
Pro
eedings CPAIOR'03

A Global Constraint for Cutset

Problems

Fran�
ois Fages and Akash Lal

�

Projet Contraintes, INRIA Ro
quen
ourt,

BP105, 78153 Le Chesnay Cedex, Fran
e,

fran
ois.fages�inria.fr

akashlal�
se.iitd.ernet.in

Abstra
t

We 
onsider the problem of �nding a 
utset in a dire
ted graph G = (V;E), i.e. a

set of verti
es that 
uts all 
y
les in G. Finding a 
utset of minimum 
ardinality is

NP-hard. There exist several approximate algorithms and exa
t algorithms, most of

them using graph redu
tion te
hniques. In this paper we propose a global 
onstraint

for 
utset problems. The 
utset 
onstraint is a boolean 
onstraint over variables

asso
iated to the verti
es of a given graph, that states that the subgraph restri
ted

to the verti
es having their boolean variable set to true is a
y
li
. We propose a

�ltering algorithm based on graph 
ontra
tion operations and inferen
e of simple

boolean 
onstraints, that has an O(jEj + jV jlogjV j) time 
omplexity. We dis
uss

sear
h heuristi
s based on graph properties provided by the 
utset 
onstraint, and

show the eÆ
ien
y of the 
utset 
onstraint on ben
hmarks of the literature for

pure minimum 
utset problems, and on an appli
ation to log-based re
on
iliation

problems where the global 
utset 
onstraint is mixed with other boolean 
onstraints.

1 Introdu
tion

Let G = (V;E) be a dire
ted graph with vertex set V and edge set E. A 
y
le 
utset,

or 
utset for short, of G is a subset of verti
es, V

0

� V , su
h that the subgraph of G

restri
ted to the verti
es belonging to V n V

0

is a
y
li
. De
iding whether an arbitrary

graph admits a 
utset of a given 
ardinality is an NP-
omplete problem [6℄. The minimum


utset problem, i.e. �nding a 
utset of minimum 
ardinality (also 
alled a feedba
k vertex

set [4℄), is thus an NP-hard problem. This problem has found appli
ations in various

areas, su
h as deadlo
k breaking [2℄, program veri�
ation [11℄ or Bayesian inferen
e [15℄.

There are a few 
lasses of graphs for whi
h the minimum 
utset problem has a poly-

nomial time 
omplexity. These 
lasses are de�ned by 
ertain redu
ibility properties of

�

This work was done while the se
ond author was at INRIA for a summer internship of the Indian

Institute of Te
hnology Delhi, New Delhi 110016, India.



the graph. Shamir [11℄ proposed a linear time algorithm for redu
ible 
ow graphs. Rosen

[2℄ modi�ed this algorithm in an approximate algorithm for general graphs. Wang, Lloyd

and So�a [14℄ found an O(jEj � jV j

2

) algorithm for an unrelated 
lass of 
y
li
ally re-

du
ible graphs. Smith and Walford [13℄ proposed an exponential time algorithm for

general graphs that behaves in O(jEj � jV j

2

) in 
ertain 
lasses of graphs. The 
ompar-

ison of these di�erent redu
ibility properties was done by Levy and Low [8℄ and Lou

So�a and Wang [9℄ who proposed an O(jEj � logjV j) approximate algorithm based on a

simple set of �ve graph 
ontra
tion rules. Pardalos, Qian and Resende [10℄ used these


ontra
tion rules inside a Greedy Randomized Adaptive Sear
h Pro
edure (GRASP).

The GRASP pro
edure is 
urrently the most eÆ
ient approximate algorithm for solving

large instan
es, yet without any guarantee on the quality of the solution found. Exa
t

solving has been tried with polyhedral methods by Funke and Reinelt who presented


omputational results with a bran
h-and-
ut algorithm implemented in CPLEX [5℄.

Our aim here is to develop a 
onstraint programming approa
h to 
utset problems

and design a global 
onstraint for 
utsets. Spe
ialized propagation algorithms for global


onstraints are a key feature of the eÆ
ien
y of 
onstraint programming (see [1℄ for

example). The idea of this paper is to embed relevant graph redu
tion te
hniques into a

global 
utset 
onstraint, that 
an be 
ombined with other boolean 
onstraints, and that


an be used within either a bran
h-and-bound pro
edure or lo
al sear
h methods.

Our interest for 
utset problems, arose from the study of log-based re
on
iliation

problems in nomadi
 appli
ations [7℄. The minimum 
utset problem shows up as the


entral problem responsible for the NP-hardness of optimal re
on
iliation [3℄. In this


ontext however, the 
utset 
onstraint 
omes with other 
onstraints whi
h aggregate

verti
es into 
lusters, or more generally, express dependen
y 
onstraints between verti
es.

In our previous 
onstraint-based approa
h [3℄, the a
y
li
ity 
onstraint was expressed as

a s
heduling problem mixing boolean and �nite domain 
onstraints. We show in this

paper that the global 
utset 
onstraint provides a more eÆ
ient pruning of the a
y
li
ity


ondition. Moreover it allows for an all boolean modeling of log-based re
on
iliation

problems.

The rest of the paper is organized as follows. In the next se
tion, we de�ne the

global 
utset 
onstraint, and propose a syntax for its implementation in 
onstraint logi


programming (CLP). In se
tion 3, we propose a �ltering algorithm based on graph re-

du
tions and simple boolean 
onstraint inferen
e. We show its 
orre
tness, dis
uss some

implementation issues and prove its O(jEj + jV jlogjV j) time 
omplexity. In se
tion 4,

we dis
uss some sear
h heuristi
s based on the properties of the internal graph managed

by the global 
utset 
onstraint. Se
tion 5 des
ribes the log-based re
on
iliation problem

in nomadi
 appli
ations and its modeling with the 
utset 
onstraint. Se
tion 6 presents


omputational results on Funke and Reinelt's ben
hmarks for pure minimum 
utset prob-

lems, and on ben
hmarks of log-based re
on
iliation problems. The last se
tion presents

our 
on
lusion.

2 The Cutset Constraint

Given a graph G = (V;E), we 
onsider the set B of boolean variables, obtained by

asso
iating a boolean variable to ea
h vertex in V . A vertex is said to be a

epted if its

boolean variable is true, and is said to be reje
ted if its boolean variable is false. We




onsider the boolean 
onstraint on B


utset(B;G)

whi
h states that the subset of reje
ted verti
es a

ording to B forms a valid 
utset of

G.

More spe
i�
ally, we shall 
onsider the implementation of the following 
onstraint

logi
 programming (CLP) predi
ates:


utset(Variables,Verti
es,Edges)


utset(Variables,Verti
es,Edges,Size)

where Variables=[V1,...,Vn℄ is the list of boolean variables asso
iated to the verti
es,

Verti
es = [a1,...,an℄ is the list of verti
es, Edges = [ai-aj,... ℄ is the list

of dire
ted edges represented as pairs of verti
es, and Size is a �nite domain variable

representing the size of the 
utset, i.e. the number of reje
ted verti
es. The boolean

variable V

i

equals 0 if the vertex a

i

is in the 
utset (i.e. reje
ted from the graph) and

equals 1 if the vertex a

i

is not in the 
utset (i.e. a

epted to be in the graph).

For the purpose of the minimum 
utset problem, that is reje
ting a minimum num-

ber of verti
es, the bran
h-and-bound minimization predi
ate of CLP 
an be used. So,

essentially one expresses a minimum 
utset problem with the CLP query:


utset(B,V,E,S),minimize(labeling(B),S).

As usual, the 
utset 
onstraint does not make any assumption on the other 
onstraints

imposed on its variables and hen
e the user is allowed to qualify the 
utset solution he

wants with extra 
onstraints. For this reason, the 
utset 
onstraint has to be general

enough to allow the possibility of �nding any 
utset of the graph.

3 Filtering Algorithm

The �ltering algorithm we propose uses 
ontra
tion operations to redu
e the graph size,


he
k the a
y
li
ity of the graph and bound the size of its 
utsets. The graph 
ontra
tion

rules we use are inspired from the rules of Levy and Low [8℄, and Lloyd, So�a and Wang

[9℄ for 
omputing one minimum 
utset. The graph 
ontra
tion operations des
ribed in

this se
tion 
ompute an arbitrary 
utset, in a 
onstraint propagation setting.

The 
utset 
onstraint maintains an internal state 
omposed of an expli
it representa-

tion of the graph, that is related to the 
onstraints of the 
onstraint store on the boolean

variables, V

1

; :::; V

n

, asso
iated to the verti
es of the graph. The �ltering algorithm tries

to 
onvert the information in the graph (about the 
y
les that have to be 
ut) to 
on-

straints over the boolean variables V

i

. On 
ompleting su
h 
onversion, any valid solution

of the 
onstraint store is 
he
ked to provide a valid 
utset of the original graph. The es-

sential 
omponents of the �ltering algorithm are the graph 
ontra
tion operations. They

either simplify the graph without loosing any information, or 
onvert some information

into expli
it 
onstraints and simplify the graph in the pro
ess.

Below we present two basi
 A

ept and Reje
t operations and the graph 
ontra
tion

operations performed by the �ltering algorithm.

3.1 Interrnal A

ept and Reje
t Operations

We 
onsider the two following operations on a dire
ted graph:



1. A

ept(v) : under the pre
ondition that v has no self loop, i.e. (v; v) is not an

edge, this operation removes the vertex v along with the edges in
ident on it and

adds the edges (v

1

; v

2

) if (v

1

; v) and (v; v

2

) were edges in the original graph.

�
�
�

�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���������
���
���
���

���
���
���
���

����������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

��������

�����
�����
�����
�����

�����
�����
�����
�����

=>
Accept(v)

U2

U1

U3

v

V2

V1

U2

U1

U3

V1

V2

2. Reje
t(v) : This operation removes the vertex v along with the edges in
ident on

it.

Note that these operations on the internal graph of the 
utset 
onstraint do not

pre
lude the instan
iation of the boolean variables asso
iated to the verti
es of the graph.

If a boolean variable is instan
iated, the �ltering algorithm performs the 
orresponding

A

ept or Reje
t operation. On the other hand we shall see in the next se
tion that the

�ltering algorithm of the 
utset 
onstraint 
an perform A

ept and Reje
t operations on

its internal graph stru
ture without instan
iating the boolean variables asso
iated to the

original graph.

We shall use the following :

Proposition 1 Let G = (V;E) be a dire
ted graph with vertex set V and edge set E and

let v 2 V be a vertex of the graph su
h that (v; v) 62 E. Also let G

0

= (V

0

; E

0

) be the

graph obtained by performing A

ept(v) on G. Then any 
utset of G whi
h does not have

v is also a 
utset of the graph G

0

and vi
e versa.

Proof : ()) Let S � V be a 
utset of G and v 62 S. Let GnS denote the graph

obtained by removing the verti
es of S from G. Sin
e S is a 
utset, GnS should be

a
y
li
. Now, suppose that S is not a 
utset of G

0

. Therefore, there exists a 
y
le

v

1

; v

2

; : : : ; v

n

; v

1

in G

0

with ea
h vertex in V

0

� S. If this 
y
le has no edges whi
h 
ame

due to the operation A

ept(v) then this is also a 
y
le in GnS. Hen
e this 
y
le has

edges indu
ed by the a

ept operation. By repla
ing ea
h su
h edge (v

i

; v

i+1

) by (v

i

; v)

and (v; v

i+1

), we again get a 
y
le in GnS. Hen
e, by 
ontradi
tion, we have one side of

the result.

(() Let S � V

0

be a 
utset of G

0

. Again, suppose that S is not a 
utset of G. Therefore,

there exists a 
y
le v

1

; : : : ; v

n

; v

1

in GnS. If none of these verti
es is v then this is also

a 
y
le in G

0

nS. Hen
e, at least one of these verti
es is v. If v

i

= v then repla
e the

edges (v

i�1

; v

i

) and (v

i

; v

i+1

) by (v

i�1

; v

i+1

) to get a 
y
le in G

0

nS. Again we get a


ontradi
tion. �

The a

ept operation 
an thus be used to 
he
k if a given set is a 
utset or not :

Corollary 2 A given dire
ted graph G = (V;E) is a
y
li
 provided we 
an a

ept all

verti
es in it i.e. while a

epting the verti
es one by one, no vertex gets a self loop.

Proof : Suppose that while a

epting the verti
es in G, no vertex gets a self loop.

Then after a

epting all the verti
es, the graph that remains has no verti
es or edges.



Hen
e this has a 
utset ;. Now, by repeated appli
ation of proposition 1, ; is also a 
utset

of G. Hen
e G is a
y
li
. The reverse 
an also be proved similarly by using proposition

1. So if G is a a
y
li
 graph, then it has the 
utset ;. Now, while a

epting the verti
es

of G, if we get a vertex with a self loop, then that graph 
annot have ; as the 
utset.

However, ; should have been a 
utset by proposition 1. Hen
e by 
ontradi
tion, we have

our result. �

Similarly, we have :

Proposition 3 Let G = (V;E) be a dire
ted graph and v 2 V be a vertex of the graph.

Also let G

0

= (V

0

; E

0

) be the graph obtained by performing Reje
t(v) in G. If S is a


utset of G whi
h 
ontains v then S � fvg is a 
utset of G

0

and vi
e versa.

Corollary 4 The set of all 
utsets of a graph remains invariant under the operation

Reje
t(v) if v has a self loop.

These propositions show that the a

ept and reje
t operations have the ni
e property

of maintaining any 
utset by pi
king a right vertex to apply the operation on. If there

is a minimum 
utset that 
ontains the vertex v then after the operation Reje
t(v), we


an still �nd that 
utset but have a smaller graph to work with. Similarly, if there is

a minimum 
utset that does not 
ontain v then after A

ept(v), we 
an still �nd that


utset but again in a smaller graph.

3.2 Graph Contra
tion Operations

We shall use the following �ve graph 
ontra
tion operations :

1. IN0 (In degree = 0) In 
ase the in degree of a vertex is zero, that vertex 
annot be

a part of any 
y
le. Hen
e its a

eptan
e or reje
tion will 
ause no 
hange to the

rest of the graph. So, its edges are removed but no 
onstraints are produ
ed sin
e

a 
utset 
an exist in
luding or ex
luding this vertex.

2. OUT0 (Out degree = 0) In 
ase the out degree of a vertex is zero, the situation

is similar to the one above. Again, the edges in
ident on this vertex are removed

and no 
onstraints are produ
ed.

3. IN1 (In degree = 1) In 
ase a vertex has in degree one, then the situation is as

follows,

�
�
�
�

��
��
��
��

��
��
��
����������

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

��
��
��

��
��
��

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

=>
IN1(i)a j i h

b

c

d

e

f

a

b

c

d

e

f

If a 
y
le passes through i then it must also pass through j. Hen
e by merging

these two nodes to form the node h, we do not eliminate any 
y
le in the graph.

Along with this redu
tion, we impose the 
onstraint V

h

= V

i

^ V

j

on the variables

asso
iated with the verti
es. This 
aptures the fa
t that if h is not a part of any




y
le, then both i and j were not part of any 
y
le and vi
e versa. The rest

of this paper will use the names i and j in the 
ontext that vertex i has in (or

out) degree 1 and vertex j is the prede
essor (or su

essor) of i. Note that, as a


ompromise trading pruning for eÆ
ien
y, we do not perform this operation if it

leads to merging two nodes that have themselves 
ome due to the merging of other

nodes. This restri
tion is justi�ed in the next se
tion.

4. OUT1 (Out degree = 1) This 
ase is similar to the above 
ase.

5. LOOP (Self loop on a vertex) In 
ase a vertex has a self loop then this vertex

is reje
ted and its boolean variable is set to 0 sin
e no 
utset 
an exist without

in
luding this vertex. However, if the vertex is a merged node h then we impose

V

h

= 0 but 
annot reje
t h sin
e that implies reje
tion of both i and j. So we

look at the self loop edge of h and �gure out if it 
ame from the loop (j; j) or from

(i; j); (j; i). This is done by maintaining history on merged nodes, as des
ribed in

the next se
tion. Note that there 
annot be a loop (i; i) sin
e i had in (resp. out)

degree as one and this edge was not a loop. If the loop 
ame purely from j, then

we impose V

j

= 0 and remove h from the graph. Otherwise, we just 
onvert h to

j i.e. remove edges 
orresponding to i. This 
onversion is done be
ause we know

that the loop 
ame due to a 
y
le involving edges between i and j. Hen
e at least

one of i and j should be reje
ted . Choosing to reje
t either renders the edges of i

useless.

Proposition 5 The 
omplexity of the redu
tion algorithm (repeated appli
ation of 
on-

tra
tion operations till no more 
an be applied) is O(jEj+ jV jlogjV j).

Proof : The proof is very easy and 
omes from the fa
t that we look at an edge

only O(1) times and don't add new edges. Let d

v

denote the in + out degree of vertex

v. Start the pro
edure by sorting, in O(jV jlogjV j), the verti
es based on in and out

degrees and store the result in two arrays indexed by the vertex degree. Ea
h time an

operation is performed, we will update these arrays. First 
onsider the IN0 operation.

Using the arrays just 
reated, we 
an �nd in O(1) time, a vertex to apply the redu
tion

on. Redu
tion on vertex v will take O(d

v

) time and will lead to deletion of all edges on

it. Along with this deletion, update the degrees of a�e
ted verti
es while maintaining the

arrays 
orre
tly. Sin
e new edges are not added to the graph at any stage, any number

of IN0 operations interleaved with any number of di�erent redu
tions 
an take atmost

O(

P

v

d

v

) = O(jEj) time. Similarly, any number of OUT0 redu
tions 
an take time

O(jEj). For the LOOP 
ase, we 
an see that it too leads to reje
tion of edges of some

vertex and hen
e satis�es the same bound (history lookup is O(1)). The 
ase for IN1

and OUT1 is easy to argue sin
e we are not allowing merged nodes to get merged. As a

result, we look at a vertex atmost on
e and do O(d

v

) work. Hen
e these operations, on

the whole, 
an take O(jEj) time. This proves the proposition. �

3.3 Maintaining History and Other Issues with IN1 and OUT1

When a merged node h is reje
ted, we might need to 
onvert it ba
k to j. For this

purpose, more information is maintained by keeping the history of ea
h edge along with

it. This history tells if the edge is there due to edges from vertex j or from vertex i. Sin
e

a

ept/reje
t operations on the neighbors of a vertex 
ause the edges on the vertex to



get 
hanged, the history needs to be maintained dynami
ally. The problem is only with

the a

ept operation sin
e it adds new edges. Consider the following situation where a

label on an edge denotes the vertex it 
ame from. We only use i and j as the labels sin
e

we only need to know if an edge 
ame from the vertex on whi
h merging was performed

(i - in/out degree=1) or the other vertex(j - whi
h gets merged as a result of redu
tion

on another vertex).

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��������

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
�����

����
����
����

a

b

c

d

e

f

j

i

h ha

b

c

d

=>
j

j

i
i

Accept(e)

Accept(f)

When vertex e is a

epted, the history of the new edges (a; h) and (b; h) is determined

by the history on the edge (e; h). One 
an easily verify that su
h a simple system of

maintaining history makes the a
tion of merging 
on
uent with a

ept operations taking

pla
e in the rest of the graph.

Another issue we had to 
onsider was that due to the 
onstraints store, a variable

might get assigned due to assignments to other variables. This 
auses a problem with

the merged nodes sin
e the 
onstraints imposed on i and j are not re
e
ted entirely on

h by the merging pro
edure. To take 
are of this, we look at the nodes i and j for su
h

assignments and re
e
t them on the merged node h. The following is done if any of i or

j or both is assigned .

V

i

V

j

A
tion

0 0 Reje
t h

0 1 Convert h to j and a

ept

0 X Convert h to j

1 0 Reje
t h

1 1 A

ept h

1 X Remove history on edges of h. Now h just represents j

X 0 Reje
t h

X 1 Convert h ba
k to i and j and a

ept j

X means unassigned.

We 
an see from the above dis
ussion that reje
tion of a merged node does not

ne
essarily mean that the node will disappear. It might get 
onverted to another node.

This illustrates why we 
annot trivially extend the merging pro
edure and allow for

merging of merged nodes as well. Reje
tion of ordinary nodes mean that they a
tually

get removed from the graph whi
h is not the 
ase with merged nodes. In order to

handle merging of merged nodes, ea
h time an assignment is made on the merged node,

we would have to revert ba
k to the original graph and do the 
hanges. Furthermore,



the time 
omplexity of the �ltering algorithm with 
omplete merges would be
ome in

O(jEj� jV j

2

). For these reasons, the 
hoi
e made in our 
urrent implementation has been

to trade some pruning 
apabilities for eÆ
ien
y, so we don't allow merging of merged

nodes.

4 Sear
h Heuristi
s

The internal graph managed by the 
utset 
onstraint provides interesting information

whi
h 
an be used to build heuristi
s for guiding the sear
h in 
utset problems.

In parti
ular we know that the IN0 and OUT0 verti
es, that have been deleted from

the internal graph managed by the 
utset 
onstraint, are not anymore 
onstrained by the


utset 
onstraint, and 
an thus be freely a

epted or reje
ted. In pure minimum 
utset

problems, these verti
es should be immediately a

epted. On the other hand, in mixed

problems where the 
utset 
onstraint is 
ombined with other boolean 
onstraints, the

labeling of the IN0 and OUT0 verti
es 
an be delayed as it no longer a�e
ts the graph

of the 
utset 
onstraint.

The LOOP verti
es lead to automati
ally reje
t verti
es of the original graph, ex
ept

in the 
ase of an ambiguity between the original verti
es whi
h are responsible for the

loop. The verti
es belonging to su
h loops are 
onstrained by a boolean 
lause that has

for e�e
t to reje
t at least one of them. In pure minimum 
utset problems, there is

one labeling whi
h preserves the size of the minimum 
utset [8, 9℄ and whi
h should be

immediately done. In mixed problems, the verti
es belonging to a loop should be labeled

�rst alltogether.

Con
erning the remaining verti
es, the verti
es with the highest in or out degrees are

more likely to break 
y
les in the graph. The experien
e with the GRASP pro
edure

suggests that the sele
tion of the vertex whi
h maximizes the sum of the in and out

degrees provides better results than maximizing the maximum of the in and out degrees,

or than maximizing their produ
t [10℄.

In the experiments reported below on log-based re
on
iliation problems, we label �rst

the nodes with highest sum of in and out degrees, and label at the end the nodes having

an in or out degree equal to zero.

5 Log-based re
on
iliation

Our interest in the design of a global 
onstraint for 
utset prolems arose from the study

of log-based re
on
iliation problems in nomadi
 appli
ations [7℄, where the minimum


utset problem shows up as the 
entral problem responsible for the NP-hardness of

optimal re
on
iliation [3℄. Nomadi
 appli
ations 
reate repli
as of shared obje
ts that

evolve independently while they are dis
onne
ted. When re
onne
ting, the system has to

re
on
ile the divergent repli
as. Log-based re
on
iliation is a novel approa
h in whi
h the

input is a 
ommon initial state and logs of a
tions that were performed on ea
h repli
a [7℄.

The output is a 
onsistent global s
hedule that maximises the number of a

epted a
tions.

The re
on
iler merges the logs a

ording to the s
hedule, and replays the operations in

the merged log against the initial state, yielding to a re
on
iled 
ommon �nal state. We

thus have to re
on
ile a set of logs of a
tions that have been realized independently, by

trying to a

ept the greatest number of a
tions possible:



Input: A �nite set of L initial logs of a
tions f[T

1

i

; :::; T

n

i

i

℄ j 1 � i � Lg, some de-

penden
ies between a
tions T

j

i

) T

l

k

, meaning that if T

j

i

is a

epted then T

l

k

must be

a

epted, and some pre
eden
e 
onstraints T

j

i

< T

l

k

, meaning that if the two a
tions T

j

i

,

T

l

k

, are a

epted, they must be exe
uted in that order. The pre
eden
e 
onstraints are

supposed to be satis�ed inside the initial logs.

Output: A subset of a

epted a
tions, of maximal 
ardinality, satisfying the depen-

den
y 
onstraints, given with a global s
hedule T

j

i

< ::: < T

l

k

satisfying the pre
eden
e


onstraints.

Note that the output depends solely on the pre
eden
e 
onstraints between a
tions

given in the input. In parti
ular the output is independent of the pre
ise stru
ture of

the initial logs. The initial 
onsistent logs, that 
an be used as starting solutions in

some algorithms, 
an be forgotten as well without a�e
ting the output. A log-based

re
on
iliation problem over n a
tions 
an thus be modeled with n boolean variables,

fa

1

; :::; a

n

g, asso
iated to ea
h a
tion, satisfying:

� the dependen
y 
onstraints represented with boolean impli
ations, a

i

) a

j

� the pre
eden
e 
onstraints represented with a global 
utset 
onstraint over the graph

of all (inter-log) pre
eden
es between a
tions.

In the next se
tion we 
ompare this modeling with our previous modeling without the


utset 
onstraint [3℄, where the pre
eden
e 
onstraints were handled as in a s
heduling

problem, that is :

� by asso
iating to the a
tions n integer variables p

1

; :::; p

n

, giving the position of the

a
tion in the global s
hedule, whenever the a
tion is a

epted,

� by representing the pre
eden
e 
onstraints with 
onditional inequalities

a

i

^ a

j

) (p

i

< p

j

)

or equivalently, assuming false is 0 and true is 1,

a

i

� a

j

� p

i

< p

j

:

In that modeling, the sear
h for solutions went through an enumeration of the boolean

variables a

i

's, with the heuristi
 of instantiating �rst the variable a

i

whi
h has the greatest

number of 
onstraints on it (i.e. �rst-fail prin
iple w.r.t. the number of posted 
onstraints)

and trying �rst the value 1 (i.e. best-�rst sear
h for the maximization problem) [3℄.

6 Computational Results

In this se
tion, we provide some 
omputational results whi
h show the eÆ
ien
y of the

global 
utset 
onstraint. The �rst series of ben
hmarks are the set of pure minimum


utset problems proposed by Funke and Reinelt for evaluating their bran
h-and-
ut al-

gorithm implemented in CPLEX [5℄, see also [10℄. The se
ond series of ben
hmarks is

a series of log-based re
on
iliation problems

1

[3℄. We provide the timings obtained with

1

http://
ontraintes.inria.fr/�fages/Re
on
ile/Ben
hs.tar.gz



and without the 
utset 
onstraint. The CLP program whi
h does not use the 
utset


onstraint is the one des
ribed in the previous se
tion.

The results reported below have been obtained with our prototype implementation of

the 
utset 
onstraint in Si
stus Prolog version 3.8.5 using the standard interfa
e of Si
stus

Prolog for de�ning global 
onstraints in Prolog [12℄. The timings have been measured on

a Pentium III at 600 Mhz with 256Mo RAM under Linux. They are given in se
onds.

6.1 Funke and Reinelt's ben
hmarks

without 
utset with 
utset

Ben
h Optimal Opt. Proof Opt. Proof

solution time time time time

r 25 20 14 2.43 8.95 0.22 1.42

r 25 30 13 3.15 5.57 0.53 0.84

r 30 20 19 21.91 48.92 0.71 1.55

r 30 30 14 3.49 16.63 0.95 1.81

r 35 20 18 5.66 214.91 3.12 3.29

r 35 30 14 14.37 167.48 3.45 4.28

Table 1: Computational results on Funke and Reinelt's ben
hmarks.

Table 1 summarizes our 
omputational results on Funke and Reinelt's ben
hmarks.

The �rst number in the name of the ben
hmark indi
ates the number of verti
es. The

se
ond number in the name indi
ates the density of the graph, as a per
entile. The se
ond


olumn gives the number of a

epted verti
es in the optimal solution. The following


olumns indi
ate the CPU time for �nding the optimal solution, and the CPU time for

the proof of optimality. for ea
h of the two CLP programs without and with the 
utset


onstraint,

The results on these ben
hmarks show an improvement by one or two orders of mag-

nitude of the CLP program with the global 
utset 
onstraint, espe
ially on the CPU

time for proving the optimality of solutions. It is diÆ
ult to make pre
ise 
omparisons

with the results obtained by Funke and Reinelt with CPLEX be
ause their experiments

were done on a SUN Spar
 10/20. Nevertheless, their times were in minutes on these

ben
hmarks, and more than one hour on the last two. This shows a mu
h better perfor-

man
e of the 
utset 
onstraint over the polyhedral method reported in [5℄. On the other

hand, it is worth noting that the GRASP method remains mu
h faster for �nding good

solutions that are in fa
t optimal in these ben
hmarks [10℄. The GRASP metaheuristi


would thus be worth implementing in CLP with the 
utset 
onstraint for �nding �rst

solutions.

6.2 Log-based re
on
iliation ben
hmarks

Table 2 shows the running times of the 
utset 
onstraint on the ben
hmarks of re
on
ili-

ation problems des
ribed in [3℄. These problems have been generated with a low density

of 1:5 for pre
eden
e and dependen
y 
onstraints. The r series of ben
hmarks are pure

minimum 
utset problems 
ontaining no dependen
y 
onstraints. The number in the



name of the ben
hmark is the number of a
tions (verti
es). The table gives the number

of a

epted a
tions in the optimal solution, and for ea
h version of the CLP program,

without and with the global 
utset 
onstraint, we indi
ate the CPU time for �nding the

optimal solution, and for making the proof of optimality. Compared to our previous

results without the global 
utset 
onstraint reported in [3℄, there is a slow down whi
h

is due to the use of Si
stus Prolog instead of GNU-Prolog for making the experiments.

without 
utset with 
utset

Ben
h Optimal Opt. Proof Opt. Proof

solution time time time time

t40v1 36 0.03 3.13 0.03 0.06

t40v2 37 1.44 0.68 0.02 0.02

t40v3 38 0.02 0.07 0.01 0.01

t40v4 37 0.93 0.60 0.08 0.05

t50v1 45 9.90 31.71 0.03 0.11

t50v2 47 1.16 0.09 0.08 0.05

t50v3 44 9.03 44.93 0.04 1.22

t50v4 46 1.10 0.35 0.06 0.02

t70v1 68 2.63 0.34 0.11 0.04

t70v2 67 0.07 1.36 0.05 0.09

t80v1 76 ? ? 0.14 0.23

t100v1 94 ? ? 19.00 38.10

t200v1 ? ? ? ? ?

t500v1 ? ? ? ? ?

t800v1 ? ? ? ? ?

t1000v1 ? ? ? ? ?

r100v1 98 0.10 0.20 0.08 0.04

r100v2 77 0.26 0.48 0.07 0.05

r100v3 95 0.34 0.57 0.10 0.13

r100v4 100 0.08 0.02 0.03 0.01

r100v5 52 0.10 0.06 0.08 0.08

r200v1 65 0.43 0.16 0.11 0.01

r200v2 191 239.77 288.71 2.42 3.27

r500v1 198 1.42 0.99 1.00 0.35

r800v1 ? ? ? ? ?

r800v2 318 3.89 12.68 3.85 1.65

r1000v1 389 5.88 3.97 5.54 0.43

r1000v2 ? ? ? ? ?

Table 2: Computational results on log-based re
on
liation ben
hmarks.

6.3 Dis
ussion

The advantage of the heuristi
 sele
ting the highest degree vertex is re
e
ted both in the

�rst solution found whi
h is a

urate and takes little time, and in the total exe
ution



of the program i.e. in
luding the proof of optimality. We 
ould also look into some

modi�
ations of this heuristi
. Low degree verti
es 
ause a little 
hange in the graph, so

if we 
ould sele
t those verti
es that would 
hange the graph enough so that more graph

redu
tions 
ould take pla
e, then we might have more redu
tion in the sear
h spa
e.

For further improvement of the pruning of the global 
onstraint, the IN1 and OUT1


ontra
tion operations should be implemented without restri
tion. For this, merging

of merged node should be allowed and if that is done then 
are has to be taken that

reje
tion of a vertex would not mean that it will disappear from the graph. The best

way to implement this would be to unmerge ea
h time a merged node is assigned and

then perform the 
hanges. Also, the 
ases when external 
onstraints 
ause those verti
es

to get assigned whi
h have been merged to form a new vertex, would have to be handled

appropriately. The assignment to these verti
es would have to be re
e
ted onto the

merged node for the program to work properly.

Another improvement that 
an be made is to 
hange the representation of the graph

to speed up the time that the redu
tions take. The representation 
an be 
hanged from

maintaining adja
en
y lists to maintaining an adja
en
y matrix, as done in GRASP

implementation. This will make lookups like �nding self loops, 
onstant time.

7 Con
lusion

The 
utset 
onstraint we propose is a global boolean 
onstraint de�ned by a graph G =

(V;E). We have provided a �ltering algorithm based on graph 
ontra
tion operations

and inferen
e of simple boolean 
onstraints. The time 
omplexity of this algorithm

is O(jEj + jV jlogjV j), thanks to a trade-o� between the pruning 
apabilities and the

eÆ
ien
y of one 
utset 
onstraint propagation.

The 
omputational results we have presented on ben
hmarks of the literature and

on log-based re
on
iliation problems, shows a speed-up by one to two orders of magni-

tude thanks to the global 
utset 
onstraint, and shows mu
h better performan
e than

polyhedral methods for proving the optimality of solutions.

As for future work, we expe
t to further improve the pruning 
apabilities of our


urrent �ltering algorithm while keeping a reasonable amortized 
omplexity. Our imple-

mentation will also need to be improved in order to handle very large graphs, and use

the 
utset 
onstraint in a similar fashion to the GRASP pro
edure [10℄ for �nding �rst

solutions.

A
knowledgement

The �rst author would like to thank Mar
 Shapiro and his team for interesting dis
ussions

on log-based re
on
iliation, Philippe Chr�etienne and Fran
is Sourd for their 
omments

on feedba
k vertex set problems, Mauri
io Resende for providing us Funke and Reinelt's

ben
hmarks, and the reviewers for their 
omments.

Referen
es

[1℄ N. Beldi
eanu. Global 
onstraints as graph properties on a stru
tured network of

elementary 
onstraints of same type. In Pro
. of sixth Conferen
e on Prin
iples and



Pra
ti
e of Constraint Programming CP, volume 1894 of Le
ture Notes in Computer

S
ien
e, pages 52{66, Singapore, September 2000. Springer-Verlag.

[2℄ B.K.Rosen. Robust linear algorithms for 
utsets. Journal of Algorithms, 3(1):205{

212, 1982.

[3℄ F. Fages. A 
onstraint programming approa
h to log-based re
on
iliation problems

for nomadi
 appli
ations. In Pro
eedings of the Er
im/Compulog Net Workshop on

Constraints, June 2001.

[4℄ P. Festa, P.M. Pardalos, and M.G.C. Resende. Feedba
k set problems. In In Hand-

book of Combinatorial Optimization, volume 4. Kluwer A
ademi
 Publishers, 1999.

[5℄ M. Funke and G. Reinelt. A polyhedral approa
h to the feedba
k vertex set problem.

In Pro
eedings of the 5th Conferen
e on Integer Programming and Combinatorial

Optimization IPCO'96, pages 445{459, Van
ouver, Canada, June 1996.

[6℄ R.M. Karp. Redu
ibility among 
ombinatorial problems. In R.E. Miller and J.W.

That
her, editors, Complexity of Computer Computations. Plenum Press, New York,

1972.

[7℄ A.M. Kermarre
, A. Rowstron, M. Shapiro, and P. Drus
hel. The I
eCube approa
h

to the re
on
iliation of divergent repli
as. In Pro
. of Twentieth ACM Symposium

on Prin
iples of Distributed Computing PODC, Newport, RI USA, August 2001.

[8℄ H. Levy and D.W. Low. A 
ontra
tion algorithm for �nding small 
y
le 
utsets.

Journal of algorithms, 9:470{493, 1988.

[9℄ E.L. Lloyd, M.L. So�a, and C.C. Wang. On lo
ating minimum feedba
k vertex sets.

Journal of Computer and System S
ien
e, 37:292{311, 1988.

[10℄ P.M. Pardalos, T. Qian, and M.G. Resende. A greedy randomized adaptive sear
h

pro
edure for feedba
k vertex set. Journal of Combinatorial Optimization, 2:399{

412, 1999.

[11℄ A. Shamir. A linear time algorithm for �nding minimum 
utsets in redu
ible graphs.

SIAM Journal of Computing, 8(4):645{655, 1979.

[12℄ SICS. Si
stus prolog user's manual, 2001.

[13℄ W. Smith and R. Walford. The identi�
ation of a minimal feedba
k vertex set of a

dire
ted graph. IEEE Transa
tions on 
ir
uits and systems CAS, 22(1):9{15, 1975.

[14℄ C.C. Wang, E.L. Lloyd, and M.L. So�a. Feedba
k vertex sets and 
y
li
ally redu
ible

graphs. Journal of the Asso
iation for Computing Ma
hinery, 32(2):296{313, 1985.

[15℄ B. Yehuda, J. Geiger, J.Naor, and R.M. Roth. Approximation algorithms for the

vertex feedba
k set problem with appli
ation in 
onstraint satisfa
tion and bayesian

inferen
e. In Pro
; 5th Annual ACM-SIAM Symposium on Dis
rete Algorithms,

pages 344{354, 1994.


