Chapter 1

Constraint based methods for Bioinformatics

1.1. Introduction

Bioinformatics is a challenging area of research whereyeserious contribution
can have thousands of positive effects in medicine, adtioeil or industry. Biology,
in general, is a source of extremely interesting and contiput@lly expensive tasks.
Most of the typical problems can be effectively formulatgdusing declarative lan-
guages and constraints. Constraints on finite domains (andais) are applied for
predicting spatial conformation of polymers, concurresrigtraint programming can
be used for simulations of biological systems, and congsain strings are employed
for the analysis of DNA sequences.

The WCBO06 workshop was organized with the aim of sharing emitetical and
practical results in the area and of summarizing new chgilbgnproblems for the
declarative programming and constraint community. Thekaloop is the successor
of the workshop€onstraints and Bioinformatics/Biocomputiogiocated with CP’97
and CP’98, and of the workshop WCBO5 colocated with ICLP 2005

The workshop benefited from the excellent invited talk ofrié@is Fages about
Using temporal logics with constraints to express biolagjigroperties of cell pro-
cessegSect. 1.2) and from the presentation of 7 contributed Eapére contribution
by Bortolussi and Policriti (Sect. 1.3) belongs to the fieldgstems Biologys well.
In the area ofStructural Predictionwe experienced four contribution: by Krippahl
and Barahona; by Elisabetta De Maria et al., by Dal Palu gaadl by Will and Mann
(Sect. 1.5-1.7). A work on suffix array by Zytnicki et al. (§et.8) and a paper
by Prosser on Supertree Construction (Sect. 1.9) concltigdedontributions to the
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workshop. In the rest of this Chapter we report the abstrattieinvited talk writ-
ten by Francois Fages (Sect. 1.2) whom we would like to thgalira and our short
summaries of the 7 contributed papers (Sect. 1.3-1.9).

The interest of the constraint community in bioinformatiscsl biology is wit-
nessed by the considerable number of participants (35wt the workshop has
run in parallel with other extremely interesting workshouring the final discus-
sion, we decided to apply for co-location of WCBO07 at the redition of ICLPQO7
in Porto, Portugal, where we are confident to receive anaitneng contribution to
this research area by the Logic Programming community. iGtiiermation, the pro-
ceedings and some pictures from the workshop can be foure iWCB06 web-site
http://www.dimi.uniud.it/dovier/WCB06. We conclude by acknowledging all
the PC members, the external referees, and all the paritsipa particular thank to
the CP workshop chair Barry O’Sullivan, and to the two othditags of this book,
Frédéric Benhamou and Narendra Jussien.

1.2. On Using Temporal Logic with Constraints to Express Bitbgical Properties
of Cell Processes—Invited talk by Francois Fages

One promise of systems biology is to model biochemical ppsegat a sufficiently
large scale so that the behavior of a complex system can lokci@e under various
conditions inin silico experiments. The language approach to systems hiology aims
at designing formal languages for describing biochemiadmanisms, processes and
systems at different levels of abstraction, and for praxgdiutomated reasoning tools
to assist the biologists [FAG 04a].

The pioneering use of the-calculus process algebra for modeling cell signaling
pathways in [REG 01], has been the source of inspiration aferous works in the
line of process calculi and of their stochastic extensiohise biochemical abstract
machine BIOCHAM [FAG 04b] has been designed as a simplification of the process
calculi approach to model biological processes, using guage of reaction rules that
is both more natural to the biologists, and well suited tosider different dynamics
and use model-checking techniques.

In BIOCHAM, the rule-based language is used for modelingb@mical networks
at three abstraction levels:

1. BIOCHAM is a free software implemented in Prolog and distted under the GPL li-
cense. It is downloadable on the webhattp://contraintes.inria.fr/BIOCHAM. The
BIOCHAM project is a joint work with Nathalie Chabrier-Refi, Sylvain Soliman and Lau-
rence Calzone, with contributions from Sakina Ayata, Logs$e, Lucie Gentils, Shrivaths
Rajagopalan and Nathalie Sznajder. In addition, suppon fthe EU STREP project April-Il
and the EU Network of Excellence REWERSE are warmly ackndgée.
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1) theBoolean semanti¢svhere one associates to each object (protein, gene, etc.)
a Boolean variable representing its presence or absenioe system, and the reaction
rules are interpreted by a highly non-deterministgynchronous transition system
representing competition between reactions;

2) theconcentration semanticahere one associates to each object a real number
representing its concentration, and the reaction ruleggegpreted with their kinetic
expressions by a set of non-linear ordinary differentialagpns (ODE);

3) thestochastic semantica/here one associates to each BIOCHAM object an in-
teger representing the number of molecules in the systeartharules are interpreted
as a continuous time Markov chain.

One striking feature of this multi-level approach is thattia three cases, temporal
logics can be used to formalize the biological propertigbefystem, and verify them
by different model-checking techniques. The thesis is tioad large extend, one can
make the following identifications:

biological model= transition system
biological property= temporal logic formula,
biological validation= model-checking.

At the Boolean level, th€omputation Tree Logi€TL [CLA 99] allows one to ex-
pressqualitative propertiesabout the production of some protein (reachability), the
checkpoints for its production, the stability or osciltats for its presence, etc. These
properties are known from biological experiments in wifd-br mutated organisms.
Some of the most used CTL formulae are abbreviated in BIOCH&Nbllows:

— reachable (P) stands folE'F'(P);

— steady (P) stands folEG(P);

— stable(P) stands forAG(P);

— checkpoint (Q,P) stands fol E(!Q U P);

—oscil(pP) stands forAG((P = EF !P) A (P = EF P)).

In this setting, such properties can be checked with sthteesart symbolic model
checkers such as NuSMV using binary decision diagrams. &tfermances obtained
on a large model of the mammalian cell cycle control after ikeimap [KOH 99],
involving 800 rules and 500 variables, have been shown tof tleecorder of a few
tenths of seconds to compile the model, and check simple Gfradlae.

At the concentration level, it is used a first-order fragnitinear Time Logic
(LTL) with arithmetic constraintgontaining equality, inequality and arithmetic op-
erators ranging over the real values of concentrations &nkeir derivatives. For
instancer ([A]1>10) expresses that the concentratiomriadventually gets above the
threshold valug0. G ([A]+[B]<[C]) expresses that the concentratiorCois always
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greater than the sum of the concentrationglafnd B. Oscillation properties, abbre-
viated asoscil (M,K), are defined as a change of sign of the derivativé/odt least
K times in the time horizon:

F((dM]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...)))

The abbreviated formulascil (M,K,V) adds the constraint that the maximum con-
centration ofA/ must be above the threshdldin at leastK oscillations.

Under the hypothesis that the initial state is completefineéel, numerical integra-
tion methods (such as Runge-Kutta or Rosenbrock methods)dera discrete sim-
ulation trace. This trace constitutes a linear Kripke gtreesin which LTL formulae
with constraints can be interpreted and model-checked [G&]L Since constraints
refer not only to concentrations, but also to their derixedj we consider traces of the
form ({to, xo, dxo/dt), (t1, 21, dx1/dt), ... ) where at each time point, the trace as-
sociates the concentration values of #hs and the values of their derivatives; /dt.

Beyond making simulations, and checking properties of tbeals, the temporal
properties can also be turned into specifications and teshjpmgic constraints for
automatically searching and learning modifications or egfiants of the model when
incorporating new biological knowledge. This is implermezhin BIOCHAM by a
combination of model-checking, search and machine legri@ichniques in the three
abstraction levels.

For instance, in a simple continuous model of the cell cyftlr dyson [TYS 91],
the search of parameter values for kinetic parameigendk,, so that the concen-
tration of the cyclinCdc2-Cyclin p1 oscillates three times in the time horizon 150,
can be formalized as follows:

biocham: learn_parameters([k3, k4], [(0, 200), (0, 200)], 20,
oscil(Cdc2-Cyclin~{p1},3),150).

First values found that make oscil(Cdc2-Cyclin~{p1},3) true:

parameter(k3,_).

parameter(k4,_).

The system finds the parameter valégs= 10 andk, = 70 satisfying the spec-
ification. However, the corresponding curve depictedign 1.1 on the left exhibits
damped oscillations. The specification can be further réfinemposing a constraint
of period equal to 35 time unitgeriod(Cdc2-Cyclin~{p1},35). This produces the
curve depicted ifrig. 1.10n the right which is close to the original model.

These first results implemented in BIOCHAM are quite encgimg and moti-
vate further research in the direction of the formal spediion of biological systems
and in the improvement of the search algorithms. A coupledeahof the cell cycle
and the circadian cycle is under development along thess iim BIOCHAM with
applications to cancer chronotherapies.
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Figure 1.1. Concentration experimental results.

1.3. Modeling Biological Systems in Stochastic Concurrer@onstraint Program-
ming—Dby Luca Bortolussi and Alberto Policriti

In this work the authors show how stochastic Concurrent €aims Programming
(sCCP—[BOR 06]) can be used for modeling biological systes@®CP is based on
CCP [SAR 93], a process algebra where agents interact bingasinstraints on the
variables of the system in the constraint store.

Computational Systems Biology is a field in which differerddeling techniques
are used to capture the intrinsic dynamics of biologicateays. Some of them are
based orDifferential Equations mostly ordinary, and therefore they represent phe-
nomena asontinuous and deterministicOn the other side there astochastic and
discretemodels, that are usually simulated witillespie’s algorithnr{GIL 77]. In the
middle, there are hybrid approaches like @eemical Langevin Equatioa stochastic
differential equation that bridges partially these two ogife formalisms.

In the last few yearstochastic process algebréSPA) has emerged [PRI 01]. It is
based on the parallel between molecules and reactions osidmand processes and
communications on the other side. SPA have been used to mhmdiejical systems
(e.g., biochemical reactions and genetic regulatory neisjoStochastic modeling of
biological systems works by associating a rate to eacheandiaction (or, in general,
interaction); rates are real numbers representing theiémcy or propensity of inter-
actions. All active reactions then undergo a (stochasditg condition, and the fastest
one is executed. These rates encode all the quantitativeniation of the system, and
simulations produce discrete temporal traces with vagidblay between events.

In the author’s opinion, the advantages of using sSCCP aréotdiothe presence
of both quantitative information and computational captis at the level of the con-
straint systems and the presence of functional rates. €hansl feature, in particular,
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allows to encode in the system different forms of dynamiedidviors, in a very flex-

ible way. Quantitative information, on the other hand,@lca more compact repre-
sentation of models, as part of the details can be descnibesdations at the level of

the store.

At high level, biological systems are composed of two inggets: (biological)
entities and interactions among those entities. For igstaim biochemical reaction
networks, the molecules are the entities and the chemiaatioms are the possible
interactions. In gene regulatory networks, instead, thiienare genes and regula-
tory proteins, while the interactions are production angrddation of proteins, and
repression and enhancement of gene’s expression. In@udétities fall into two
separate classes: measurable and logical. Measurabie®atie those present in a
certain quantity in the system, like proteins or other moles. Logical entities, in-
stead, have a control function, hence they are neither pemtinor degraded. Note
that logical entities are not real world entities, but ratiwey are part of the models.

Measurable entities are associated exactly to streaml@si@unbounded tail lists
of time varying variables). Logical entities, instead, e¥presented as processes ac-
tively performing control activities. In addition, theyrtaise variables of the con-
straint store either as control variables or to exchangaindtion. Finally, each in-
teraction is associated to a process modifying the valueéin measurable stream
variables of the system. Associating variables to measimtiities means that they
are represented as part of the environment, while the aajeats are associated to
the different actions capabilities of the system. Thesmwasthave a certain duration
and a certain propensity to happen: a fact represented héhe istandard way, i.e.
associating to each action a stochastic rate.

Constraints maintain information about the biologicaliteeg. This leads to the
definition of a general purpose library of processes thatiansed in the modeling
phase. However, this is only a part of the general picturéhe® are more complex
classes of biological systems that need to be modeled, féesport networks and
membranes. In addition, all these systems are stronglscm@ected, and they must
be modeled altogether in order to extract deep informatimutliving beings. The
authors believe that the flexibility of constraints make€BG powerful general pur-
pose language that can be simply programmed, extendeditiitttiés, and used to
model all these different classes of systems in a compact way

Biochemical reactions can be challenging to be modeledaussx proteins can
form very big complexes that are built incrementally. Ttiere, the cell is populated
by a huge number of sub-complexes. Usually, these netwoekdescribed by biol-
ogists with diagrams, like Kohn maps,that are very compaatause they represent
complexes and sub-complexes implicitly. Constraints Ganded to encode the calcu-
lus elegantly, by representing complexes implicitly, as.lists of basic constituents.
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Functional rates can be used in enzymatic reactions to septenore complex
kinetic dynamics, allowing a more compact description eftletworks. In this direc-
tion, the authors need to make deeper analysis of the nelb&tween these different
kinetics in the context of stochastic simulation, in oradecharacterize the cases where
these different kinetics can be used equivalently. Notieg the use of complex rates
can be seen as an operation on the Markov Chain, replacirtagaageh with a smaller
one, hiding part of its complexity in the expression of ratégally, the authors plan to
implement a more powerful and fast interpreter for the laggy using also all avail-
able tricks to increase the speed of stochastic simulatioseover, the authors plan
to tackle the problem of distributing efficiently the stostia simulations of programs
written in SCCP.

1.4. Chemera: Constraints in Protein Structural Problems—by Pedro Barahona
and Ludwig Krippahl.

Chemera is a molecular modelling software package thatded the algorithms
BiGGER (Bimolecular complex Generation with Global Evalaa and Ranking), for
modelling protein interactions and protein complex stuues [KRI 05], and PSICO
(Processing Structural Information with Constraint peagming and Optimisation),
to integrate experimental and theoretical data to solvéeprcstructures [KRI 02].
Authors’ contribution to the workshop focuses on the caistrprogramming as-
pects of Chemera, nametpnstrained dockingwhich allows the user to restrict the
search for protein-protein complex models in a manner etersi with the ambiguity
of some experimental data, and the processing of structoratraints to generate
approximate models of protein structures from heterogesdata (e.g. spectroscopy,
site-directed mutagenesis, homology models, secondarstgte prediction, reaction
mechanisms).

Protein-proteininteractions play a central role in biaolhel reactions. Modelling
software provides useful tools to help researchers elteg®tein interaction mecha-
nisms. A common trend in these approaches is to try to motkzkiations using only
knowledge derived from the structure and physico-chenpicgerties of the proteins
involved.

In modelling the structure of a protein, the common appreadiave been either
theoretical, to try to predict the structure from the phgbjgroperties of the amino
acid sequence in the protein, possibly using homologids ethier known structures,
or experimental, specializing on the processing of datan fspecific techniques like
Nuclear Magnetic Resonance (NMR) spectroscopy. PSICO airhenging the two
approaches together by providing a flexible framework farcpssing geometrical
constraints and thus integrate information from all refensources in the modelling
of a protein structure. NMR data can be modelled as distaonst@ints [KRI 02]
or as torsion-angle constraints [KRI 05], homology or selzog structure prediction
data can be modelled as rigid-group constraints [KRI 05&rgy functions can be
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included in the local-search optimization stage, and amaicid properties relevant
for protein folding, such as hydrophobicity, can be partraf €numeration heuristics
during constraint processing.

The core of protein docking algorithm is the representatibthe protein shapes
and the measure of surface contact. The former is a straigdafd representation
using a regular cubic lattice of cells. In BIGGER the cellsrad correspond to nu-
merical values, but each cell can be either an empty cellrfacicell, or a core
cell. The surface cells define the surface of the structure tlhe overlap of surface
cells measures the surface of contact. BIGGER also mod#dscéiain flexibility im-
plicitly by adjusting the core grid representation andwa#dor hard or soft docking
simulations depending on the nature of the interaction tdehoFurthermore, this
representation and the search algorithm can take advaotag®rmation about the
interaction to simultaneously improve the results and dpgethe calculations.

Grids are composed of lists of intervals specifying the segps of similar cells
along thex coordinate. The fact that core cells can not overlap indacpswerful
constraint that is able to prune the relative shifts betvibewo structures. Moreover,
a branch and bound search is applied in order to optimizewbdap of surface cells,
and restrict the search to those regions where this ovedafbe higher than that of
the lowest ranking model to be kept.

In some cases there is information about distances betwaets|in the structures,
information that can be used to restrict the search regibe.riost common situation
is to have a set of likely distance constraints of which not@tessarily hold. To cope
with this, the program supports the constraint of the foAhleast K atoms of set A
must be within R of at least one atom of setBere set A is on one protein and set B
on the other, and R a distance value.

There are several sources of information that can help mibeestructure of a
protein. First of all, the amino acid sequences of the pnatbains determines most
chemical bonds, restricting interatomic distances in mgtoyn pairs, angles formed
by atom triplets, of even larger groups of atoms that arecti¥fely rigidly bound
together by the chemical bonds. NMR data provides sevepaistpf distance con-
straints by showing that two atoms must be close enough niitidig the angles of
rotation around some chemical bonds, by suggesting lirnitseiative special orien-
tations of groups of atoms. Furthermore, homology with kn@tructures or mod-
elling secondary structure can provide detailed infororatif the structure of parts of
the protein being modelled. This information identifiesthtypes of constraints im-
plemented in the program: distance constraints betweeatwas, group constraints
that fix the relative positions of a group of atoms in a rigishfégguration, and torsion
angle constraints that restrict the relative orientatibiwo groups joined together by
a chemical bond.



Figure 1.2. Visualisation possibilities in Chemera. See text for dstai

Chemerais the interface to all BIGGER and PSICO calculatiord includes tools
for handlingElectrostatic{Fig. 1.2-A), Clustering and Scorin@Fig. 1.2-B) andweb
Services— interface with several web services, to assign secondaugtare ele-
ments, identify domains, display sequence conservatiomgathe protein structure
(Fig. 1.2-C).

Constraint programming techniques in Chemera are sedsnlassgrated into a
general molecular modelling package. This is an importapeet because research
and developmentin this area is very dependent on a closaatiten with the end users
in the biochemistry community. Authors experience and warkently in progress
on several protein interactions (e.g. Aldehyde Oxidor¢éakesand Flavodoxin, Ferre-
doxin NADP Reductase and Ferredoxin, Fibrinogen and Gelaé A) demonstrate
this for the BIGGER docking algorithm, which is currentlya@lable in Chemera 3.0
http://www.cqfb.fct.unl.pt/bioin/chemera/.

1.5. Exploiting Model Checking in Constraint-based Approahes to the Protein
Folding Problem—by Elisabetta De Maria, Agostino Dovier, Angelo Monta-
nari, and Carla Piazza

In this paper the authors show hdiodel Checkingcould be used to drive the
solution search in the protein folding problem encoded asresttaint optimization
problem. The application of the model checking techniguksva the authors to
distinguish between meaningful protein conformationsad ones. This classifica-
tion of conformations could be exploited by constraint sodvto significatively prune
the search space of the protein folding problem. Furtheemthie approach seems
promising in the study of folding/energy landscapes of @t

The authors consider foldings (i.e., self avoiding walk)roteins on 2D discrete
lattices. If the first two points are set (w.l.0.g., the authsetw(0) = (n,n) and
w(l) = (n,n + 1)), then a folding on this lattice can be uniquely represeited
sequence of directions with respect to the preceding orfe(l)e forward ), and
right (r) (seeFig. 1.3for an example)



22 Future and trends of Constraint Programming

n—Il+-o ooy n—Il+-o ooy
n—1nn+1 n—1nn+1
Figure 1.3. The foldingfrrfll onZ? lattice (left). Contacts and energy contributions of the
string HHPHHHPH w.r.t. the same folding (right).

The authors exploits their analysis using the HP energy h{atlrough the method
can be employed on richer energy models such ag@he 20 contact energy table
used in [Dal 04]). Such a model reduces the 20-letter alphafb@mino acids to a
two-letter alphabe{ H, P}, where H (resp., P) represents a hydrophobic (resp., po-
lar) amino acid. The energy function states that the eneogyribution of acontact
between two non consecutive amino acids is -1 if both of thesrHhamino acids, 0
otherwise (se€ig. 1.3—right).

The authors then introduce the notion of valid transfororetiamong foldings.
Roughly speaking, a valid transformation of a given foldjfhgonsists in selecting at
random a position itff and performing a rotation of the part §between this position
and the ending positiorp{vot moveg. Precisely, letf = f1 ... fn, with f; € {l, f,r}
forall 2 < i < n, be a folding of a sequence A folding f’ of s is obtained from
f through apivot movewith pivot & if f/ = f; forall ¢ # k andf, # fi. As an
example, consider the 6 pivot moves from foldifign Fig. 1.4. It is possible to show
that pivot moves are ergodic, namely, they allow to covethire folding space.

5~ 4
: 3 o
1
£f£f1 ffr fff 11 frl 1f1 rfl

Figure 1.4. The 6 pivot moves from striml1. Large bullets are the pivots.

The authors then define the notion2i Protein Transition Systewf a string P
of lengthn over{H, P} as a tupleMp = (Q,T, L), where

—Q is the set of all foldings of length on the2n x 2n 2D lattice;

—T C @ x Qisthe set of pairs of statés, , ¢») such thaty, can be obtained from
q1 by a pivot move;

— L : Q — 247 isalabeling function over the set AP of atomic propositiatch
consists of the following predicate®nd_I,2nd_f,2nd_r,...,nth_l,nth_f, nth_r,
plus the following three predicatesuin_en, inter_en, max_en, where for all
2 < ¢ < n, the predicatéth_[ (resp.,ith_f, ith_r) holds at a state if the i-th seg-
ment ofq has aleft (resp.,forward, right) orientation andnin_en (resp.,inter_en,
max_en) holds at a state if the energy ofy is minimum (resp., intermediate, 0).
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Given a 2D Protein Transition SysteMp = (Q, T, L) and a temporal logic for-
mula f expressing some desirable property of the systenmtbael checking problem
consists in finding the set of all states@hsatisfyingf [CLA 99]. When a state does
not satisfy a formula, model checking algorithms produceunterexample that fal-
sifies it, thus providing an insight to understand failuresss and important clues for
fixing the problem. The authors restrict their attentionvto well-known fragments
of the computation tree logi€€TL*, namely, thebranching timelogic CTL and the
linear timelogic LTL.

The authors then show how meaningful properties of 2D Rrdkeansition Sys-
tems can be encoded in both CTL and LTL. Here two of them arerteg:

F1: Does it exist a path of length at mdsthat reaches a state with minimum energy?
CTL: V¥, Ei X ... E;X;min_en.

LTL (actually, it expressesF1): A(/\f:0 Xi... Xy—~min_en).

F2: Is energy the minimum one? Alternatively, if energy is theximaim one, is it
possible to reach a state with minimum energy without pgstiirough states with
intermediate energy?

CTL, LTL : A(maxz_en U min_en).

The authors finally show some results of the tests of the ptiegalescribed using
a model checker written in SICStus Prolog. A faster impletaton of the method
using onon-the-flymodel checking is under analysis.

1.6. Global Constraints for Discrete Lattices—by Alessana Dal Palu, Agostino
Dovier, and Enrico Pontelli

Constraint solving on discrete lattices has gained monmeiaisia declarative and
effective approach to solve complex problems such as prédéding determination.
In particular, [Dal 05] presented a comprehensive comngtsaiving platform (COLA)
dealing with primitive constraints in discrete latticeshelTauthors discuss some pre-
liminary ideas on possible global constraints that can b®duced in a constraint
system like COLA. Various alternatives are presented aedirpinary results con-
cerning the computational properties of the different glatonstraints are reported.

Discrete finite lattices are often used for approximatedissiof 3D conformations
of molecular structures. These models are used, in paatidiol compute reasonable
approximations of foldings of protein structures in 3D spE8KO 04]. Polymers are
laid out in particular subsets 6f2. These subsets are often described by the vectors
that specify the set of neighbors of each point. Lattice n®lilee FCC and chess
knight are among them.

The protein structure prediction in the context of disciletéice structures has
been studied as @onstraint Optimization Problerm the FCC lattice, using sim-
plified energy models [BAC 06, Dal 04]. In these approachashepointP of the
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lattice is identified by a triplet ofinite domain variable§P,, P,, P.). It is proved
that mantaining an independent variable for each pointdinate limits the power of
propagationw.r.t. an approach (as in COLA) where a point is considerehakole.

The authors propose a study targeting the problem of dealittgglobal con-
straints in the general context of constraint solvers otickadomain. Global con-
straints are proven constructs that facilitate the detiler@ncoding of problems; at
the same time, they allow the programmer to express knowlatigut relationships
between variables, that can be effectively employed by ¢laech algorithm to prune
infeasible parts of the solution search space. The authtnsduce different global
constraints, and they study the complexity of their satidfig and of the associated
propagation process. For each global constr@irfvith variablesX,, ..., X,) ana-
lyzed, the authors are interested in verifying two projgstti

— consistency (CONYX> # ()
—generalized arc consistency (GAGY: € {1,...,n}Va; € DX
da, € DX .. -da;_1 € DXi’13ai+1 € DXit1 .. -da, € DXn (al, c. ,an) eC

e Thealldifferent global constraint is used to describe that all the variables
must assume different points. It is well known that consisyeand propagation of
alldifferent is polynomial.

e The contiguous global constraint is used to describe the fact that a list of
variables represent lattice points that are adjacent (ingef positions in the lattice
graph) and has the form:

contiguous(Xy,..., X,) = (DXt x -+ x DXn) \
{(ar,...;an) + Fi. 1 <i<n A (a;,0i41) € E)}

whereF is the set of edges in a lattice, aiXd, . . ., X,, is a list of variables (respec-
tively, with domainsDX , ..., DX»),

The authors prove that verifying CON and GAC are in P.

e The saw constraint is used to require that each assignment to thables
X4,..., X, represents a self-avoiding walk (SAW) in the lattice andthaform:

saw(Xy,...,X,) = contiguous(Xy,...,X,) Nalldifferent(Xy,...,X,)

The saw constraint can be used, for example, to model the fact tleaptimary se-
quence of a protein can not create cycles when placed in thepabe. The authors
prove that CON okaw global constraint is NP-complete, and, consequently, GAC i
NP-hard.saw can be replaced by a set of binary constraints. AC filteringhem is

a trivial polynomial approximation for GAC filtering. Iteiag alldifferent and
contiguous GAC filtering is a second polynomial filtering. However, thgmlyno-
mial filterings are weaker propagation thsaw GAC filtering.
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e The alldistant constraint formalizes the fact that different amino acifls o
a protein have a specific volume occupancy. GivewariablesX,..., X, with
respective domain®*X:, ..., DX~ andn numbers,...,c,, admissible solutions
X1 = p1,..., X, = py are searched such thatandp; are located at distance at
leastc; + ¢;, with 1 < 4, j < n. More formally:

alldistant(X1,..., X, c1,...,¢,) = (DX x oo x DXn) \
{(a1,...,a,) :3i,j. 1 <i<j<n A lla; —ajll2 < (¢i +¢;)}

Note thatalldistant with ¢; = %, e, Cp = %, is equivalent tml1different.
The authors prove that the CON and GAC test are both NP-cdenple

The authors also introduce and studytiigéd block constraineind prove that CON
and GAC are in P. Future work is needed for fast implememtaifathe polynomial
time algorithms and of efficient approximations of the NPaptete tests and filtering.

1.7. Counting Protein Structures by DFS with Dynamic Decompsition—by Se-
bastian Will and Martin Mann

The authors introduce depth-first search with dynamic deosition for counting
all solutions of a binary CSP. In particular, they use the@tmod for computing the
number of minimal energy structures for a discrete proteiaah

The number of minimal energy structures of proteins in ardiecmodel is an
important measure, which is strongly related to proteibitg. The enumeration of
optimal and suboptimal structures has applications in theéysof protein evolution
and kinetics [REN 97, WOL 06]. Even the prediction of protstructures in sim-
plified protein models is a complex, NP-completecombinatoptimization problem
that received lots of interest in the past. Importantly far presented work, it can be
successfully modeled as Constraint Satisfaction Prob@g8P) [BAC 01, BAC 06].
Recently, counting solutions of a CSP in general and relptelllems gained a lot
of interest over considering only satisfiability [ROT 96].hi$ is partly due to the
increased complexity of counting compared to deciding disfebility [PES 05].
For general CSPs and in particular for protein structuraiption, solving is NP-
complete. However, the counting of CSP solutions is an e@eddr problem in the
complexity class #P. This class is defined as the class ofticmuoroblems associated
with nondeterministic polynomial time computations.

Standard solving methods in constraint programming likptBd-irst Search (DFS)
combined with constraint propagation are well suited faed®ining one solution, but
leave room for saving redundant work when counting all sohg Here, the authors
present a method that is especially tailored for this casppliéd to the CSP for-
mulation of structure prediction, it improves exhaustieeiating and enumeration of
optimal protein structures.
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Figure 1.5. Search tree traversed by DFS (left) and DDS (right) search.

Basically, the new methodlynamicallydecomposes the constraint (sub-)problems
that emerge during the search into independent partialgmubalong connected com-
ponents of the problem’s associated constraint graph.r@&peounting in the partial
problems still allows to infer the number of solutions of tenplete problem-ig. 1.5
illustrates the new decomposing strategy. For a simple pl@@SP, the standard
non-decomposing search yields a search Fige 1.5left). For the same problem,
dynamically decomposing search yields the search trEgirl.Xright). Even for the
small example the tree is much reduced. Note that at the damaettyields a sort of
compressed representation of the solution space.

Instead ofstatically exploiting only properties of the initial constraint grapty-
namic strategies analyze the emerging constraint grapirgythe search and employ
their features. The authors believe this is a major advantagiany constraint prob-
lems. In particular, if the initial constraint network isryedense (as in the structure
prediction problem), static methods don’t make an impact.

Decomposing into connected components and, more genartliging the spe-
cial structure of the constraint graph is discussed alrdadg long time. As their
main contribution, Will and Mann demonstrate that the idelammploying the graph
structure dynamically are applicable to binary CSPs, emefuding certain global
constraints, and are useful for constraint programmingpdrticular, this allows to
use the strategy in the complex problem of protein struatotenting. Furthermore,
they discuss several ideas going beyond previous appreaEbe example, dynamic
decomposition can yield a more compact representatiorecgahution space.

The paper shows that the introduced method can be generalimd that even
global constraints can be used. As shown the strategy ofndigiadly decomposing
the (sub-)problems into partial problems reduces the betage significantly. Since
partial problems can be efficiently detected using wellldisthed graph algorithms,
this results in a speed up of the search. Beyond this, theeutliscussed how the
graph structure can guide the variable and value seleati@nder to achieve many
balanced decompositions, e.g. by the identification o€aldtion points. Such con-
siderations go beyond previous work on constraint grapbm@osition.
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The application of dynamically decomposing search (DDSh&CPSP problem
shows the large capabilities of the method. First resulth wiprototypic implemen-
tation already show a significant speedup. Improving thitgfdr counting and enu-
merating optimal structures has important implicationglie investigation of protein
evolution and the folding process.

The paper gives evidence that the more general approacimafugally analyzing
the constraint graph during the search and employing itsiapgtructure has a large
potential for solution counting in constraint programmifg the authors conviction,
exploring these possibilities even further is an interegtield for future research.

1.8. Suffix Array and Weighted CSPs—by Matthias Zytnicki, Christine Gaspin,
and Thomas Schiex

The authors describe a new constraint that uses the datausgwsuffix array,
well-known in pattern matching. They show how it helps angmgethe question
of non-coding RNA detection (ncRNA), and more preciselylifig the best hybrid
in a duplex constraint. A ncRNA is usually represented by guekof letters, or
nucleotides A, C, G andT and it also containgiteractions—mainly A—T and C—
G—that are essential to its biological function.

The authors work under the assumption thatgtracture(namely, the set of in-
formation located on a ncRNA that discriminate for a givealdigical function) is
known. The aim of the work is to answer the following questioow can | get all the
candidates matching a given structure in a sequence thatomagin several billions
of nucleotides?

One of the main approaches to solve this problem uses &tatkistformation in a
context-free grammar that describes this structure [EDD9dwever, some complex
ncRNA families cannot be described within this formalisnd §lA 04] showed that
only NP-hard formalisms may correctly describe them. Thiefs a CSP model of
the problem.

However, usual queries give hundred of thousands of solsiémd, in practice, it
is impossible to exploit this huge amount of solutions.

This is why the authors use the weighted CSP (WCSP) [LAR Odhé&dism to
solve the ncRNA detection problem In WCSP a cost can be agsddio each domain
value in order to express preferencesvaiuation structureS = (E, &, <) specifies
the costs, whereEl = [0..k] C N is theset of costsThe highest cost can possibly
be oo, and it represents ainconsistency < is the usual operator oN and @, the
additionon E, is defined by/(a, b) € N2, a ® b = min{a + b, k}. AWCSP is a tuple
P = (S,X,D,C), where:S is the valuation structureY = {z1,...,z,} is a set of
n variables D = {D(z1),..., D(x,)} is the set of possiblealuesof each variable,
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or domains and the size of the largest onedisC = {ci, ..., c.} is the set ok soft
constraints. Assignments, which are defined as usual, camabonly be permitted
or forbidden by a (soft) constraint but also be admissibkaaicertain cost. The cost
of an assignments is the sum of costs over all constraints.

In the model, the variables represent psitionson the sequence of the elements
of structure. The initial domain of the variables will thine be equal to the size of
the sequence. The constraints enforce the presence ofgthedwlements of structure
between the specified variables. Within this model, a swuis a position for each
variable, such that all the elements of structure specifiethb constraints can be
found. The aim is to find all the solutions of the problem, assignments with a cost
less than a maximum cokt

The authors focus on thduplex constraint. This constraint ensures that there
exists a set of interactions between one sequencenftia sequengeand another
given sequence (tharget sequenqe It has two parameters: the target sequence and
the maximum number of errors in the interaction set. Sidyilarthe edit distance, the
number of errors of a hybridization is the number of nuclkbedithat do not interact
with any other nucleotide, plus the number of pairs of nuidiss associated through
a non-allowed interaction. This will be the cost given by toastraint. Theluplex
constraint involves four variables;, =, y. andy;. z; represents the start position of
the main stemy; represents its end position, whergasindy; represent the start and
end positions of the target stem. To solve the problem, thieoasi use a depth-first
branch-and-bound algorithm that maintains an extensidzBe€onsistency adapted
to soft constraints, calleldound arc consistendBAC*, [ZYT 06]).

The main contribution of the paper is to develop an algorifbmmaintaining
bound arc consistency for the duplex constraint. The algoruses the data structure
of suffix arrays. Suffix arrays have several advantages tnvemiore widely known
suffix trees. Theuffix treds a tree with edges labeled with words. This data structure
has been widely used in pattern matching algorithms. Giveexg the paths from
the root node of its suffix tree and its terminal nodes enutaeat the suffixes of
this text (cf.Fig. 1.6a)) for the stringAAACA). Basically, asuffix arrayis an array
where all the suffixes of a text are sorted through lexicolgi@prder (cf.Fig. 1.60b)),
which can be used to simulate a suffix tree. Both data strestaltow fast lookup of
sub-sequences.

The algorithm takes as an input the suffix argya wordw of sizen and a
maximum edit distancewax Err. It returns the minimum distance betweemnd any
subsequence &f, ormaz Err + 1 if this distance is greater thanaxErr. It uses a
hybridization cost matrix.y, that, given two nucleotides, returns the hybridization
penalty (0 being a perfect hybridizatiom)ys is the penalty cost for a non-hybridized
nucleotide.
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Figure 1.6. Two representations of the suffixes”"dfACA

After introducing a version of their algorithm the authoisadiss several optimiza-
tions, which save redundant work and take advantage ofrirdtion in the WCSP
about already reduced domains. In the future, the autherga@ing to compare their
method with other existing ones, and provide for an emgirsaluation of their
approach. An implementation is availablecairlit.toulouse.inra.fr/Darn/
index.php.

1.9. Supertree Construction with Constraint Programming: recent progress and
new challenges—by Patrick Prosser

One goal of biology is to build th&ree of Life(ToL), a representation of the evo-
lutionary history of every living thing. To date, biologishave catalogued about 1.7
million species, yet estimates of the total number of spa@ages from 4 to 100 mil-
lion. Of the 1.7 million species identified only about 80,&p@cies have been placed
in the ToL [PEN 03]. There are applications for the ToL: toghaehderstand how
pathogens become more virulent over time, how new diseasesye, and how rec-
ognizing species at risk of extinction. One approach toding the ToL is to combine
smaller trees into “supertrees”. Phylogenetic trees haenlcreated for relatively
small sets of species (se&ew.treebase.org). These trees are then combined to-
gether into supertrees.

The problem of supertree construction is to combine leaélle species trees,
where there is an intersection in the leaf labels of thosestreThe trees must be
combined whilst respecting all the arboreal relationshpsach tree. One of the first
techniques for supertree construction is the OneTree ithgo{NG 96]. Using the
same terminology, ifrig. 1.7 (1), (2) and (3) there are the tripl¢ab)c, (ac)b, and
(bc)a? and in (4) the far{abc).

The constraint programming model for this problem [GEN @3ased on the ob-

servation that any rooted species-treglteametric. Ultrametric trees can be uniquely
constructed from ultrametric matrices. In such matrit&sthe ultrametric condition

2. where(zy)z can be read as “x is closer to y than z”
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Figure 1.7. The four possible relationships between three leaf nodegriee.

holds, i.e. for any triplet, j, k the distanced/; ;, M, ., and)M, ; are either all equal
or two of them are equal and the remaining one is smaller [GHS Given an ul-
trametric tre€l” and its ultrametric matrix//, it holds that the most recent common
ancestornrca(i, j) of two leaf nodes andj in T has depth/; ;.

The constraint encoding starts by producingram n matrix M of constrained
integer variables, each with a domdinn — 1. Amongst the trees to be combined
there are exactly. species and each specie is mapped to an integer. TheM&friay
symmetric such that/; ; is the same constrained integer variable\as; and all di-
agonal elements/; ; are preset to zero. An ultrametric constraint is blanketedss
the array. This means that for allj, ¥ wherel < i < j < k < n the following
constraint is posted

Mi_’j < ]Vfi_’k = Mj,k V Mi,k < Miyj e Mj_’k\/
Mj_’k < Miyj e Mi,k V Miyj e Mi,k e Mj_’k

The species trees are then broken up, using the BreakUpithlgofNG 96], into
triples and fans. These triples and 3-fans are then usecdetik latisjunctions in the
above constraint. Th&/ variables are used as decision variables for finding a soiuti

After describing the basics, Prosser applies the modeldosttucting a supertree
of sea birds. Further, the author incorporates the anteltergence dates into the
into the constraint model. The idea follows the RANKEDTRHgoaithm [BIN 04],
which takes as input two species trees where interior nagessaigned integer values
such that if the divergence of species A and B predates trerghiwnce of species X
and Y then the most recent ancestor of A and B will be assignadiu less than the
most recent common ancestor of species X and Y.

The model is self limiting by its cubic size. There &¢n?) ternary constraints
and the same number of variables for the the optimizatiohlpro (minimizing fans).
The largest trees that were built have about 70 species. Astep is to make this
model more compact, and this might be done by implementingeaialized ultra-
metric constraint that involves three variables. This t@mst might propagate more
efficiently than as at present (using toolkit primitivesji@ach of the constraints might
take less space. To reduce the number of constraints;aay ultrametric constraint
that takes as arguments thex n array M could be introduced.
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The model is available atww.dcs.gla.ac.uk/“pat/superTrees. The author
shows the versatility of the constraint programming tedbgg by taking a model that
essentially does the same as OneTree. Then he modified kd@téorest as input,
dealt with ancestral divergence dates, managed to prodismdgions compactly, and
addressed an optimization problem (although this mightbeobiologically sound).
However, the model is limited in what it can do by its sheee sand this should be
addressed soon. The author believes that constraint pnogireg will be the technol-
ogy to retrieve the common information that is carried irtladise supertrees.

1.10. Bibliography

[BAC 01] BAckOFEN R., WiLL S., “Fast, Constraint-based Threading of HP-Sequences to
Hydrophobic Cores”CP2001 vol. 2239 ofLNCS p. 494-508, 2001.

[BAC 06] BACKOFENR., WILL S., “A Constraint-Based Approach to Fast and Exact Struc-
ture Prediction in Three-Dimensional Protein Model€pnstraints vol. 11, num. 1, p. 5—
30, 2006.

[BIN 04] BININDA-EMONDS O., Phylogenetic supertrees: Combining information to reveal
the Tree of Life Springer, 2004.

[BOR 06] BoRrTOLUSSIL., “Stochastic Concurrent Constraint Programmingfth Interna-
tional Workshop on Quantitative Aspects of ProgrammingdLeages 2006.

[CAL 06] CALZONE L., CHABRIER-RIVIER N., FAGESF., SOLIMAN S., “Machine learning
biochemical networks from temporal logic propertiesTransactions on Computational
Systems Biologwol. 4220 ofLNCS 2006.

[CLA99] CLARKE E. M., GRUMBERGO., PELEDD. A., Model Checking The MIT Press,
1999.

[Dal 04] DAL PaLU A., DoOVIER A., FOGOLARI F., “Constraint Logic Programming ap-
proach to protein structure predictiorBMC Bioinformaticsvol. 5, num. 186, 2004.

[Dal 05] DAL PALU A., DOVIERA., PONTELLI E., “A New Constraint Solver for 3D Lattices
and Its Application to the Protein Folding ProblerbPAR 2005vol. 3835 ofLNCS p. 48—
63, 2005.

[EDD 94] EDDY S., DURBIN R., “RNA sequence analysis using covariance modélsitleic
Acids Researchvol. 22, p. 2079-2088, 1994.

[FAG 04a] FAGESF., “From syntax to semantics in systems biology - towardsraated rea-
soning tools”,Converging Sciencesol. 3939 ofLNCS 2004.

[FAG 04b] FAGESF., SOLIMAN S., CHABRIER-RIVIER N., “Modelling and querying inter-
action networks in the biochemical abstract machine BIOGHA Journal of Biological
Physics and Chemistryol. 4, p. 64-73, 2004.

[GEN 03] GENTI. P., PROSSERP., MITH B. M., WEI C. W., “Supertree Construction with
Constraint Programming'CP2003 vol. 2833 ofLNCS p. 837-841, 2003.

[GIL 77] GiLLESPIED., “Exact Stochastic Simulation of Coupled Chemical Reas’, J. of
Physical Chemistryvol. 81, num. 25, 1977.



32 Future and trends of Constraint Programming

[GUS 97] GusFIELDD., Algorithms on Strings, Trees, and Sequen¢eambridge University
Press, 1997.

[KOH 99] KoHN K. W., “Molecular interaction map of the mammalian cell gyclontrol and
DNA repair systems”Molecular Biology of the Celivol. 10, p. 2703-2734, 1999.

[KRI02] KRIPPAHLL., BARAHONA P., “PSICO: Solving Protein Structures with Constraint
Programming and Optimization.Constraints vol. 7, num. 3-4, p. 317-331, 2002.

[KRI05] KRIPPAHL L., BARAHONA P., “Applying Constraint Programming to Rigid Body
Protein Docking.”,CP2005 vol. 3079 ofLNCS p. 373—-387, 2005.

[LAR 04] LARROSAJ., STHIEX T., “Solving weighted CSP by maintaining arc-consistency”
Artificial Intelligence vol. 159, p. 1-26, 2004.

[NG 96] NG M. P., WorMALD N. C., “Reconstruction of rooted trees from subtreedis-
crete Applied Mathemati¢csol. 69, p. 19-31, 1996.

[PEN 03] ReNNISIE., “Modernizing the Tree of Life”Sciencevol. 300, p. 1692-1697, 2003.

[PES 05] RESANT G., “Counting Solutions of CSPs: A Structural ApproachJCAI2005
p. 260-265, 2005.

[PRIO1] PriaMI C., REGEVA., SHAPIROE. Y., SLVERMAN W., “Application of a stochas-
tic name-passing calculus to representation and simulationolecular processes’Inf.
Process. Lettvol. 80, num. 1, p. 25-31, 2001.

[REG 01] REGEV A., SILVERMAN W., SHAPIRO E. Y., “Representation and simulation of
biochemical processes using the pi-calculus process r@yeliProceedings of the sixth
Pacific Symposium of Biocomputirg 459-470, 2001.

[REN 97] RENNERA., BORNBERGBAUER E., “Exploring the Fitness landscapes of lattice
proteins”, 2nd. Pacif. Symp. BiocomSingapore, 1997.

[ROT 96] RoTHD., “Onthe Hardness of Approximate Reasoningttif. Intelligence vol. 82,
num. 1-2, p. 273-302, 1996.

[SAR 93] SARASWAT V. A., Concurrent Constraint ProgrammindMIT press, 1993.

[SKO 04] soLNick J., KoLINSKI A., “Reduced models of proteins and their applications”,
Polymer vol. 45, p. 511-524, 2004.

[TYS91] TysonJ. J., “Modeling the cell division cycle: cdc2 and cyclindgrdctions”,Pro-
ceedings of the National Academy of Scieneek 88, p. 7328-7332, 1991.

[VIAO4] VIALETTE S., “On the computational complexity of 2-interval pattematching
problems”, Theoretical Computer Scienceol. 312, p. 223-249, 2004.

[WOL 06] WOLFINGERM., WiLL S., HOFACKERI., BACKOFENR., STADLER P., “Explor-
ing the lower part of discrete polymer model energy landssgp Europhysics Letters
vol. 74, num. 4, p. 725-732, 2006.

[ZYT 06] ZyTNICKI M., SCHIEX T., GASPINC., “A new local consistency for weighted CSP
dedicated to long domains$AC2006p. 394398, 2006.



