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Abstract. In this paper we present a data
ow analysis method for nor-

mal logic programs interpreted with negation as failure or constructive

negation. We apply our method to a well known analysis for logic pro-

grams: the depth(k) analysis for approximating the set of computed

answers. The analysis is correct w.r.t. SLDNF resolution and optimal

w.r.t. constructive negation.
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1 Introduction

Important results have been achieved for static analysis using the theory of ab-

stract interpretation [6]. Abstract interpretation is a general theory for specifying

and validating program analysis.

A key point in abstract interpretation is the choice of a reference semantics

from which one can abstract the properties of interest. While it is always possi-

ble to use the operational semantics, it is possible to get rid of useless details,

by choosing a more abstract semantics as reference semantics. In the case of

de�nite logic programs, much work has been done in this sense. Choosing the

most abstract logical least model semantics limits the analysis to type inference

properties, that approximate the ground success set. Non-ground model seman-

tics have thus been developed, under the name of S-semantics [2], and proved

useful for a wide variety of goal-independent analysis ranging from groundness,

to sharing, call patterns, etc. All the intermediate �xpoint semantics between

the most abstract logical one and the most concrete operational one, form in fact

a hierarchy related by abstract interpretation, in which one can de�ne a notion

of the best reference semantics [12] for a given analysis.

On the other hand, less work has been done on the analysis of normal logic

programs, although the �nite failure principle, and hence SLDNF resolution,

are standard practice. The most signi�cant paper on the analysis of normal



logic programs, using the theory of abstract interpretation, is the one by Mar-

riott and S�ndergaard [19], which proposes a framework based on Fitting's least

three-valued model semantics [11]. Since this reference semantics is a ground

semantics, the main application of this framework is type analysis. Marriott and

S�ndergaard already pointed out that a choice of a di�erent reference semantics

could lead to an improved analysis. Fitting's least three-valued model semantics

is, in fact, an abstraction (a non recursively enumerable one, yet easier to de�ne)

of Kunen's three-valued logical semantics [14] which is more faithful to SLDNF

resolution [15] and complete w.r.t. constructive negation.

These are exactly the directions along which we try to improve the results

of Marriott and S�ndergaard. We consider the inference rule of constructive

negation, which provides normal logic programs with a sound and complete [21]

operational semantics w.r.t. Kunen's logical semantics [14]. We propose an anal-

ysis method for normal logic programs interpreted with constructive negation,

based on the generalized S-semantics given in [9] and on the hierarchy described

in [10]. We present here an analysis based on the depth(k) domain which approxi-

mates the computed answers obtained by constructive negation and therefore the

three-valued consequences of the program completion and CET (Clark's equa-

tional theory). Other well known analyses for logic programs can be extended to

normal logic programs. For example, starting from a suitable version of Clark's

semantics a groundness analysis was de�ned which is correct and optimal w.r.t.

constructive negation. Here, for lack of space, we present only the depth(k) anal-

ysis. We show that it is correct and also optimal w.r.t. constructive negation.

Finally we give an example which shows that in the case of type inference prop-

erties our semantics yields a result which is more precise than the one obtained

by Marriott and S�ndergaard.

>From the technical point of view, the contribution of the paper is the def-

inition of a normal form for �rst order constraints on the Herbrand Universe,

which is suitable for analysis. In fact the normal form allows us to de�ne an

abstraction function which is a congruence w.r.t. the equivalence on constraints

induced by the Clark's equality theory.

The paper is organized as follows. In section 2 we introduce some preliminary

notions on constructive negation. In section 3 we de�ne a normal form on

the concrete domain of constraints in order to deal, with equivalence classes of

constraints w.r.t. the Clark's equational theory. Section 4 de�nes the abstract

domain and abstract operator and show its correctness and optimality (under

suitable assumptions on the depth of the cut) w.r.t. the concrete one. Finally,

subsection 4.5 shows an example.

2 Preliminaries

The reader is assumed to be familiar with the terminology of and the basic

results in the semantics of logic programs [1,17] and with the theory of abstract

interpretation as presented in [6,7].



2.1 Normal logic programs and constructive negation

We consider the equational version of normal logic programs, where a normal

program is a �nite set of clauses of the form A  cjL

1

; :::; L

n

, where n � 0,

A is an atom, called the head, c is a conjunction of equalities, and L

1

; :::; L

n

are literals. The local variables of a program clause are the free variables in the

clause which do not occur in the head. With V ar(A) we intend the free variables

in the atom A.

In order to deal with constructive negation, we need to consider the domain

C of full �rst-order equality constraints on the structure H of the Herbrand do-

main. Assuming an in�nite number of function symbols in the alphabet, Clark's

equational theory (CET) provides a complete decidable theory for the constraint

language [18,14], i.e.

1. (soundness) H j= CET ,

2. (completeness) for any constraint c, either CET j= 9c or CET j= :9c.

A constraint is in prenex form if all its quanti�ers are in the head. The set of free

variables in a constraint c is denoted by V ar(c). For a constraint c, we shall use

the notation 9c (resp. 8c) to represent the constraint 9X c (resp. 8X c) where

X = V ar(c).

A constrained atom is a pair cjA where c is an H-solvable constraint such

that V ar(c) � V ar(A). The set of constrained atoms is denoted by B. A con-

strained interpretation is a subset of B. A three-valued or partial constrained

interpretation is a pair of constrained interpretations < I

+

; I

�

>, representing

the constrained atoms which are true and false respectively (note that because

of our interest in abstract interpretations we do not impose any consistency

condition between I

+

and I

�

).

Constructive negation is a rule of inference introduced by Chan for normal

logic programs in [3], which provides normal logic programs with a sound and

complete [21] operational semantics w.r.t. Kunen's logical semantics [14]. In logic

programming, Kunen's semantics is simply the set of three-valued consequences

of the program's completion and the theory CET .

The S-semantics of de�nite logic programs [2] has been generalized to normal

logic programs in [9] for a version of constructive negation, called constructive

negation by pruning. The idea of the �xpoint operator, which captures the set

of computed answer constraints, is to consider a non-ground �nitary (hence con-

tinuous) version of Fitting's operator. Here we give a de�nition of the operator

T

B

D

P

which is parametric w.r.t. the domain B

D

of constrained atoms and the

operations on constraints on the domain D.

De�nition 1. Let P be a normal logic program. T

B

D

P

is an operator overP(B

D

)�

P(B

D

) de�ned by



T

B

D

P

(I)

+

= fcjp(X) 2 B

D

: there exists a clause in P with local variables Y ,

C = p(X) djA

1

; :::; A

m

;:A

m+1

; :::;:A

n

:

c

1

jA

1

; :::; c

m

jA

m

2 I

+

; c

m+1

jA

m+1

; :::; c

n

jA

n

2 I

�

such that c = 9Y (d ^c

1

^ : : :^c

n

)g

T

B

D

P

(I)

�

= fcjp(X) 2 B

D

: for each clause de�ning p in P with loc. var. Y

k

,

C

k

= p(X) d

k

jA

k;1

; :::; A

k;m

k

; �

k

:

there exist e

k;1

jA

k;1

; :::; e

k;m

k

jA

k;m

k

2 I

�

,

n

k

� m

k

, e

k;m

k+1

jA

k;m

k+1

; :::; e

k;n

k

jA

k;n

k

2 I

+

,

where for m

k+1

� j � n

k

, :A

k;j

occurs in �

k

,

such that c =

V

k

8Y

k

(: d

k

_ e

k;1

: : :_ e

k;n

k

)g:

where the operations 9;8;:;_;^, are the corresponding operations on the

constraint domain of D.

In the case of a normal logic program, the operator T

B

P

de�nes a generalized

S-semantics which is fully abstract w.r.t. the computed answer constraints with

constructive negation by pruning [9]. By soundness it approximates also the set

of computed answer constraints under the SLDNF resolution rule, or under the

Prolog strategy.

In [10] we have shown that this operator de�nes a hierarchy of reference

semantics related by abstract interpretation, that extends the hierarchy de�ned

by Giacobazzi for de�nite logic programs [12]. Here we show the use of the

hierarchy for the static analysis of normal logic programs.

3 Normal forms in CET

Unlike the semantics in Marriott and S�ndergaard's framework, our reference

semantics is a non ground semantics and has to deal with �rst-order equality

constraints. The �rst problem that arises is to de�ne a normal form for such con-

straints on the Herbrand domain, so that abstraction functions on constrained

atoms can be de�ned. In general, in fact, given a theory th, we are interested in

working with equivalence classes of constraints w.r.t. the equivalence of the con-

straints in th. Namely c is equivalent to c

0

if th j= c$ c

0

. Therefore we need the

abstraction function on the concrete constraint domain to be a congruence. This

is a necessary property since it permits to be independent from the syntactic

form of the constraints.

Dealing with normal logic programs, we need to achieve this property in CET.

We thus need to introduce a normal form for �rst-order equality constraints, in

a similar way to what has been done for the analysis of de�nite programs where

the normal form is the uni�cation solved form [16]. Here we shall de�ne a new

notion of \false-simpli�ed" normal forms, making use of Colmerauer's solved

forms for inequalities [4], Maher's transformations for �rst-order constraints [18]

and an extended disjunctive normal form [13].

First let us motivate the need of a \false-simpli�ed" form. Let us call a

basic constraint an equality or an inequality between a variable and a term. The

abstraction function will be de�ned inductively on the basic constraints, and it



will sometimes (e.g. for groundness analysis) abstract to true some inequalities.

Consider, for example, the following constraint d = 8X(Y = b ^ X 6= f(a)).

d is H-equivalent to false. If the abstraction of X 6= f(a) is true then the

abstraction of d will be the abstraction of Y = b, which cannot be H-equivalent

to the abstraction of false. Therefore we need to de�ne a normal form where

the constraints which are H-equivalent to false, are eliminated.

De�nition 2. Consider a constraint d in prenex disjunctive form, d=�(_

i

A

i

),

where � is a sequence of quanti�ed variables and _

i

A

i

is a �nite disjunction.

d is in a false-simpli�ed form if, either there does not exist a proper subset I

of the i

0

s such that H j= �(_

i

A

i

) $ �(_

i2I

A

i

), or such an I exists and there

exists also a subset K of I , such that _

j 62I

A

j

is H-equivalent to _

k2K

A

k

.

The latter condition assures that we really eliminate constraints that are H-

equivalent to false and that are not just redundant in the constraint. Now the

existence of a false-simpli�ed form for any constraint can be proved simply with

the following:

Algorithm 3. Input: a constraint in prenex disjunctive form d = �(_

i

A

i

).

Let us call U the set of the indices i's in d = �(_

i

A

i

).

1. Let I and J be the partition of U such that i 2 I if H j= 9�(A

i

), otherwise

i 2 J .

2. Repeat I := I[S as long as there exists an S � J such thatH j= 9�(_

i2S

A

i

)

and for all j 2 S H 6j= 9�(_

i2(Snfjg)

A

i

).

3. Let S � JnI be any minimal set such that

H j= 9�(_

s2S

A

s

_

i2I

A

i

) and H j= �(_

s2S

A

s

_

i2I

A

i

)$ d, do I := I [ S,

4. Output: �(_

i2I

A

i

).

The idea of the algorithm is to �nd a subset of the conjunctions A

i

's (those with

i 2 I) such that �(_

i2I

A

i

) is in false-simpli�ed form and it is H-equivalent to

�(_

i

A

i

). In the �rst step we select the A

i

's such that �(A

i

) is H-satis�able. In

this case, in fact, A

i

cannot be H-equivalent to false and it can be put in the set

I . In the second step from the remaining A

i

's we select the set of A

i

's such that

their � quanti�ed disjunction is H-satis�able, since we check that all the A

i

's

are necessary for the quanti�ed disjunction to be H-satis�able, the considered

A

i

's can not be H-equivalent to false. At the end of this process, if the resulting

constraint is H-equivalent to the input constraint, we stop. Otherwise, we add a

minimum number of the not yet selected A

i

's such the �(_

i

A

i

) for the selected

i's is H-equivalent to the input constraint. Since we add a minimum number of

not yet selectedA

i

's, we are sure that the resulting constraint is in false-simpli�ed

form. Example 4 shows how the algorithm 3 works on two examples.

Example 4. 1. Input: c

1

= 8T (A

1

_A

2

_A

3

_A

4

), A

1

= (T = f(H)^Y = a),

A

2

= (T 6= f(a) ^ Y = b), A

3

= (Y 6= g(H;T )), A

4

= (T 6= a ^ Y = a).

I

1

= f3g:

I

2

= f3; 1; 2g:

I

3

= f3; 1; 2g( since H j= 8T (_

i2I

2

A

i

)$ c

1

):

Output: 8T (A

1

_ A

2

_A

3

).



2. Input: c

2

= 8T (A

0

1

_A

0

2

_ A

0

3

), A

0

1

= (T 6= f(U) ^ T 6= f(V )),

A

0

2

= (T = H), A

0

3

= (U 6= V ^ T = f(a)).

I

1

= fg:

I

2

= f1; 2g:

I

3

= f1; 2; 3g( since H 6j= 8T (_

i2I

2

A

0

i

)$ c

2

):

1

Output: 8T (A

0

1

_ A

0

2

_A

0

3

).

Theorem 5. For any input constraint c = �(_

i

A

i

), algorithm 3 terminates

and computes a false-simpli�ed form logically equivalent to c.

Note that all the false-simpli�ed forms of a constraint c are H-equivalent.

Now the intuitive idea for a normal form is the following. We put a constraint

in prenex form and we compute the disjunctive form of its quanti�er free part.

We make equality and inequality constraints interact in every conjunction of the

disjunctive form and then we compute the false-simpli�ed form for the resulting

constraint. The problem is that if we consider a standard disjunctive normal

form, we would not be able to see explicitly all the relations between constraints

in disjunctions. Consider, for example, the constraint (X = f(H) _ (H 6= f(a)):

This constraint is equivalent, therefore H-equivalent, to the constraint ((X =

f(f(a))^H = f(a))_H 6= f(a)). Note that the equality H = f(a) is not explicit

in the �rst disjunction. Since the abstraction function will act on the terms of the

disjunction independently, this could cause a problem. This is why we will use a

well known extended disjunctive form de�ned for Boolean algebra and applied,

in our case, to the algebra of quanti�er free constraints.

In the next theorem with B

i

we denote basic equality or inequality constraints

(X = t or X 6= t). For any B

i

let B

i

false

= :B

i

and B

i

true

= B

i

.

Theorem 6. [13] For every Boolean formula � on basic equality or inequality

constraints B

1

; : : : ; B

n

,

�$  where  = (

W

(a

1

;::: ;a

n

)2ffalse;trueg

n

�(a

1

; : : : ; a

n

) ^B

a

1

1

^ : : : ^B

a

n

n

):

Note that  is a formula in disjunctive form.  has in fact a particular disjunctive

form where each conjunction contains all the basic constraints (possibly negated)

of �. This is why, this form is able to capture all the possible relations between

the di�erent terms of a disjunction.

We will call the formula  the extended disjunctive normal form (dnf) of �.

The next example shows how the extended disjunctive normal form works on a

constraint c

1

.

Example 7. c

1

= (X = f(H) _H 6= f(a)):

dnf(c

1

) = ((X = f(f(a)) ^H = f(a))_

(X = f(H) ^H 6= f(a)) _ (X 6= f(H) ^H 6= f(a))):

Note that although c

1

, dnf(c

1

) and ((X = f(f(a)) ^ H = f(a)) _ H 6= f(a))

are H-equivalent, dnf(c

1

) is the most \complete" in the sense that it shows

syntactically all the relations between constraints in disjunctions.

1

U = b;H = f(b); V = a, in fact, is an assignment (for the free variables of c

2

), which

is a solution of c

2

but is not a solution of 8T (_

i2I

2

A

0

i

).



We can now de�ne the normal form, Res(c), of a �rst-order equality con-

straint c, as the result of the following steps:

1. Put the constraint c in prenex form obtaining �(c

1

), where � is a sequence

of quanti�ed variables and c

1

is the quanti�er free part of c.

2. Compute dnf(c

1

) = _(A

i

),

3. Simplify each conjunction A

i

obtaining A

0

i

= ResConj(A

i

);

4. Return a false-simpli�ed form of the constraint �(_A

0

i

).

where the procedure for simplifying each conjunction is based on Maher's canon-

ical form [18] and Colmerauer's simpli�cation algorithm for inequalities [4]. The

procedure performs the following steps,

ResConj(A)

1. compute a uni�cation solved form for the equalities in the conjunction A

2. for each equality X = t in A, substitute X by t at each occurrence of X in

the inequalities of conjunction A.

3. simplify the inequalities by applying the following rules,

(a) replace f(t

1

; : : : ; t

n

) 6= f(s

1

; : : : ; s

n

) by t

1

6= s

1

_ : : : _ t

n

6= s

n

.

(b) replace f(t

1

; : : : ; t

n

) 6= g(s

1

; : : : ; s

n

) by true.

(c) replace t 6= x by x 6= t if t is not a variable.

obtaining A

0

,

4. if A

0

is a conjunction then return A

0

.

5. otherwise compute dnf(A) = _(A

i

) and return _ResConj(A

i

).

It is worth noting that the previous algorithm terminates since each constraint

contains a �nite number of inequalities.

Example 8 shows how the procedure Res computes the normal form of some

constraints.

Example 8. 1. c = (X = f(Y ) ^ (Y = a _ Y = f(a)) ^ 8U X 6= f(f(U))):

c

1

= 8U( X = f(Y ) ^ (Y = a _ Y = f(a)) ^X 6= f(f(U))):

c

2

= 8U( (X = f(Y ) ^ Y 6= a ^ Y = f(a) ^X 6= f(f(U)))_

(X = f(Y ) ^ Y = a ^ Y 6= f(a) ^X 6= f(f(U)))_

(X = f(Y ) ^ Y = a ^ Y = f(a) ^X 6= f(f(U)))):

c

3:1

= 8U( (X = f(f(a)) ^ Y 6= a ^ Y = f(a) ^X 6= f(f(U)))_

(X = f(a) ^ Y = a ^ Y 6= f(a) ^X 6= f(f(U))):

c

3:2

= 8U( (X = f(f(a)) ^ f(a) 6= a ^ Y = f(a) ^ f(f(a)) 6= f(f(U)))_

(X = f(a) ^ Y = a ^ a 6= f(a) ^ f(a) 6= f(f(U))):

c

3:3

= 8U( (X = f(f(a)) ^ Y = f(a) ^ a 6= U)_

(X = f(a) ^ Y = a ^ a 6= f(U))):

c

4

= (X = f(a) ^ Y = a):



2. �c = (X = f(Z; S) ^ U = (f(H); H) ^ S = a ^X 6= U):

c

2

= c

1

= �c:

c

3:1

= (X = f(Z; a) ^ U = f(f(H); H) ^ S = a ^X 6= U):

c

3:2

= (X = f(Z; a) ^ U = f(f(H); H) ^ S = a ^ f(Z; a) 6= f(f(H); H)):

c

3:3

= (X = f(Z; a) ^ U = f(f(H); H) ^ S = a ^ (Z 6= f(H) _H 6= a):

c

3:4

= A

1

_ A

2

_ A

3

:

A

1

= (X = f(Z; a) ^ U = f(f(H); H) ^ S = a ^ Z = f(H) ^H 6= a):

A

2

= (X = f(Z; a) ^ U = f(f(H); H) ^ S = a ^ Z 6= f(H) ^H 6= a):

A

3

= (X = f(Z; a) ^ U = f(f(H); H) ^ S = a ^ Z 6= f(H) ^H = a):

ResConj(A

1

) =

�

A

1

ResConj(A

2

) = A

2

ResConj(A

3

) =

�

A

3

:

�

A

1

= (X = f(f(H); a) ^ U = f(f(H); H) ^ S = a ^ Z = f(H) ^H 6= a):

�

A

3

= (X = f(Z; a) ^ U = f(f(a); a) ^ S = a ^ Z 6= f(a) ^H = a):

c

4

=

�

A

1

_ A

2

_

�

A

3

:

Note that all the steps in ResConj and Res preserve the H-equivalence, the

third step of ResConj is Colmerauer's simpli�cation algorithm for inequalities

[4], the �rst and second transformations are the usual ones for CET formulas [18],

while the second step of Res is the extended disjunctive normal transformation

[13]. Hence we get:

Proposition 9. H j= �$ Res(�):

Our concrete constraints domain NC will be the subset of constraints in C which

are in normal form. The concrete operations on NC will be thus de�ned using

the normal form:

De�nition 10. Let c

1

; c

2

2 NC,

c

1

^

c

c

2

= Res(c

1

^ c

2

) c

1

_

c

c

2

= Res(c

1

_ c

2

)

:

c

c

1

= Res(:c

1

) 9

c

X c

1

= 9X c

1

8

c

X c

1

= 8X c

1

We denote by B the set of constrained atoms with constraints in NC, and by

(I;�) the complete lattice of (not necessarily consistent) partial constrained

interpretations formed over B.

4 Depth(k) analysis for constructive negation

The idea of depth(k) analysis was �rst introduced in [20]. The domain of depth(k)

analysis was then used in order to approximate the ground success and failure

sets for normal programs in [19].

We follow the formalization of [5] for positive logic programs. We want to

approximate an in�nite set of computed answer constraints by means of a con-

straint depth(k) cut, i.e. constraints where the equalities and inequalities are

between variables and terms which have a depth not greater than k.



Our concrete domain is the complete lattice of partial constrained inter-

pretations (I;�) of the previous section. Since our aim is to approximate the

computed answer constraints, the �xpoint semantics we choose in the hierarchy

[10] is the one which generalizes the S-semantics to normal logic programs, the

T

B

D

P

operator (cf def. 1). The version we consider here is the one de�ned on

the domain B with the concrete operations in NC, ^

c

; _

c

; :

c

; 9

c

;8

c

, (the T

B

P

operator).

4.1 The abstract domain

Terms are cut by replacing each-subterm rooted at depth greater than k by a

new fresh variable taken from a set W , (disjoint from V ). The depth(k) terms

represent each term obtained by instantiating the variables of W with terms

built over V .

Consider the depth function jj : Term! Term such that

jtj =

�

1 if t is a constant or a variable

maxfjt

1

j; : : : ; jt

n

jg+ 1 if t = f(t

1

; : : : ; t

n

)

and a given positive integer k. The abstract term �

k

(t) is the term obtained

from the concrete one by substituting a fresh variable (belonging to W ) to each

subterm t

0

in t, such that jtj � jt

0

j = k.

Consider now the abstract basic constraints

ABC =

�

c j c = (X = t) jtj � k or

c = (X

0

6= t

0

) jt

0

j � k; and V ar(t

0

) \W = ;

�

Note that V ar(t

0

)\W = ; expresses the fact that inequalities between variables

and cut terms are not allowed. The domain of abstract constraints is de�ned as

follows,

De�nition 11.

ANC =

�

c j c is a constraint in normal form built with

the logical connectives _, ^, 8 and 9 on ABC

�

The concepts of abstract constrained atoms and partial abstract interpretations

are de�ned as expected.

De�nition 12. An abstract constrained atom is a pair cjA such that c 2 ANC

and c is a H � solvable constraint, A is an atom and V ar(c) � V ar(A). With

B

a

we intend the set of abstract constrained atoms.

The abstract domain is the set of partial interpretations on abstract constrained

atoms. A partial abstract constrained interpretation for a program, is a pair of

set of abstract constrained atoms, I

a

=< I

a

+

; I

a

�

>, not necessary consistent.

We consider I

a

= fI

a

j I

a

is a partial interpretationg.

With respect to the case of de�nite logic programs [5], we need to de�ne a

di�erent order on the abstract constraint domain.



This is because the result c

a

of an abstract and operation on the abstract con-

straint domain will be an approximation of the result c of the concrete and

operation on the concrete constraint domain, in the sense that c

a

will be \more

general" than the abstraction of c (where here \more general" means \is implied

under H") .

This motivates the de�nition of the following relation on the abstract constraint

domain.

De�nition 13. Let c; c

0

2 ANC. c �

a

c

0

if H j= c! c

0

:

We consider the order�

a

induced by the preorder�

a

, namely the order obtained

considering the classes modulo the equivalence induced by �

a

.

We de�ne the downward closure of a pair of sets w.r.t. the �

a

order,

De�nition 14. Consider a pair of sets of constrained atoms B.

By # B we denote the downward closure of < B

+

; B

�

>.

cjA 2# B

+

if there exists c

0

jA 2 B

+

and c �

a

c

0

,

cjA 2# B

�

if there exists c

0

jA 2 B

�

and c �

a

c

0

.

Intuitively, a set of constrained atoms I is less or equal than J , if # I �# J .

De�nition 15. Consider I; J 2 I

a

.

I

a

� J

a

$ for all cjA 2 I

a

+

9c

0

jA 2 J

a

+

such that c �

a

c

0

and

for all cjA 2 I

a

�

9c

0

jA 2 J

a

�

such that c �

a

c

0

It is immediate to see that � de�nes a preorder. We consider the order� induced

by the preorder �, namely the order obtained by considering the classes I

a

modulo the equivalence induced by �. Then our abstract domain is (I

a

;�).

Since the operations on the equivalence classes are independent on the choice of

the representative, we denote the class of an interpretation I

a

by I

a

itself. In

the rest of the paper, we often abuse notation by denoting by I

a

the equivalence

class of I

a

or the interpretation I

a

itself.

4.2 The abstraction function

Let us now de�ne the abstraction function. To this aim we �rst de�ne the func-

tion �

c

on constraints. The main idea is to de�ne �

c

on the basic constraints as

follows: an equality X = t is abstracted to X = �

k

(t), while an inequality X 6= t

is abstracted to X 6= t if jtj � k and to true otherwise.

We denote by �(c) the constraint c

0

in normal form and by � the sequence of

quanti�ed variables of c

0

, where c is the quanti�er-free part of c

0

.

De�nition 16. The depth(k) constraint abstraction function is the function

�

c

: NC ! ANC:

�

c

(�(c)) = �;�

0

�

c

(c) where �

0

= 9Y

1

; 9Y

2

; ::; and Y

i

2 (W \ V ar(�

c

(c)))

�

c

(X = t) = (X = �

k

(t));

�

c

(false)= false; �

c

(true) = true;

�

c

(X 6= t) = (X 6= t) if jtj � k; �

c

(X 6= t) = true if jtj > k;

�

c

(A ^B) = �

c

(A) ^ �

c

(B); �

c

(A _ B) = �

c

(A) _ �

c

(B):



Note that the �rst de�nition means that all the new variables introduced by the

cut terms have to be considered existentially quanti�ed.

Example 17 shows an application of �

c

.

Example 17. c = 8U((H = f(f(T )) ^ T 6= f(f(U)) ^X = f(U))_

(H = f(f(T )) ^ T 6= f(X) ^X 6= f(U))); k = 2:

�

c

(c) = �

c

( 8U( (H = f(f(T )) ^ T 6= f(f(U)) ^X = f(U))_

(H = f(f(T )) ^ T 6= f(X) ^X 6= f(U)))) =

8U( (�

c

(H = f(f(T ))) ^ �

c

(T 6= f(f(U))) ^ �

c

(X = f(U)))_

(�

c

(H = f(f(T ))) ^ �

c

(T 6= f(X)) ^ �

c

(X 6= f(U))) =

8U; 9Q

1

; Q

2

((H = f(Q

1

) ^ true ^X = f(U))_

(H = f(Q

2

) ^ T 6= f(X) ^X 6= f(U))) (Q

1

; Q

2

2W ):

The abstraction function � is de�ned by applying �

c

to every constraint of the

constrained atoms in the concrete interpretation.

De�nition 18. Let � : I ! I

a

: � =< �

+

; �

�

>

�

+

(I) = fcjA j c

0

jA 2 I

+

and �

c

(c

0

) = cg;

�

�

(I) = fcjA j c

0

jA 2 I

�

and �

c

(c

0

) = cg:

As a consequence the function 
 on (equivalence classes of) sets of abstract

constraints is automatically determined as follows:

De�nition 19. Let 
 : I

a

! I:


(I

a

) = [fI j �(I) � I

a

g =

[fI j 8cjA 2 �

+

(I) 9c

0

jA 2 I

a

+

such that c �

a

c

0

and

8cjA 2 �

�

(I) 9c

0

jA 2 I

a

�

such that c �

a

c

0

g =

[fI j # �(I) �# I

a

g = [fI j�(I) �# I

a

g

Lemma 20. � is additive.

Theorem 21. < �; 
 > is a Galois insertion of (I;�) into (I

a

;�).

4.3 �

c

is a congruence w.r.t. the H-equivalence

As we have already pointed out in section 3, we want to work with H-equivalence

classes of constraints and, for this purpose, we need to be sure that the above

de�ned function �

c

on NC is a congruence w.r.t. the H-equivalence. This means

that if two constraints c; c

0

2 NC are H-equivalent, then also �

c

(c) and �

c

(c

0

)

have to be H-equivalent.

In order to understand whether two constraints are H-equivalent, it is useful

to state the following result.

Lemma 22. Consider the inequality X 6= t. There exist no arbitrary quanti�ed

t

1

; : : : ; t

n

, where t

i

6= t, such that X 6= t is H-equivalent to ^

i

X 6= t

i

.



This is a consequence of the fact that we consider the models of the theory CET

without the DCA axiom.

The previous result, together with the fact that constraints are in false-

simpli�ed form, allows us to claim that �

c

is a congruence.

Theorem 23. Let c; c

0

2 NC. If H j= c$ c

0

then H j= �

c

(c)$ �

c

(c

0

).

4.4 The abstract �xpoint operator

We now de�ne the abstract operations that will replace the concrete ones in the

de�nition of the �xpoint abstract operator. We show that the abstract operations

are a correct approximation of the concrete operations.

The de�nition of the abstract and operation is not immediate. The example 24

is meant to give some intuition on some problems that may arise.

Example 24. Consider the following two constraints:

c

1

= (X = f(Z; f(H)) ^ S = f(a)) c

2

= (U 6= X ^ Y 6= f(S)) and k = 2.

Consider �

c

(c

1

)= 9Q(X = f(Z;Q)^S = f(a)) �

c

(c

2

)= (U 6= X^Y 6= f(S)).

If we now consider the normalized form of �

c

(c

1

)^�

c

(c

2

) the resulting constraint

is 9Q(U 6= f(Z;Q) ^ Y 6= f(f(a)) ^X = f(Z;Q) ^ S = f(a)), which is not an

abstract constraint according to de�nition 11.

The problem is that the normalized form of the logical and operation on two

abstract constraints is not in general an abstract constraint (the depth of the

terms involved in equalities and inequalities can be greater than k and it can

contain inequalities between variables and cut terms).

This is the reason why we need to de�ne a newM operator, on the normalized

forms of abstract constraints. The M operator must cut terms deeper than k

and replace by true all the inequalities which contain a cut term. Intuitively this

is because X 6= t, where V ar(t)\W 6= ;, represents, on the concrete domain, an

inequality between a variable and a term longer than k. On the abstract domain,

such inequalities are abstracted to the constant true.

De�nition 25. LetM : NC ! ANC

M(�(c))= �;�

0

M(c) where �

0

= 9Y

1

; 9Y

2

; ::, where Y

i

2 (W \V ar(M(c))).

M(X = t) = (X = �

k

(t))

M(X 6= t) = (X 6= t) if jtj � k and V ar(t) \W = ;

M(X 6= t) = (true) if jtj > k or V ar(t) \W 6= ;

M(A ^ B) = �

c

(A) ^ �

c

(B), M(A _ B) = �

c

(A) _ �

c

(B)

As expected, theM operator is similar to the �

c

operator. The only di�erence

is thatM replace by true all the inequalities between variables and cut terms.

Since ANC is a subset of NC, the Res form is de�ned also on the abstract

constraints domain.

De�nition 26. Let c

1

; c

2

2 ANC

c

1

~

^c

2

=M(Res(c

1

^ c

2

)); c

1

~

_c

2

=M(Res(c

1

_ c

2

));

~:c

1

=M(Res(:c

1

));

~

9X c

1

= 9X c

1

;

~

8X c

1

= 8X c

1

;



It is worth noting that the procedure Res on the abstract domain needs to

perform the logical and on abstract constraints. This means that most of the

observations that can be done on the behavior of the abstract and operation,

concern also the abstract or and not operations.

Example 27 illustrates the relation between the abstract and operation and

the abstraction of the concrete and operation. For a sake of simplicity, since

in this case it does not a�ect the result, we write the constraint c

1

in the more

compact standard disjunctive form rather than of in extended disjunctive form.

Example 27. c

1

= 8K((Y = a ^ U 6= f(f(K))) _ Z = a), c

2

= (U = f(f(a))).

Consider k = 1. �

c

(c

1

) = (Y = a _ Z = a), �

c

(c

2

) = 9V U = f(V ).

�

c

(c

1

)

~

^�

c

(c

2

) = 9V ((Y = a ^ U = f(V )) _ (Z = a ^ U = f(V ))).

�

c

(Res(c

1

^ c

2

)) = 9V (Z = a ^ U = f(V )).

H j= �

c

(Res(c

1

^ c

2

))! �

c

(c

1

)

~

^�

c

(c

2

)

As already pointed out, the abstract and gives a more general constraint than

the abstraction of the one computed by the concrete and and this is the reason

why we have de�ned an approximation order based on implication (under H)

between constraints.

In order to show that the abstract operations are correct, we prove a stronger

property.

Theorem 28. Let c

1

; c

2

2 NC.

�

c

(c

1

)

~

^�

c

(c

2

) �

a

�

c

(c

1

^

c

c

2

); �

c

(c

1

)

~

_�

c

(c

2

) �

a

�

c

(c

1

_

c

c

2

);

~

9x �

c

(c

1

) = �

c

(9

c

x c

1

);

~

8x �

c

(c

1

) = �

c

(8

c

x c

1

):

As shown by example 29, the correctness property does not hold for the version

of abstract \not" which we have de�ned, if we consider general constraints.

Example 29. Consider c

1

= (X 6= f(f(a))) and k = 1.

�

c

(:

c

(c

1

)) = 9Y X = f(Y ) which does not implies ~:(�

c

(c

1

)) = false.

Since the not operator is used by the abstract �xpoint operator on \simpler \

constraints (the program constraints) only, we are interested in its behavior on

conjunctions of equalities between variables and terms only. For this kind of

constraints the following result holds.

Lemma 30. If c

1

= (

V

i

(X

i

= t

i

)) 2 NC; then ~:�

c

(c

1

) �

a

�

c

(:

c

(c

1

)):

Now that we have de�ned the abstract constraints domain and the abstract

operations, we can de�ne the abstract �xpoint operator.

De�nition 31. Let �(P ) be the program obtained by replacing every constraint

c in a clause of P by �

c

(c).

The abstract �xpoint operator: I

a

! I

a

is de�ned as follows, T

B

a

P

(I

a

) = T

B

a

�(P )

(#

I

a

); where the operations are

~

9,

~

8, ~: on ANC and

~

_;

~

^ on ANC �ANC.

By de�nition, T

B

a

P

is a congruence respect to the equivalence classes of the

abstract domain. Note also that T

B

a

P

is monotonic on the (I

a

;�), because I � J

implies # I �# J .



Lemma 32. T

B

a

P

is monotonic on the (I

a

;�).

The proof that the abstract operator is correct w.r.t. the concrete one, is based

on the correctness of the abstract operations on the abstract constraints domain.

Theorem 33. �(T

B

P

(
(I

a

))) � T

B

a

P

(I

a

). Then �(lfp(T

B

P

)) � T

B

a

P

(I

a

).

Consider now a k greater than the maximal depth of the terms involved in the

constraints of the clauses in the program P . In this case the abstract operator

is also optimal.

Theorem 34. T

B

a

P

(I

a

) � �(T

B

P

(
(I

a

))):

Let us �nally discuss termination properties of the data
ow analyses presented in

this section. First note that the set of not equivalent (w.r.t. H) set of constraints

belonging to ANC is �nite.

Lemma 35. Assume that the signature of the program has a �nite number of

function and predicate symbols. Our depth(k) abstraction is ascending chain �-

nite.

4.5 An example

We now show how the depth-k analysis works on an example.The program of

�gure 1 computes the union of two sets represented as lists. We denote the

equivalence class of T

B

a

P

by T

B

a

P

itself. All the computed constraints for the

predicate :member are shown, while concerning the predicate :union, for a

sake of simplicity, we choose to show just a small subset of the computed answer

constraints (written in the more compact standard disjunctive form). Therefore,

the concretization of the set of answer constraints for :union that we present in

�gure 1, contains some answer constraints computed by the concrete semantics

but not all of them.

As expected the set of answer constraints, computed by the abstract �xpoint

operator, is an approximation of the answer constraints, computed by the con-

crete operator, for the predicatesmember, union and :member. For example, for

the predicate :member(X;Y ), we compute the answer 8L(Y 6= [X;L]) which

correctly approximates the concrete answer 8L;H;H

1

; L

1

(Y 6= [X;L] ^ Y 6=

[H;H

1

; L

1

]): While the constraint answer 9X8H

1

; L

1

9Z

1

; Z

2

(A = [X;Z

1

]^C =

[X;Z

2

]^B 6= [H

1

; L

1

]) for union(A;B;C), approximates the concrete constraint

A = [X;X ], C = [X;X;K], B = K and B is not a list, computed by the con-

crete semantics. Note, in fact, that, if the second argument is not a list, the

predicate member �nitely fails. Let us now consider Marriott and S�ndergaard's

abstraction for the program P , with a language where the only constant is a (this

assumption does not a�ect the result). Concerning the predicate union with the

empty list as �rst argument, their abstraction computes the following atoms

union([ ]; a; a); union([ ]; [ ]; [ ]); union([ ]; [a]; [a]); union([ ]; [a; Z

1

]; [a; Z

2

]),

while we obtain the more precise answer (A = [ ] ^ B = C)junion(A;B;C).



P :

union(A;B;C) : �A = [ ]; B = C:

union(A;B;C) : �A = [X;L]; C = [X;K];:member(X;B); union(L; B;K):

union(A;B;C) : �A = [X;L]; member(X;B); union(L; B;C):

member(X;Y ) : �Y = [X;L]:

member(X;Y ) : �Y = [H;L];member(X;L):

Consider now a depth-2 analysis with Z

i

2W .

T

B

a

+

P

9L( Y = [X;L] )jmember(X;Y ):

9H;Z

1

( Y = [H;Z

1

] )jmember(X;Y ):

A = [ ] ^B = C junion(A;B;C):

9X;L( A = [X] ^ B = [X;L] ^B = C )junion(A;B;C):

9X;Y; Z

1

( A = [X] ^B = [Y; Z

1

] ^B = C )junion(A;B;C):

9X;H;L; Z

1

( A = [X;Z

1

] ^B = [X;L] ^ B = C )junion(A;B;C):

9X;H;Z

1

; Z

2

( A = [X;Z

1

] ^ B = [H;Z

2

] ^B = C )junion(A;B;C):

9X;K8H;L( A = [X] ^ C = [X;K] ^B 6= [H;L] ^B = K )junion(A;B;C):

9X8H;L9Z

1

; Z

2

( A = [X;Z

1

] ^ C = [X;Z

2

] ^B 6= [H;L] )junion(A;B;C):

9X;K8L( A = [X] ^ C = [X;K] ^B 6= [X;L] ^B = K )junion(A;B;C):

9X8L9Z

1

; Z

2

( A = [X;Z

1

] ^ C = [X;Z

2

] ^B 6= [X;L] )junion(A;B;C):

A subset of T

B

a

�

P

(complete for the predicate member)

8H;L( Y 6= [H;L] )jmember(X;Y ):

8L( Y 6= [X;L] )jmember(X;Y ):

8X;L;KX

1

; L

1

((A 6= [ ] ^ A 6= [X;L])_

(B 6= C ^ A 6= [X;L]_

(B 6= C ^ C 6= [X;K]) ^ A 6= [X

1

; L

1

]) )junion(A;B;C):

8X;L;KX

1

; L

1

; H;L

2

((A 6= [ ] ^ A 6= [X;L])_

(B 6= C ^ A 6= [X;L]_

(B 6= C ^ C 6= [X;K]) ^A 6= [X

1

; L

1

])_

(B 6= C ^ C 6= [X;L] ^B 6= [H;L

2

])_

(A 6= [ ] ^ C 6= [X;L] ^ B 6= [H;L

2

]) j)union(A;B;C)

.

.

.

Fig. 1. Example 1



The atom union([ ]; [a; Z

1

]; [a; Z

2

]), in fact, correctly approximates the predi-

cates deeper than k which have a successful behavior, but it has lost the relation

between B and C. As a consequence all the other ground atoms for union com-

puted using the atom union([ ]; [a; Z

1

]; [a; Z

2

]), are less precise than the ground

instances of the atoms computed by our non-ground abstract semantics.

5 Conclusion

Starting from the hierarchy of semantics de�ned in [10], our aim was to show

that well known analysis for logic programs could be extended to normal logic

programs. Based on the framework of abstract interpretation [7,8], we have pre-

sented a depth(k) analysis which is able to approximate the answer set of normal

logic programs.

It is worth noting that our depth(k) analysis, can be easily generalized to con-

straint logic programs de�ned on H, whose program constraints can be conjunc-

tions of equalities and inequalities. In order to deal with constructive negation,

in fact, most of the results presented in this paper hold for �rst order equality

constraints. The only exception is lemma 30 (and consequently theorem 33 and

theorem 34), which is true only for conjunctions of equalities. But a more com-

plex de�nition of the abstract not operator can be de�ned and proven correct on

conjunctions of equalities and inequalities constraints. This alternative de�nition

is, however, less precise than the one de�ned here. As a consequence theorem

33, where the abstract �xpoint operator uses the new abstract not operator, still

holds for such \extended" logic programs, while it is not the case for theorem

34.
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