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Abstrat

We onsider the problem of �nding a utset in a direted graph G = (V;E), i.e. a

set of verties that uts all yles in G. Finding a utset of minimum ardinality is

NP-hard. There exist several approximate algorithms and exat algorithms, most of

them using graph redution tehniques. In this paper we propose a global onstraint

for utset problems. The utset onstraint is a boolean onstraint over variables

assoiated to the verties of a given graph, that states that the subgraph restrited

to the verties having their boolean variable set to true is ayli. We propose a

�ltering algorithm based on graph ontration operations and inferene of simple

boolean onstraints, that has an O(jEj + jV jlogjV j) time omplexity. We disuss

searh heuristis based on graph properties provided by the utset onstraint, and

show the eÆieny of the utset onstraint on benhmarks of the literature for

pure minimum utset problems, and on an appliation to log-based reoniliation

problems where the global utset onstraint is mixed with other boolean onstraints.

1 Introdution

Let G = (V;E) be a direted graph with vertex set V and edge set E. A yle utset,

or utset for short, of G is a subset of verties, V

0

� V , suh that the subgraph of G

restrited to the verties belonging to V n V

0

is ayli. Deiding whether an arbitrary

graph admits a utset of a given ardinality is an NP-omplete problem [6℄. The minimum

utset problem, i.e. �nding a utset of minimum ardinality (also alled a feedbak vertex

set [4℄), is thus an NP-hard problem. This problem has found appliations in various

areas, suh as deadlok breaking [2℄, program veri�ation [11℄ or Bayesian inferene [15℄.

There are a few lasses of graphs for whih the minimum utset problem has a poly-

nomial time omplexity. These lasses are de�ned by ertain reduibility properties of
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the graph. Shamir [11℄ proposed a linear time algorithm for reduible ow graphs. Rosen

[2℄ modi�ed this algorithm in an approximate algorithm for general graphs. Wang, Lloyd

and So�a [14℄ found an O(jEj � jV j

2

) algorithm for an unrelated lass of ylially re-

duible graphs. Smith and Walford [13℄ proposed an exponential time algorithm for

general graphs that behaves in O(jEj � jV j

2

) in ertain lasses of graphs. The ompar-

ison of these di�erent reduibility properties was done by Levy and Low [8℄ and Lou

So�a and Wang [9℄ who proposed an O(jEj � logjV j) approximate algorithm based on a

simple set of �ve graph ontration rules. Pardalos, Qian and Resende [10℄ used these

ontration rules inside a Greedy Randomized Adaptive Searh Proedure (GRASP).

The GRASP proedure is urrently the most eÆient approximate algorithm for solving

large instanes, yet without any guarantee on the quality of the solution found. Exat

solving has been tried with polyhedral methods by Funke and Reinelt who presented

omputational results with a branh-and-ut algorithm implemented in CPLEX [5℄.

Our aim here is to develop a onstraint programming approah to utset problems

and design a global onstraint for utsets. Speialized propagation algorithms for global

onstraints are a key feature of the eÆieny of onstraint programming (see [1℄ for

example). The idea of this paper is to embed relevant graph redution tehniques into a

global utset onstraint, that an be ombined with other boolean onstraints, and that

an be used within either a branh-and-bound proedure or loal searh methods.

Our interest for utset problems, arose from the study of log-based reoniliation

problems in nomadi appliations [7℄. The minimum utset problem shows up as the

entral problem responsible for the NP-hardness of optimal reoniliation [3℄. In this

ontext however, the utset onstraint omes with other onstraints whih aggregate

verties into lusters, or more generally, express dependeny onstraints between verties.

In our previous onstraint-based approah [3℄, the ayliity onstraint was expressed as

a sheduling problem mixing boolean and �nite domain onstraints. We show in this

paper that the global utset onstraint provides a more eÆient pruning of the ayliity

ondition. Moreover it allows for an all boolean modeling of log-based reoniliation

problems.

The rest of the paper is organized as follows. In the next setion, we de�ne the

global utset onstraint, and propose a syntax for its implementation in onstraint logi

programming (CLP). In setion 3, we propose a �ltering algorithm based on graph re-

dutions and simple boolean onstraint inferene. We show its orretness, disuss some

implementation issues and prove its O(jEj + jV jlogjV j) time omplexity. In setion 4,

we disuss some searh heuristis based on the properties of the internal graph managed

by the global utset onstraint. Setion 5 desribes the log-based reoniliation problem

in nomadi appliations and its modeling with the utset onstraint. Setion 6 presents

omputational results on Funke and Reinelt's benhmarks for pure minimum utset prob-

lems, and on benhmarks of log-based reoniliation problems. The last setion presents

our onlusion.

2 The Cutset Constraint

Given a graph G = (V;E), we onsider the set B of boolean variables, obtained by

assoiating a boolean variable to eah vertex in V . A vertex is said to be aepted if its

boolean variable is true, and is said to be rejeted if its boolean variable is false. We



onsider the boolean onstraint on B

utset(B;G)

whih states that the subset of rejeted verties aording to B forms a valid utset of

G.

More spei�ally, we shall onsider the implementation of the following onstraint

logi programming (CLP) prediates:

utset(Variables,Verties,Edges)

utset(Variables,Verties,Edges,Size)

where Variables=[V1,...,Vn℄ is the list of boolean variables assoiated to the verties,

Verties = [a1,...,an℄ is the list of verties, Edges = [ai-aj,... ℄ is the list

of direted edges represented as pairs of verties, and Size is a �nite domain variable

representing the size of the utset, i.e. the number of rejeted verties. The boolean

variable V

i

equals 0 if the vertex a

i

is in the utset (i.e. rejeted from the graph) and

equals 1 if the vertex a

i

is not in the utset (i.e. aepted to be in the graph).

For the purpose of the minimum utset problem, that is rejeting a minimum num-

ber of verties, the branh-and-bound minimization prediate of CLP an be used. So,

essentially one expresses a minimum utset problem with the CLP query:

utset(B,V,E,S),minimize(labeling(B),S).

As usual, the utset onstraint does not make any assumption on the other onstraints

imposed on its variables and hene the user is allowed to qualify the utset solution he

wants with extra onstraints. For this reason, the utset onstraint has to be general

enough to allow the possibility of �nding any utset of the graph.

3 Filtering Algorithm

The �ltering algorithm we propose uses ontration operations to redue the graph size,

hek the ayliity of the graph and bound the size of its utsets. The graph ontration

rules we use are inspired from the rules of Levy and Low [8℄, and Lloyd, So�a and Wang

[9℄ for omputing one minimum utset. The graph ontration operations desribed in

this setion ompute an arbitrary utset, in a onstraint propagation setting.

The utset onstraint maintains an internal state omposed of an expliit representa-

tion of the graph, that is related to the onstraints of the onstraint store on the boolean

variables, V

1

; :::; V

n

, assoiated to the verties of the graph. The �ltering algorithm tries

to onvert the information in the graph (about the yles that have to be ut) to on-

straints over the boolean variables V

i

. On ompleting suh onversion, any valid solution

of the onstraint store is heked to provide a valid utset of the original graph. The es-

sential omponents of the �ltering algorithm are the graph ontration operations. They

either simplify the graph without loosing any information, or onvert some information

into expliit onstraints and simplify the graph in the proess.

Below we present two basi Aept and Rejet operations and the graph ontration

operations performed by the �ltering algorithm.

3.1 Interrnal Aept and Rejet Operations

We onsider the two following operations on a direted graph:



1. Aept(v) : under the preondition that v has no self loop, i.e. (v; v) is not an

edge, this operation removes the vertex v along with the edges inident on it and

adds the edges (v

1

; v

2

) if (v

1

; v) and (v; v

2

) were edges in the original graph.
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=>
Accept(v)

U2

U1

U3

v

V2

V1

U2

U1

U3

V1

V2

2. Rejet(v) : This operation removes the vertex v along with the edges inident on

it.

Note that these operations on the internal graph of the utset onstraint do not

prelude the instaniation of the boolean variables assoiated to the verties of the graph.

If a boolean variable is instaniated, the �ltering algorithm performs the orresponding

Aept or Rejet operation. On the other hand we shall see in the next setion that the

�ltering algorithm of the utset onstraint an perform Aept and Rejet operations on

its internal graph struture without instaniating the boolean variables assoiated to the

original graph.

We shall use the following :

Proposition 1 Let G = (V;E) be a direted graph with vertex set V and edge set E and

let v 2 V be a vertex of the graph suh that (v; v) 62 E. Also let G

0

= (V

0

; E

0

) be the

graph obtained by performing Aept(v) on G. Then any utset of G whih does not have

v is also a utset of the graph G

0

and vie versa.

Proof : ()) Let S � V be a utset of G and v 62 S. Let GnS denote the graph

obtained by removing the verties of S from G. Sine S is a utset, GnS should be

ayli. Now, suppose that S is not a utset of G

0

. Therefore, there exists a yle

v

1

; v

2

; : : : ; v

n

; v

1

in G

0

with eah vertex in V

0

� S. If this yle has no edges whih ame

due to the operation Aept(v) then this is also a yle in GnS. Hene this yle has

edges indued by the aept operation. By replaing eah suh edge (v

i

; v

i+1

) by (v

i

; v)

and (v; v

i+1

), we again get a yle in GnS. Hene, by ontradition, we have one side of

the result.

(() Let S � V

0

be a utset of G

0

. Again, suppose that S is not a utset of G. Therefore,

there exists a yle v

1

; : : : ; v

n

; v

1

in GnS. If none of these verties is v then this is also

a yle in G

0

nS. Hene, at least one of these verties is v. If v

i

= v then replae the

edges (v

i�1

; v

i

) and (v

i

; v

i+1

) by (v

i�1

; v

i+1

) to get a yle in G

0

nS. Again we get a

ontradition. �

The aept operation an thus be used to hek if a given set is a utset or not :

Corollary 2 A given direted graph G = (V;E) is ayli provided we an aept all

verties in it i.e. while aepting the verties one by one, no vertex gets a self loop.

Proof : Suppose that while aepting the verties in G, no vertex gets a self loop.

Then after aepting all the verties, the graph that remains has no verties or edges.



Hene this has a utset ;. Now, by repeated appliation of proposition 1, ; is also a utset

of G. Hene G is ayli. The reverse an also be proved similarly by using proposition

1. So if G is a ayli graph, then it has the utset ;. Now, while aepting the verties

of G, if we get a vertex with a self loop, then that graph annot have ; as the utset.

However, ; should have been a utset by proposition 1. Hene by ontradition, we have

our result. �

Similarly, we have :

Proposition 3 Let G = (V;E) be a direted graph and v 2 V be a vertex of the graph.

Also let G

0

= (V

0

; E

0

) be the graph obtained by performing Rejet(v) in G. If S is a

utset of G whih ontains v then S � fvg is a utset of G

0

and vie versa.

Corollary 4 The set of all utsets of a graph remains invariant under the operation

Rejet(v) if v has a self loop.

These propositions show that the aept and rejet operations have the nie property

of maintaining any utset by piking a right vertex to apply the operation on. If there

is a minimum utset that ontains the vertex v then after the operation Rejet(v), we

an still �nd that utset but have a smaller graph to work with. Similarly, if there is

a minimum utset that does not ontain v then after Aept(v), we an still �nd that

utset but again in a smaller graph.

3.2 Graph Contration Operations

We shall use the following �ve graph ontration operations :

1. IN0 (In degree = 0) In ase the in degree of a vertex is zero, that vertex annot be

a part of any yle. Hene its aeptane or rejetion will ause no hange to the

rest of the graph. So, its edges are removed but no onstraints are produed sine

a utset an exist inluding or exluding this vertex.

2. OUT0 (Out degree = 0) In ase the out degree of a vertex is zero, the situation

is similar to the one above. Again, the edges inident on this vertex are removed

and no onstraints are produed.

3. IN1 (In degree = 1) In ase a vertex has in degree one, then the situation is as

follows,
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=>
IN1(i)a j i h

b

c

d

e

f

a

b

c

d

e

f

If a yle passes through i then it must also pass through j. Hene by merging

these two nodes to form the node h, we do not eliminate any yle in the graph.

Along with this redution, we impose the onstraint V

h

= V

i

^ V

j

on the variables

assoiated with the verties. This aptures the fat that if h is not a part of any



yle, then both i and j were not part of any yle and vie versa. The rest

of this paper will use the names i and j in the ontext that vertex i has in (or

out) degree 1 and vertex j is the predeessor (or suessor) of i. Note that, as a

ompromise trading pruning for eÆieny, we do not perform this operation if it

leads to merging two nodes that have themselves ome due to the merging of other

nodes. This restrition is justi�ed in the next setion.

4. OUT1 (Out degree = 1) This ase is similar to the above ase.

5. LOOP (Self loop on a vertex) In ase a vertex has a self loop then this vertex

is rejeted and its boolean variable is set to 0 sine no utset an exist without

inluding this vertex. However, if the vertex is a merged node h then we impose

V

h

= 0 but annot rejet h sine that implies rejetion of both i and j. So we

look at the self loop edge of h and �gure out if it ame from the loop (j; j) or from

(i; j); (j; i). This is done by maintaining history on merged nodes, as desribed in

the next setion. Note that there annot be a loop (i; i) sine i had in (resp. out)

degree as one and this edge was not a loop. If the loop ame purely from j, then

we impose V

j

= 0 and remove h from the graph. Otherwise, we just onvert h to

j i.e. remove edges orresponding to i. This onversion is done beause we know

that the loop ame due to a yle involving edges between i and j. Hene at least

one of i and j should be rejeted . Choosing to rejet either renders the edges of i

useless.

Proposition 5 The omplexity of the redution algorithm (repeated appliation of on-

tration operations till no more an be applied) is O(jEj+ jV jlogjV j).

Proof : The proof is very easy and omes from the fat that we look at an edge

only O(1) times and don't add new edges. Let d

v

denote the in + out degree of vertex

v. Start the proedure by sorting, in O(jV jlogjV j), the verties based on in and out

degrees and store the result in two arrays indexed by the vertex degree. Eah time an

operation is performed, we will update these arrays. First onsider the IN0 operation.

Using the arrays just reated, we an �nd in O(1) time, a vertex to apply the redution

on. Redution on vertex v will take O(d

v

) time and will lead to deletion of all edges on

it. Along with this deletion, update the degrees of a�eted verties while maintaining the

arrays orretly. Sine new edges are not added to the graph at any stage, any number

of IN0 operations interleaved with any number of di�erent redutions an take atmost

O(

P

v

d

v

) = O(jEj) time. Similarly, any number of OUT0 redutions an take time

O(jEj). For the LOOP ase, we an see that it too leads to rejetion of edges of some

vertex and hene satis�es the same bound (history lookup is O(1)). The ase for IN1

and OUT1 is easy to argue sine we are not allowing merged nodes to get merged. As a

result, we look at a vertex atmost one and do O(d

v

) work. Hene these operations, on

the whole, an take O(jEj) time. This proves the proposition. �

3.3 Maintaining History and Other Issues with IN1 and OUT1

When a merged node h is rejeted, we might need to onvert it bak to j. For this

purpose, more information is maintained by keeping the history of eah edge along with

it. This history tells if the edge is there due to edges from vertex j or from vertex i. Sine

aept/rejet operations on the neighbors of a vertex ause the edges on the vertex to



get hanged, the history needs to be maintained dynamially. The problem is only with

the aept operation sine it adds new edges. Consider the following situation where a

label on an edge denotes the vertex it ame from. We only use i and j as the labels sine

we only need to know if an edge ame from the vertex on whih merging was performed

(i - in/out degree=1) or the other vertex(j - whih gets merged as a result of redution

on another vertex).
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a

b

c

d

e

f

j

i

h ha

b

c

d

=>
j

j

i
i

Accept(e)

Accept(f)

When vertex e is aepted, the history of the new edges (a; h) and (b; h) is determined

by the history on the edge (e; h). One an easily verify that suh a simple system of

maintaining history makes the ation of merging onuent with aept operations taking

plae in the rest of the graph.

Another issue we had to onsider was that due to the onstraints store, a variable

might get assigned due to assignments to other variables. This auses a problem with

the merged nodes sine the onstraints imposed on i and j are not reeted entirely on

h by the merging proedure. To take are of this, we look at the nodes i and j for suh

assignments and reet them on the merged node h. The following is done if any of i or

j or both is assigned .

V

i

V

j

Ation

0 0 Rejet h

0 1 Convert h to j and aept

0 X Convert h to j

1 0 Rejet h

1 1 Aept h

1 X Remove history on edges of h. Now h just represents j

X 0 Rejet h

X 1 Convert h bak to i and j and aept j

X means unassigned.

We an see from the above disussion that rejetion of a merged node does not

neessarily mean that the node will disappear. It might get onverted to another node.

This illustrates why we annot trivially extend the merging proedure and allow for

merging of merged nodes as well. Rejetion of ordinary nodes mean that they atually

get removed from the graph whih is not the ase with merged nodes. In order to

handle merging of merged nodes, eah time an assignment is made on the merged node,

we would have to revert bak to the original graph and do the hanges. Furthermore,



the time omplexity of the �ltering algorithm with omplete merges would beome in

O(jEj� jV j

2

). For these reasons, the hoie made in our urrent implementation has been

to trade some pruning apabilities for eÆieny, so we don't allow merging of merged

nodes.

4 Searh Heuristis

The internal graph managed by the utset onstraint provides interesting information

whih an be used to build heuristis for guiding the searh in utset problems.

In partiular we know that the IN0 and OUT0 verties, that have been deleted from

the internal graph managed by the utset onstraint, are not anymore onstrained by the

utset onstraint, and an thus be freely aepted or rejeted. In pure minimum utset

problems, these verties should be immediately aepted. On the other hand, in mixed

problems where the utset onstraint is ombined with other boolean onstraints, the

labeling of the IN0 and OUT0 verties an be delayed as it no longer a�ets the graph

of the utset onstraint.

The LOOP verties lead to automatially rejet verties of the original graph, exept

in the ase of an ambiguity between the original verties whih are responsible for the

loop. The verties belonging to suh loops are onstrained by a boolean lause that has

for e�et to rejet at least one of them. In pure minimum utset problems, there is

one labeling whih preserves the size of the minimum utset [8, 9℄ and whih should be

immediately done. In mixed problems, the verties belonging to a loop should be labeled

�rst alltogether.

Conerning the remaining verties, the verties with the highest in or out degrees are

more likely to break yles in the graph. The experiene with the GRASP proedure

suggests that the seletion of the vertex whih maximizes the sum of the in and out

degrees provides better results than maximizing the maximum of the in and out degrees,

or than maximizing their produt [10℄.

In the experiments reported below on log-based reoniliation problems, we label �rst

the nodes with highest sum of in and out degrees, and label at the end the nodes having

an in or out degree equal to zero.

5 Log-based reoniliation

Our interest in the design of a global onstraint for utset prolems arose from the study

of log-based reoniliation problems in nomadi appliations [7℄, where the minimum

utset problem shows up as the entral problem responsible for the NP-hardness of

optimal reoniliation [3℄. Nomadi appliations reate replias of shared objets that

evolve independently while they are disonneted. When reonneting, the system has to

reonile the divergent replias. Log-based reoniliation is a novel approah in whih the

input is a ommon initial state and logs of ations that were performed on eah replia [7℄.

The output is a onsistent global shedule that maximises the number of aepted ations.

The reoniler merges the logs aording to the shedule, and replays the operations in

the merged log against the initial state, yielding to a reoniled ommon �nal state. We

thus have to reonile a set of logs of ations that have been realized independently, by

trying to aept the greatest number of ations possible:



Input: A �nite set of L initial logs of ations f[T

1

i

; :::; T

n

i

i

℄ j 1 � i � Lg, some de-

pendenies between ations T

j

i

) T

l

k

, meaning that if T

j

i

is aepted then T

l

k

must be

aepted, and some preedene onstraints T

j

i

< T

l

k

, meaning that if the two ations T

j

i

,

T

l

k

, are aepted, they must be exeuted in that order. The preedene onstraints are

supposed to be satis�ed inside the initial logs.

Output: A subset of aepted ations, of maximal ardinality, satisfying the depen-

deny onstraints, given with a global shedule T

j

i

< ::: < T

l

k

satisfying the preedene

onstraints.

Note that the output depends solely on the preedene onstraints between ations

given in the input. In partiular the output is independent of the preise struture of

the initial logs. The initial onsistent logs, that an be used as starting solutions in

some algorithms, an be forgotten as well without a�eting the output. A log-based

reoniliation problem over n ations an thus be modeled with n boolean variables,

fa

1

; :::; a

n

g, assoiated to eah ation, satisfying:

� the dependeny onstraints represented with boolean impliations, a

i

) a

j

� the preedene onstraints represented with a global utset onstraint over the graph

of all (inter-log) preedenes between ations.

In the next setion we ompare this modeling with our previous modeling without the

utset onstraint [3℄, where the preedene onstraints were handled as in a sheduling

problem, that is :

� by assoiating to the ations n integer variables p

1

; :::; p

n

, giving the position of the

ation in the global shedule, whenever the ation is aepted,

� by representing the preedene onstraints with onditional inequalities

a

i

^ a

j

) (p

i

< p

j

)

or equivalently, assuming false is 0 and true is 1,

a

i

� a

j

� p

i

< p

j

:

In that modeling, the searh for solutions went through an enumeration of the boolean

variables a

i

's, with the heuristi of instantiating �rst the variable a

i

whih has the greatest

number of onstraints on it (i.e. �rst-fail priniple w.r.t. the number of posted onstraints)

and trying �rst the value 1 (i.e. best-�rst searh for the maximization problem) [3℄.

6 Computational Results

In this setion, we provide some omputational results whih show the eÆieny of the

global utset onstraint. The �rst series of benhmarks are the set of pure minimum

utset problems proposed by Funke and Reinelt for evaluating their branh-and-ut al-

gorithm implemented in CPLEX [5℄, see also [10℄. The seond series of benhmarks is

a series of log-based reoniliation problems

1

[3℄. We provide the timings obtained with

1

http://ontraintes.inria.fr/�fages/Reonile/Benhs.tar.gz



and without the utset onstraint. The CLP program whih does not use the utset

onstraint is the one desribed in the previous setion.

The results reported below have been obtained with our prototype implementation of

the utset onstraint in Sistus Prolog version 3.8.5 using the standard interfae of Sistus

Prolog for de�ning global onstraints in Prolog [12℄. The timings have been measured on

a Pentium III at 600 Mhz with 256Mo RAM under Linux. They are given in seonds.

6.1 Funke and Reinelt's benhmarks

without utset with utset

Benh Optimal Opt. Proof Opt. Proof

solution time time time time

r 25 20 14 2.43 8.95 0.22 1.42

r 25 30 13 3.15 5.57 0.53 0.84

r 30 20 19 21.91 48.92 0.71 1.55

r 30 30 14 3.49 16.63 0.95 1.81

r 35 20 18 5.66 214.91 3.12 3.29

r 35 30 14 14.37 167.48 3.45 4.28

Table 1: Computational results on Funke and Reinelt's benhmarks.

Table 1 summarizes our omputational results on Funke and Reinelt's benhmarks.

The �rst number in the name of the benhmark indiates the number of verties. The

seond number in the name indiates the density of the graph, as a perentile. The seond

olumn gives the number of aepted verties in the optimal solution. The following

olumns indiate the CPU time for �nding the optimal solution, and the CPU time for

the proof of optimality. for eah of the two CLP programs without and with the utset

onstraint,

The results on these benhmarks show an improvement by one or two orders of mag-

nitude of the CLP program with the global utset onstraint, espeially on the CPU

time for proving the optimality of solutions. It is diÆult to make preise omparisons

with the results obtained by Funke and Reinelt with CPLEX beause their experiments

were done on a SUN Spar 10/20. Nevertheless, their times were in minutes on these

benhmarks, and more than one hour on the last two. This shows a muh better perfor-

mane of the utset onstraint over the polyhedral method reported in [5℄. On the other

hand, it is worth noting that the GRASP method remains muh faster for �nding good

solutions that are in fat optimal in these benhmarks [10℄. The GRASP metaheuristi

would thus be worth implementing in CLP with the utset onstraint for �nding �rst

solutions.

6.2 Log-based reoniliation benhmarks

Table 2 shows the running times of the utset onstraint on the benhmarks of reonili-

ation problems desribed in [3℄. These problems have been generated with a low density

of 1:5 for preedene and dependeny onstraints. The r series of benhmarks are pure

minimum utset problems ontaining no dependeny onstraints. The number in the



name of the benhmark is the number of ations (verties). The table gives the number

of aepted ations in the optimal solution, and for eah version of the CLP program,

without and with the global utset onstraint, we indiate the CPU time for �nding the

optimal solution, and for making the proof of optimality. Compared to our previous

results without the global utset onstraint reported in [3℄, there is a slow down whih

is due to the use of Sistus Prolog instead of GNU-Prolog for making the experiments.

without utset with utset

Benh Optimal Opt. Proof Opt. Proof

solution time time time time

t40v1 36 0.03 3.13 0.03 0.06

t40v2 37 1.44 0.68 0.02 0.02

t40v3 38 0.02 0.07 0.01 0.01

t40v4 37 0.93 0.60 0.08 0.05

t50v1 45 9.90 31.71 0.03 0.11

t50v2 47 1.16 0.09 0.08 0.05

t50v3 44 9.03 44.93 0.04 1.22

t50v4 46 1.10 0.35 0.06 0.02

t70v1 68 2.63 0.34 0.11 0.04

t70v2 67 0.07 1.36 0.05 0.09

t80v1 76 ? ? 0.14 0.23

t100v1 94 ? ? 19.00 38.10

t200v1 ? ? ? ? ?

t500v1 ? ? ? ? ?

t800v1 ? ? ? ? ?

t1000v1 ? ? ? ? ?

r100v1 98 0.10 0.20 0.08 0.04

r100v2 77 0.26 0.48 0.07 0.05

r100v3 95 0.34 0.57 0.10 0.13

r100v4 100 0.08 0.02 0.03 0.01

r100v5 52 0.10 0.06 0.08 0.08

r200v1 65 0.43 0.16 0.11 0.01

r200v2 191 239.77 288.71 2.42 3.27

r500v1 198 1.42 0.99 1.00 0.35

r800v1 ? ? ? ? ?

r800v2 318 3.89 12.68 3.85 1.65

r1000v1 389 5.88 3.97 5.54 0.43

r1000v2 ? ? ? ? ?

Table 2: Computational results on log-based reonliation benhmarks.

6.3 Disussion

The advantage of the heuristi seleting the highest degree vertex is reeted both in the

�rst solution found whih is aurate and takes little time, and in the total exeution



of the program i.e. inluding the proof of optimality. We ould also look into some

modi�ations of this heuristi. Low degree verties ause a little hange in the graph, so

if we ould selet those verties that would hange the graph enough so that more graph

redutions ould take plae, then we might have more redution in the searh spae.

For further improvement of the pruning of the global onstraint, the IN1 and OUT1

ontration operations should be implemented without restrition. For this, merging

of merged node should be allowed and if that is done then are has to be taken that

rejetion of a vertex would not mean that it will disappear from the graph. The best

way to implement this would be to unmerge eah time a merged node is assigned and

then perform the hanges. Also, the ases when external onstraints ause those verties

to get assigned whih have been merged to form a new vertex, would have to be handled

appropriately. The assignment to these verties would have to be reeted onto the

merged node for the program to work properly.

Another improvement that an be made is to hange the representation of the graph

to speed up the time that the redutions take. The representation an be hanged from

maintaining adjaeny lists to maintaining an adjaeny matrix, as done in GRASP

implementation. This will make lookups like �nding self loops, onstant time.

7 Conlusion

The utset onstraint we propose is a global boolean onstraint de�ned by a graph G =

(V;E). We have provided a �ltering algorithm based on graph ontration operations

and inferene of simple boolean onstraints. The time omplexity of this algorithm

is O(jEj + jV jlogjV j), thanks to a trade-o� between the pruning apabilities and the

eÆieny of one utset onstraint propagation.

The omputational results we have presented on benhmarks of the literature and

on log-based reoniliation problems, shows a speed-up by one to two orders of magni-

tude thanks to the global utset onstraint, and shows muh better performane than

polyhedral methods for proving the optimality of solutions.

As for future work, we expet to further improve the pruning apabilities of our

urrent �ltering algorithm while keeping a reasonable amortized omplexity. Our imple-

mentation will also need to be improved in order to handle very large graphs, and use

the utset onstraint in a similar fashion to the GRASP proedure [10℄ for �nding �rst

solutions.
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