
Table 1 and the usual definition for propositional CTL∗ formulae [14] is in the
base case of an atomic constraint c. Such an atomic constraint is closed and is
evaluated in D by checking its validity: |=D s(c).

Definition 2 A QFCTL∗(Σ,V,D) formula φ is satisfiable in a Kripke structure
K = (S,R, V,D), noted (by a slight abuse of notation) K |=D ∃Y φ, where
Y = V (φ) \ V , if there exists a state s ∈ S and a valuation ρ : Y → D such that
K, s |=D ρ(φ).

Example 2. Let us consider the following finite Kripke structure over the reals,
composed of five states, where state variable x takes values 1 to 5 respectively:

x=5x=1 x=2 x=3 x=4

The QFCTL formula EG (x ≤ V) has one free variable V . This formula is
satisfiable in all states. It is true for all valuations of V ≥ 5 in the last state, and
for all valuations of V ≥ 4 in the other states. The QFCTL constraint solving
problem consists in computing these validity domains for the free variables of
the formula in each state.

QFCTL∗ formulae enjoy the classical duality properties: ¬E φ = A ¬φ,
¬X φ = X ¬φ, ¬F φ = G ¬φ, ¬(φ1U φ2) = (¬φ2W ¬φ1) Moreover, F and
G can be defined as abbreviations: F φ = (trueU φ), G φ = (φW false). Sim-
ilarly, W can be defined from G and U by φ1W φ2 = G φ1 ∨ (φ1U φ1 ∧ φ2).
By assuming that the constraint language is closed under negation, negations
(and implications) can be eliminated from QFCTL formulae by pushing them

down to the constraints. Without loss of generality, we will thus sometimes re-
strict the QFCTL∗ formulae to negation-free normal forms, formed using ∨, ∧,
E , A , X , U , and G only.

2.3 QFCTL Model-Checking Algorithm

The (global) model-checking problem is the problem of determining the set of
states in which a given temporal logic formula is true in a given finite Kripke
structure. In particular, it solves the (local) decision problem of determining
whether a given formula is true in a given initial state. The QFCTL(Σ,V,D)
model-checking problem is the following:
Input: a finite Kripke structure K = (S,R, V,D), a closed QFCTL(Σ,V,D) for-
mula φ,
Output: the set of states s ∈ S such that K, s |=D φ.
By assuming that closed constraints can be evaluated in D, the usual propo-
sitional CTL model-checking algorithm for finite Kripke structures [14] can be
generalized to QFCTL as follows:

Algorithm 1 1. Construct the graph (S,R) of K
2. for each subformula ψ of φ, taken in increasing order, add ψ to the labels of

(a) the states s s.t. |=D s(ψ) if ψ is an atomic constraint,
(b) the states not labelled by ψ1 if ψ = ¬ψ1,
(c) the states labelled by ψ1 and ψ2 if ψ = ψ1 ∧ ψ2 (similarly for ∨,⇒),
(d) the immediate predecessors of states labeled by ψ1 if ψ = EX ψ1

(e) i. the states labelled by ψ2

ii. and their predecessors labelled by ψ1

if ψ = E (ψ1U ψ2)
(f) i. the states of non trivial strongly connected components labelled by

ψ1,
ii. and their predecessors labelled by ψ1

if ψ = EG ψ1,
3. return the states labeled by φ.

Example 3. On the Kripke structure of example 2, the model-checking algorithm
evaluates the formula EG (x ≤ 4) by labeling the states with the subformulas
as follows:

state x = 1 x = 2 x = 3 x = 4 x = 5
step (a) x ≤ 4 x ≤ 4 x ≤ 4 x ≤ 4
step (f)i. EG (x ≤ 4) EG (x ≤ 4)
step (f)ii. EG (x ≤ 4) EG (x ≤ 4) EG (x ≤ 4) EG (x ≤ 4)

By using Tarjan’s linear time algorithm for computing strongly connected
components as usual [14], we get

Proposition 3 Algorithm 1 solves the model-checking problem for QFCTL for-
mulae over a finite Kripke structure K and a computation domain D in time
O(|K| ∗ |φ| ∗ f(|φ|)), where φ is the formula to verify, |φ| its size (number of
subformulae) and f(n) is the time complexity for checking the D-validity of a
closed constraint of size n.

3 QFCTL Constraint Solving Algorithm

Definition 4 The QFCTL(Σ,V,D) satisfiability problem is the following:
Input: a finite Kripke structure K = (S,R, V,D), a QFCTL(Σ,D) formula φ
where Y = V (φ) \ V ,
Output: set of states s such that K, s |=D ∃Y φ.

The constraint solving problem is distinguished from the satisfiability problem
by asking moreover to compute the validity domains of the variables:
Output: set of pairs (s, ρ) where s is a state and ρ : Y → D is a valuation
s.t. K, s |=D ρ(φ), assuming a finite representation of an infinite set of valua-
tions, e.g. by a finite set of constraints.

3.1 Fixpoint Computation of Validity Domains

It is well known that a propositional CTL formula φ can be identified with
the set of states which satisfy it, i.e. {s ∈ S | K, s |=D φ}, and that for finite
Kripke structures, the basic CTL operators can be characterized as the least or
greatest fixpoints of certain monotonic operators in 2S → 2S , called predicate
transformers [14, 18].

Interestingly, this fixpoint characterization extends to the solutions of QFCTL
formulae containing free variables, by associating, to a QFCTL formula φ, a set
of states given with constraints for the free variables of φ describing the solutions
of the satisfiability problem for φ.

[c] = {(s|c) : s ∈ S and |=D ∃(s(c))} for a constraint c,
[EX φ] = ex([φ]) [AX φ] = ax([φ])
[EF φ] = µZ.[φ] ∪ ex(Z) [AF φ] = µZ.[φ] ∪ ax(Z)
[EG φ] = νZ.[φ] u ex(Z) [AG φ] = νZ.[φ] u ax(Z)
[E (φ1U φ2)] = µZ.[φ2] ∪ ([φ1] u ex(Z)) [A (φ1U φ2)] = µZ.[φ2] ∪ ([φ1] u ax(Z))
[E (φ1W φ2)] = νZ.[φ1] ∪ ([φ2] u ex(Z)) [A (φ1W φ2)] = νZ.[φ1] ∪ ([φ2] u ax(Z))
Table 2. Fixpoint characterization of the constrained states satisfying a QFCTL for-
mula.

Let SC be the set of state-constraint pairs, noted s|c, where s is a state and c
is a D-satisfiable constraint. Let us consider the set lattice (2SC , ∅,SC ,∪,u) with
the operations of set union ∪ and constrained intersection u, i.e. intersection of
states with a satisfiable constraint conjunction:

A uB = {(s|c ∧ c′) : s|c ∈ A, s|c′ ∈ B, |=D ∃(c ∧ c′)}.

We shall not describe subsumption checks in this presentation, however it is
worth noticing that the lattice top element SC of all constrained states is logically
equivalent to the element of all states given with the constraint true {(s|true) :
s ∈ S}. This element will be used as top element in computations.

Let ex, ax : 2SC → 2SC be the two constrained predicate transformers (asso-
ciated to CTL operators EX and AX) defined by:

ex(Z) = {(s|c) ∈ SC : ∃(s, t) ∈ R s.t. t|c ∈ Z},

ax(Z) = {(s|c1 ∧ . . . ∧ cn) ∈ SC) : {t : (s, t) ∈ R} = {t1, . . . , tn},
∀i, 1 ≤ i ≤ n, ti|ci ∈ Z, |=D ∃(c1 ∧ . . . ∧ cn)}.

Let us consider the fixpoint equations between QFCTL formulae and sets of
state-constraint pairs given in Table 2. These equations can be used to compute
the validity domains of the free variables of a QFCTL formula in each state, by
finite fixpoint iteration.

Example 4. For the formula EG (x ≤ V) and the Kripke structure of Example
2, the fixpoint iteration provides the following result:

state x = 1 x = 2 x = 3 x = 4 x = 5
x ≤ V 1 ≤ V 2 ≤ V 3 ≤ V 4 ≤ V 5 ≤ V
τ0
EG (x≤V) true true true true true
τ1
EG (x≤V) 1 ≤ V 2 ≤ V 3 ≤ V 4 ≤ V 5 ≤ V
τ2
EG (x≤V) 2 ≤ V 3 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V
τ3
EG (x≤V) 3 ≤ V 4 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V
τ4
EG (x≤V) 4 ≤ V 4 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V
τ5
EG (x≤V) = [EG (x ≤ V)] 4 ≤ V 4 ≤ V 4 ≤ V 4 ≤ V 5 ≤ V

While for the formula AG (x ≤ V) involving greatest fixpoint computation,
starting from all states labelled by the constraint true, we get the fixpoint

state x = 1 x = 2 x = 3 x = 4 x = 5
[AG (x ≤ V)] 5 ≤ V 5 ≤ V 5 ≤ V 5 ≤ V 5 ≤ V

Let us say that an operator τ over a set S is bounded if ∀s ∈ S ∃i ∈
N τ i+1(s) = τ i(s). It is clear from the proof of Knaster-Tarski-Kleene theo-
rem that:

Proposition 1. A bounded monotonic operator τ over a lattice (L,⊥,>,t,u)
admits a least fixpoint equal to τ i(⊥) for some i ≥ 0, and a greatest fixpoint
equal to τ j(>) for some j ≥ 0.

Lemma 1. The constrained predicate transformers ex and ax, and the con-
strained predicate transformers associated to QFCTL operators, are monotonic
and bounded in finite Kripke structures.

Proof. As for monotonicity, it is clear that if Z1 ⊂ Z2 then ex(Z1) ⊆ ex(Z2),
ax(Z1) ⊆ ax(Z2). The same goes for the predicate transformers of QFCTL
operators since they proceed by intersection or union of monotonic operators.

Predicate transformers ex and ax are also bounded since otherwise one could
exhibit an infinite chain of states such that (si, si+1) ∈ R with ∀i, j, 1 ≤ i <
j, si 6= sj , a contradiction in a finite Kripke structure. The same goes for the
other predicate transformers since they are built by union or intersection of
bounded operators.

Proposition 2 (soundness). If s|c ∈ [φ] then K, s |=D ρ(φ) for every valua-
tion ρ such that |=D ρ(c).

Proof. By structural induction on φ.

Proposition 3 (completeness). If K, s |=D ρ(φ) then there exists s|c ∈ [φ]K
such that |=D ρ(c).

Proof. By structural induction on φ.

We thus get:

Theorem 1. The satisfiability problem of QFCTL formulae in a finite Kripke
structure over a domain D with a decidable language of constraints, is decidable.

Proposition 4. The number of fixpoint iteration steps in the QFCTL constraint
solving algorithm 2 is in O(n ∗ k2) where n is the size of the formula and k is
the number of states.

Proof. The algorithm proceeds by iteratively computing constrained states for
the subformulae of the formula, hence in at most n steps. For each subfor-
mula, the algorithm computes a fixpoint of constrained states by iteration on
constrained states, hence in at most k2 steps. Each elementary step involves con-
straint satisfiability checking operations whose time complexity is not counted
here.

This quadratic complexity in the number of states must be contrasted with
the linear complexity of the QFCTL model-checking algorithm (Prop. 3). The
linear complexity of model-checking relies on Tarjan’s algorithm for computing
strongly connected components of the structure for EG formulae. For comput-
ing validity domains however, one would need to consider the different circuits
of the structure in order to label the states with appropriate domains for EG
formulae (see example 2). The fixpoint computation shows that this labeling can
be done in quadratic time, whereas a naive algorithm considering all the circuits
of the finite Kripke structure would require an exponential time.

4 QFCTL Formulae over a Metric Space D

In this section, we consider the case where the computation domain D is a metric
space, i.e. a domain given with a distance function d : D2 → R.

4.1 Continuous Valuation of QFCTL Formulae

In this general setting of metric spaces as computation domain, the QFCTL
constraint solving algorithm provides a mean to evaluate closed QFCTL formula
continuously in the interval [0, 1], instead of by a Boolean value.

For this, given a QFCTL formula φ, a QFCTL pattern formula ψ(x1, ..., xk)
is introduced by replacing some constants in φ by new variables {x1, ..., xk}:
we have φ = ψ(v1, ..., vk) for some instantiation of the variables by domain
values v1, ..., vk. The satisfaction degree of φ is then defined using the distance
between the validity domain of the variables x1, ..., xk in ψ and the objective
values (v1, ..., vk) in Rk.

Definition 5 The violation degree vd(φ, ψ) of a QFCTL formula φ in a Kripke
structure K with respect to a pattern formula ψ(y) such that φ = ψ(v) for some
real values v, is the euclidean distance d between v and the initial state validity
domain Dy

ψ of the free variables of ψ, or +∞ if ψ is not satisfiable:

vd(φ, ψ) = minv′∈Dy
ψ
d(v′,v)

The satisfaction degree, sd(φ, ψ) ∈ [0, 1], of φ with respect to ψ is obtained
by normalization:

sd(φ, ψ) =
1

1 + vd(φ, ψ)

Example 5. For instance, in example 3, the formulae EG (x ≤ 2) and AG (x ≤
2) can now be given a continuous degree of satisfaction with respect to the
pattern formulae EG (x ≤ V) and AG (x ≤ V) respectively. This is obtained
simply by computing the distance between the validity domain of V and the
objective value 2. This gives the following satisfaction degrees:

state x = 1 x = 2 x = 3 x = 4 x = 5
sd(EG (x ≤ 2) 1/3 1/3 1/3 1/3 1/4
sd(AG (x ≤ 2)) 1/4 1/4 1/4 1/4 1/4

Interestingly, this notion of satisfaction degree gives also rise naturally to a
pseudometric between Kripke structures with respect to a temporal specification
φ, by considering the difference in the degrees of satisfaction of φ between both
structures.

4.2 Parameter Optimization with respect to a QFCTL Formula

Because it quantifies how far a Kripke structure K is from a given specification,
the satisfaction degree can be used to guide the search when one tries to modify
a Kripke structure to make it satisfy a specification. When D = R, this enables
the use of (non-linear) continuous optimization methods, where state valuations
are the variables being optimized and where the satisfaction degree provides a
”black box” fitness function [33].

An optimization problem is thus defined for the satisfaction degree of a
QFCTL formula φ∗ w.r;t. a valuation ρφ of some of its variables. This has an
intuitive interpretation : φ∗ is the kind of property considered while ρφ defines
the objective valuation of the actual property.

In the implementation described below, we use the covariance matrix adap-
tive evolution strategy of Hansen and Ostermeier [23], as non-linear optimization
method for maximizing the satisfaction degree of QFCTL specifications.

4.3 Robustness Estimation with respect to QFCTL(Rlin)
Specifications

The notion of satisfaction degree can also be used to define a degree of robustness
of a behavior described in temporal logic with respect to a set of perturbations,

and estimate it computationally [34]. This robustness degree is defined as the
mean value of the satisfaction degree of the property of interest over all ad-
missible perturbations, possibly weighted by probabilities. This definition is an
adaptation of the general definition given by Kitano [27] to the temporal logic
setting:

Definition 6 [34] Let P be a set of perturbations, prob(p) be the probability of
perturbation p, s be the initial state of the numerical trace of the system under
perturbation p ∈ P . The robustness degree Rφ,P of a property φ with respect to

P is the real value Rφ,P =
∫
p∈P

sd(φ, s)prob(p)dp

In the case of an infinite perturbation set, this robustness degree can be estimated
by sampling. The robustness degree can be used to compare models and can even
be integrated as a criterion in the parameter optimization procedure [33].

4.4 Implementation

Our current implementation of QFCTL constraint solving is restricted to linear
constraints over the reals and to linear Kripke structures, i.e. numerical traces
without branching. The constraint solving problem of a QFCTL formula on a
numerical trace, the computation of the satisfaction degree of a formula and its
use as a fitness function for parameter optimization are implemented in version
2.8 of the freely available tool BIOCHAM, a modeling environment for the anal-
ysis of biological systems [21]. The computation of validity domains is handled
by a simplified version of the QFCTL constraint solving algorithm dealing only
with a single numerical trace, i.e. a finite linear structure [34]. The atomic con-
straints are linear constraints over the reals. Their satisfiability is checked using
the Parma Polyhedra Library [3].

5 Applications in Systems Biology

5.1 Context of Molecular Systems Biology

The use of temporal logics in systems biology relies on a logical paradigm which
consists in making the following identifications:

biological model = (quantitative) transition system
biological properties = temporal logic formulae

automatic validation = model-checking

In this domain, temporal logics have been used in recent years in many ap-
plications, either as query languages of large interaction maps [10] or gene regu-
latory networks [4], or as specification languages of biological properties known
or inferred [19] from experiments, and used for validating models, discriminating
between models and proposing new biological experiments [6], finding parameter
values [9], or estimating robustness [33, 5].

The difficulty inherent in using quantitative, but still incomplete, uncertain
and imprecise biological knowledge makes the modeling problem a challenging
task. Temporal logics help cope with this difficulty by providing a powerful
specification language of the behavior of the system. The advantage of temporal
logics is particularly explicit in comparison with the essentially qualitative prop-
erties considered in dynamical systems theory (e.g. multistability, existence of
oscillations) or with the exact quantitative properties considered in optimization
theory (e.g. curve fitting) as it allows us to express both qualitative (e.g. some
protein is eventually produced) and quantitative (e.g. a concentration exceeds
10) properties.

Numerical traces representing evolution over a given time span of biological
species can be obtained either from measurements in biological experiments, or
from simulations by numerical integration of (non-linear) ODE models. QFCTL
formulae are interpreted on these finite traces by adding a loop on the last state
which only changes the meaning of X [33]. Non-linear continuous optimization
methods can then be used to optimize a biological model with respect to a
QFCTL specification. Note that in this case, the Kripke structure is optimized
indirectly, by optimizing the biological model producing it.

5.2 Parameter Optimization with respect to QFCTL(Rlin)
Specifications

We examine here the problem of finding parameter values of biological models
such that the numerical trace obtained by simulation satisfies a given specifica-
tion. We consider several examples of parameter optimization problems [33] in
three ordinary differential equation models. We provide the CPU time (in sec-
onds) required for optimization and for a single validity domain computation.

The first model is the budding yeast cell cycle ODE model of Chen et al.
[12] which displays how some proteins interact to form an heterodimer known as
maturation promoting factor (MPF) playing a key role in the control of mitotic
cycles. For given sets of kinetic parameter values, MPF exhibits periodic activity
peaks. We use formulae φ∗1, φ∗2 and φ∗3 to see if it is possible to respectively find
values in order to have higher MPF peaks, greater MPF amplitude, or shorter
oscillation periods.

The second model is a model of the MAPK signal transduction cascade in
the cell [29]. In [32], oscillations have been found in this model of the cascade of
enzymatic reactions is directional and does not contain any negative feedback
reaction. In [20] we analyzed this phenomenon in terms of the negative circuits
of the influence graph associated to a reaction graph. Here, we use φ5 to find
parameter values and initial conditions that exhibit sustained oscillations with
some amplitude constraint on the protein complex MAPKp1p2. Formula φ4 il-
lustrates a curve fitting problem on two time points and the protein complex
MEKRAFp1.

The last example is a design problem. Given a specification of a synthetic gene
transcriptional cascade system, whose input is EYFP we search for transcription

rate parameter values with well-timed and fast-switching constraints (formula
φ6).

The following QFCTL formulae are considered with the objective valuations
given in column ρφ of Table 3:

φ∗1 = EF ([MPF] > max)

φ∗2 = EF ([MPF] > x1 ∧ EF ([MPF] < x2
∧EF ([MPF] > x1 ∧ EF ([MPF] < x2))))
∧x1− x2 > a

φ∗3 = EF (d([Cdc2])/dt < 0 ∧ EX(d([Cdc2])/dt > 0 ∧ T ime = t1
∧EX(F (d([Cdc2])/dt > 0 ∧ EX(d([Cdc2])/dt < 0 ∧ T ime = t2))
∧ t2− t1 > p

φ∗4 = EG(T ime = 30→ [MEKRAFp1] = u
∧T ime = 60→ [MEKRAFp1] = v) ∧ · · ·

φ∗5 = EF ([MAPKp1p2] > x1 ∧ EF ([MAPKp1p2] < x2))
∧x1− x2 > a

φ∗6 = EG(T ime < t1 → [EY FP] < 103)
∧EG(T ime > t2 → [EY FP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

Model #para- |V | last φ∗ ρφ |Y | CPU #iter- CPU time (s) for
meters |S| time (s) ations val. domain

in one iteration

Cell cycle 2 6 186 φ∗1 max=0.3 1 27 132 0.02
Cell cycle 2 6 204 φ∗2 a=0.3 3 131 138 1.2
Cell cycle 8 6 267 φ∗3 p=20 3 23 40 0.39

MAPK 22 22 35 φ∗4 u, v.. = 0.03, 0.04.. 6 259 611 0.001
MAPK 37 22 234 φ∗5 a=0.5 3 453 868 0.17

Cascade 15 3 346 φ∗6 b1, b2, b3 5 70 96 0.48
Cascade = 150, 150, 450

Table 3. Parameter optimization benchmark where #parameters is the number of
parameters of the biological model being optimized, |V | the number of species in that
model (i.e the number of variables in the produced numerical trace), last |S| the number
of states in the last produced numerical trace, |Y | the number of formula variables,
CPU time the time in seconds required to complete the optimization on a Core 2
Duo 2GHz, #iterations the number of calls to the fitness function (i.e validity domain
computations and numerical simulations of the model) and CPU time for val. domain
in one iteration the time to compute the validity domain on the last simulated trace.

Table 3 summarizes our performance evaluation on these benchmarks. The
dimension of the search space (i.e. number of parameters) does not determine
alone the complexity of an optimization problem : problems involving φ∗4 and φ∗5
have high dimensions and are the longest to solve but φ∗3 and φ∗6 are faster than
φ∗2 despite their much higher dimensions. But even with search space dimensions

as high as 37, by guiding the search with the continuous valuation of QFCTL
formulae, it is possible to find solutions with only less than a thousand calls
to the fitness function. Notice that the time required to compute the validity
domains is in general only a small fraction of the total CPU time. This can be
explained by the optimization method overhead and more importantly by the
time required to generate traces by numerical integration.

6 Conclusion

We have shown that the QFCTL constraint satisfiability problem is decidable in
finite Kripke structures over an arbitrary computation domain with a decidable
language of constraints, i.e. that any constraint solver can be lifted to a temporal
logic constraint solver over finite Kripke structures. We have presented a generic
QFCTL constraint solver which computes validity domains for the free variables
of a formula, in quadratic time in the number of states, and linear time in the
size of the formula, apart from the basic constraint satisfiability checks.

We have shown that the computation of validity domains for QFCTL con-
straints over metric spaces makes it possible to define a continuous measure of
satisfaction of QFCTL formulae, opening up the field of model-checking to opti-
mization. This has been illustrated with central computational issues in systems
biology, from which our present work originates, for inferring kinetic parameter
values in structural models from the observed behaviors of the system formal-
ized in temporal logic with numerical constraints. It should be clear however
that these methods for parameter optimization with respect to temporal logic
specifications and robustness analyses, should be of a wider application spectrum
in dynamical systems, reverse-engineering and synthesis of hybrid systems.

Acknowledgements. We gracefully acknowledge discussions with Sylvain Soliman

and Grégory Batt on this topic, partial support from the European FP6 Strep project

TEMPO, and the reviewer’s comments for improving the presentation.

References

1. Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General
decidability theorems for infinite-state systems. In Logic in Computer Science,
pages 313–321, 1996.

2. Marco Antoniotti, Alberto Policriti, Nadia Ugel, and Bud Mishra. Model building
and model checking for biochemical processes. Cell Biochemistry and Biophysics,
38:271–286, 2003.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

4. G. Batt, D. Ropers, H. de Jong, J. Geiselmann, R. Mateescu, M. Page, and
D. Schneider. Validation of qualitative models of genetic regulatory networks by
model checking : Analysis of the nutritional stress response in Escherichia coli.
Bioinformatics, 21(Suppl.1):i19–i28, 2005.

5. G. Batt, B. Yordanov, R. Weiss, and C. Belta. Robustness analysis and tuning of
synthetic gene networks. Bioinformatics, 23(18):2415–2422, 2007.

6. Gilles Bernot, Jean-Paul Comet, Adrien Richard, and J. Guespin. A fruitful ap-
plication of formal methods to biological regulatory networks: Extending thomas’
asynchronous logical approach with temporal logic. Journal of Theoretical Biology,
229(3):339–347, 2004.

7. Tevfik Bultan, Richard Gerber, and William Pugh. Symbolic model checking of
infinite state systems using presburger arithmetic. In CAV’97: Proceedings of
the 9th International Conference on Computer Aided Verification, pages 400–411.
Springer-Verlag, 1997.

8. Muffy Calder, Vladislav Vyshemirsky, David Gilbert, and Richard Orton. Anal-
ysis of signalling pathways using the continuous time markow chains. In Gordon
Plotkin, editor, Transactions on Computational Systems Biology VI, volume 4220
of Lecture Notes in BioInformatics, pages 44–67. Springer-Verlag, November 2006.
CMSB’05 Special Issue.

9. Laurence Calzone, Nathalie Chabrier-Rivier, François Fages, and Sylvain Soliman.
Machine learning biochemical networks from temporal logic properties. In Gordon
Plotkin, editor, Transactions on Computational Systems Biology VI, volume 4220
of Lecture Notes in BioInformatics, pages 68–94. Springer-Verlag, November 2006.
CMSB’05 Special Issue.

10. Nathalie Chabrier and François Fages. Symbolic model checking of biochemical
networks. In Corrado Priami, editor, CMSB’03: Proceedings of the first workshop
on Computational Methods in Systems Biology, volume 2602 of Lecture Notes in
Computer Science, pages 149–162, Rovereto, Italy, March 2003. Springer-Verlag.

11. William Chan. Temporal-logic queries. In CAV’00: Proceedings of the 12th In-
ternational Conference on Computer Aided Verification, number 1855 in Lecture
Notes in Computer Science, pages 450–463. Springer-Verlag, 2000.

12. Katherine C. Chen, Attila Csikász-Nagy, Bela Györffy, John Val, Bela Novàk, and
John J. Tyson. Kinetic analysis of a molecular model of the budding yeast cell
cycle. Molecular Biology of the Cell, 11:396–391, 2000.

13. Edmund M. Clarke. and Allen E. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs 1981, pages
52–71, London, UK, 1982. Springer-Verlag.

14. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, 1999.

15. Giorgio Delzanno and Andreas Podelski. Constraint-based deductive model check-
ing. STTT, 3(3):250–270, 2001.

16. Magnus Egerstedt and Bud Mishra, 2008.

17. Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, José Meseguer, and
M. Kemal Sönmez. Pathway logic: Symbolic analysis of biological signaling. In
Proceedings of the seventh Pacific Symposium on Biocomputing, pages 400–412,
January 2002.

18. Allen E. Emerson and Edmund M. Clarke. Characterizing correctness proper-
ties of parallel programs using fixpoints. In Proceedings of the 7th Colloquium
on Automata, Languages and Programming, pages 169–181, London, UK, 1980.
Springer-Verlag.

19. François Fages and Aurélien Rizk. On temporal logic constraint solving for the
analysis of numerical data time series. Theoretical Computer Science, 408(1):55–65,
November 2008.

20. François Fages and Sylvain Soliman. From reaction models to influence graphs and
back: a theorem. In Proceedings of Formal Methods in Systems Biology FMSB’08,
number 5054 in Lecture Notes in Computer Science. Springer-Verlag, February
2008.

21. François Fages, Sylvain Soliman, and Aurélien Rizk. BIOCHAM v2.8 user’s man-
ual. INRIA, 2009. http://contraintes.inria.fr/BIOCHAM.

22. Nicolas Halbwachs, Yann-Erick Proy, and Patrick Roumanoff. Verification of real-
time systems using linear relation analysis. In Formal Methods in System Design,
pages 157–185, 1997.

23. Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computation, 9(2):159–195, 2001.

24. J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Prob-
abilistic model checking of complex biological pathways. In Proc. Computational
Methods in Systems Biology (CMSB’06), volume 4210 of Lecture Notes in Com-
puter Science, pages 32–47. Springer-Verlag, 2006.

25. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model
checker for hybrid systems. In CAV’97: Proceedings of the 9th International Con-
ference on Computer Aided Verification, pages 460–463. Springer-Verlag, 1997.

26. Micha Janssen, Pascal Van Hentenryck, and Yves Deville. A constraint satisfac-
tion approach for enclosing solutions to parametric ordinary differential equations.
SIAM Journal on Numerical Analysis, 40(5), 2002.

27. H. Kitano. Towards a theory of biological robustness. Molecular Systems Biology,
3:137, 2007.

28. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int. Journal
on Software Tools for Technology Transfer, 1:134–152, 1997.

29. Andre Levchenko, Jehoshua Bruck, and Paul W. Sternberg. Scaffold proteins may
biphasically affect the levels of mitogen-activated protein kinase signaling and re-
duce its threshold properties. PNAS, 97(11):5818–5823, May 2000.

30. Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.
31. Andreas Podelski. Model checking as constraint solving. In Jens Palsberg, editor,

Proceedings of SAS: Static Analysis Symposium, volume 1824 of LNCS, pages 22–
37. Springer-Verlag, 2000.

32. Liang Qiao, Robert B. Nachbar, Ioannis G. Kevrekidis, and Stanislav Y. Shvarts-
man. Bistability and oscillations in the huang-ferrell model of mapk signaling.
PLoS Computational Biology, 3(9):1819–1826, September 2007.

33. Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. On a continu-
ous degree of satisfaction of temporal logic formulae with applications to systems
biology. In Monika Heiner and Adeline Uhrmacher, editors, CMSB’08: Proceedings
of the fourth international conference on Computational Methods in Systems Biol-
ogy, volume 5307 of Lecture Notes in Computer Science, pages 251–268. Springer-
Verlag, October 2008.

34. Aurélien Rizk, Grégory Batt, François Fages, and Sylvain Soliman. A general
computational method for robustness analysis with applications to synthetic gene
networks. BioInformatics, 25(12):169–178, June 2009.

35. Pierre Wolper and Bernard Boigelot. Verifying systems with infinite but regu-
lar state space. In CAV’98: Proceedings of the 10th International Conference on
Computer Aided Verification, pages 88–97, 1998.

