
Chapter 1

Constraint based methods for Bioinformatics

1.1. Introduction

Bioinformatics is a challenging area of research where every serious contribution
can have thousands of positive effects in medicine, agriculture, or industry. Biology,
in general, is a source of extremely interesting and computationally expensive tasks.
Most of the typical problems can be effectively formulated by using declarative lan-
guages and constraints. Constraints on finite domains (and on reals) are applied for
predicting spatial conformation of polymers, concurrent constraint programming can
be used for simulations of biological systems, and constraints on strings are employed
for the analysis of DNA sequences.

The WCB06 workshop was organized with the aim of sharing new theoretical and
practical results in the area and of summarizing new challenging problems for the
declarative programming and constraint community. The workshop is the successor
of the workshopsConstraints and Bioinformatics/Biocomputingcolocated with CP’97
and CP’98, and of the workshop WCB05 colocated with ICLP 2005.

The workshop benefited from the excellent invited talk of François Fages about
Using temporal logics with constraints to express biological properties of cell pro-
cesses(Sect. 1.2) and from the presentation of 7 contributed papers. The contribution
by Bortolussi and Policriti (Sect. 1.3) belongs to the field of Systems Biology, as well.
In the area ofStructural Predictionwe experienced four contribution: by Krippahl
and Barahona; by Elisabetta De Maria et al., by Dal Palù et al., and by Will and Mann
(Sect. 1.5–1.7). A work on suffix array by Zytnicki et al. (Sect. 1.8) and a paper
by Prosser on Supertree Construction (Sect. 1.9) concludedthe contributions to the

Chapter written by Alessandro Dal Palù, Agostino Dovier, François Fages, and Sebastian Will.

13

14 Future and trends of Constraint Programming

workshop. In the rest of this Chapter we report the abstract of the invited talk writ-
ten by François Fages (Sect. 1.2) whom we would like to thank again, and our short
summaries of the 7 contributed papers (Sect. 1.3–1.9).

The interest of the constraint community in bioinformaticsand biology is wit-
nessed by the considerable number of participants (35) although the workshop has
run in parallel with other extremely interesting workshops. During the final discus-
sion, we decided to apply for co-location of WCB07 at the nextedition of ICLP07
in Porto, Portugal, where we are confident to receive anotherstrong contribution to
this research area by the Logic Programming community. Other information, the pro-
ceedings and some pictures from the workshop can be found in the WCB06 web-site
http://www.dimi.uniud.it/dovier/WCB06. We conclude by acknowledging all
the PC members, the external referees, and all the participants. A particular thank to
the CP workshop chair Barry O’Sullivan, and to the two other editors of this book,
Frédéric Benhamou and Narendra Jussien.

1.2. On Using Temporal Logic with Constraints to Express Biological Properties
of Cell Processes—Invited talk by François Fages

One promise of systems biology is to model biochemical processes at a sufficiently
large scale so that the behavior of a complex system can be predicted under various
conditions inin silico experiments. The language approach to systems biology aims
at designing formal languages for describing biochemical mechanisms, processes and
systems at different levels of abstraction, and for providing automated reasoning tools
to assist the biologists [FAG 04a].

The pioneering use of theπ-calculus process algebra for modeling cell signaling
pathways in [REG 01], has been the source of inspiration of numerous works in the
line of process calculi and of their stochastic extensions.The biochemical abstract
machine BIOCHAM1 [FAG 04b] has been designed as a simplification of the process
calculi approach to model biological processes, using a language of reaction rules that
is both more natural to the biologists, and well suited to consider different dynamics
and use model-checking techniques.

In BIOCHAM, the rule-based language is used for modeling biochemical networks
at three abstraction levels:

1. BIOCHAM is a free software implemented in Prolog and distributed under the GPL li-
cense. It is downloadable on the web athttp://contraintes.inria.fr/BIOCHAM. The
BIOCHAM project is a joint work with Nathalie Chabrier-Rivier, Sylvain Soliman and Lau-
rence Calzone, with contributions from Sakina Ayata, Loïc Fosse, Lucie Gentils, Shrivaths
Rajagopalan and Nathalie Sznajder. In addition, support from the EU STREP project April-II
and the EU Network of Excellence REWERSE are warmly acknowledged.

WCB06 15

1) theBoolean semantics, where one associates to each object (protein, gene, etc.)
a Boolean variable representing its presence or absence in the system, and the reaction
rules are interpreted by a highly non-deterministicasynchronous transition system
representing competition between reactions;

2) theconcentration semantics, where one associates to each object a real number
representing its concentration, and the reaction rules areinterpreted with their kinetic
expressions by a set of non-linear ordinary differential equations (ODE);

3) thestochastic semantics, where one associates to each BIOCHAM object an in-
teger representing the number of molecules in the system, and the rules are interpreted
as a continuous time Markov chain.

One striking feature of this multi-level approach is that inthe three cases, temporal
logics can be used to formalize the biological properties ofthe system, and verify them
by different model-checking techniques. The thesis is that, to a large extend, one can
make the following identifications:

biological model= transition system,
biological property= temporal logic formula,

biological validation= model-checking.

At the Boolean level, theComputation Tree LogicCTL [CLA 99] allows one to ex-
pressqualitative propertiesabout the production of some protein (reachability), the
checkpoints for its production, the stability or oscillations for its presence, etc. These
properties are known from biological experiments in wild-life or mutated organisms.
Some of the most used CTL formulae are abbreviated in BIOCHAMas follows:

– reachable(P) stands forEF (P);

– steady(P) stands forEG(P);

– stable(P) stands forAG(P);

– checkpoint(Q,P) stands for!E(!Q U P);

– oscil(P) stands forAG((P ⇒ EF !P) ∧ (!P ⇒ EF P)).

In this setting, such properties can be checked with state-of-the-art symbolic model
checkers such as NuSMV using binary decision diagrams. The performances obtained
on a large model of the mammalian cell cycle control after Kohn’s map [KOH 99],
involving 800 rules and 500 variables, have been shown to be of the order of a few
tenths of seconds to compile the model, and check simple CTL formulae.

At the concentration level, it is used a first-order fragmentof Linear Time Logic
(LTL) with arithmetic constraintscontaining equality, inequality and arithmetic op-
erators ranging over the real values of concentrations and of their derivatives. For
instanceF([A]>10) expresses that the concentration ofA eventually gets above the
threshold value10. G([A]+[B]<[C])expresses that the concentration ofC is always

16 Future and trends of Constraint Programming

greater than the sum of the concentrations ofA andB. Oscillation properties, abbre-
viated asoscil(M,K), are defined as a change of sign of the derivative ofM at least
K times in the time horizon:

F((d[M]/dt > 0) & F((d[M]/dt < 0) & F((d[M]/dt > 0)...)))

The abbreviated formulaoscil(M,K,V) adds the constraint that the maximum con-
centration ofM must be above the thresholdV in at leastK oscillations.

Under the hypothesis that the initial state is completely defined, numerical integra-
tion methods (such as Runge-Kutta or Rosenbrock methods) provide a discrete sim-
ulation trace. This trace constitutes a linear Kripke structure in which LTL formulae
with constraints can be interpreted and model-checked [CAL06]. Since constraints
refer not only to concentrations, but also to their derivatives, we consider traces of the
form (〈t0, x0, dx0/dt〉, 〈t1, x1, dx1/dt〉, . . .) where at each time point,ti, the trace as-
sociates the concentration values of thexi’s and the values of their derivativesdxi/dt.

Beyond making simulations, and checking properties of the models, the temporal
properties can also be turned into specifications and temporal logic constraints for
automatically searching and learning modifications or refinements of the model when
incorporating new biological knowledge. This is implemented in BIOCHAM by a
combination of model-checking, search and machine learning techniques in the three
abstraction levels.

For instance, in a simple continuous model of the cell cycle after Tyson [TYS 91],
the search of parameter values for kinetic parametersk3 andk4, so that the concen-
tration of the cyclinCdc2-Cyclin p1 oscillates three times in the time horizon 150,
can be formalized as follows:

biocham: learn_parameters([k3, k4], [(0, 200), (0, 200)], 20,

oscil(Cdc2-Cyclin~{p1},3),150).

First values found that make oscil(Cdc2-Cyclin~{p1},3) true:

parameter(k3,_).

parameter(k4,_).

The system finds the parameter valuesk3 = 10 andk4 = 70 satisfying the spec-
ification. However, the corresponding curve depicted inFig. 1.1on the left exhibits
damped oscillations. The specification can be further refined by imposing a constraint
of period equal to 35 time units,period(Cdc2-Cyclin~{p1},35). This produces the
curve depicted inFig. 1.1on the right which is close to the original model.

These first results implemented in BIOCHAM are quite encouraging and moti-
vate further research in the direction of the formal specification of biological systems
and in the improvement of the search algorithms. A coupled model of the cell cycle
and the circadian cycle is under development along these lines in BIOCHAM with
applications to cancer chronotherapies.

WCB06 17

Figure 1.1. Concentration experimental results.

1.3. Modeling Biological Systems in Stochastic ConcurrentConstraint Program-
ming—by Luca Bortolussi and Alberto Policriti

In this work the authors show how stochastic Concurrent Constraint Programming
(sCCP—[BOR 06]) can be used for modeling biological systems. sCCP is based on
CCP [SAR 93], a process algebra where agents interact by posting constraints on the
variables of the system in the constraint store.

Computational Systems Biology is a field in which different modeling techniques
are used to capture the intrinsic dynamics of biological systems. Some of them are
based onDifferential Equations, mostly ordinary, and therefore they represent phe-
nomena ascontinuous and deterministic. On the other side there arestochastic and
discretemodels, that are usually simulated withGillespie’s algorithm[GIL 77]. In the
middle, there are hybrid approaches like theChemical Langevin Equation, a stochastic
differential equation that bridges partially these two opposite formalisms.

In the last few yearsstochastic process algebras(SPA) has emerged [PRI 01]. It is
based on the parallel between molecules and reactions on oneside and processes and
communications on the other side. SPA have been used to modelbiological systems
(e.g., biochemical reactions and genetic regulatory networks). Stochastic modeling of
biological systems works by associating a rate to each active reaction (or, in general,
interaction); rates are real numbers representing the frequency or propensity of inter-
actions. All active reactions then undergo a (stochastic) race condition, and the fastest
one is executed. These rates encode all the quantitative information of the system, and
simulations produce discrete temporal traces with variable delay between events.

In the author’s opinion, the advantages of using sCCP are twofold: the presence
of both quantitative information and computational capabilities at the level of the con-
straint systems and the presence of functional rates. This second feature, in particular,

18 Future and trends of Constraint Programming

allows to encode in the system different forms of dynamical behaviors, in a very flex-
ible way. Quantitative information, on the other hand, allows a more compact repre-
sentation of models, as part of the details can be described in relations at the level of
the store.

At high level, biological systems are composed of two ingredients: (biological)
entities and interactions among those entities. For instance, in biochemical reaction
networks, the molecules are the entities and the chemical reactions are the possible
interactions. In gene regulatory networks, instead, the entities are genes and regula-
tory proteins, while the interactions are production and degradation of proteins, and
repression and enhancement of gene’s expression. In addition, entities fall into two
separate classes: measurable and logical. Measurable entities are those present in a
certain quantity in the system, like proteins or other molecules. Logical entities, in-
stead, have a control function, hence they are neither produced nor degraded. Note
that logical entities are not real world entities, but rather they are part of the models.

Measurable entities are associated exactly to stream variables (unbounded tail lists
of time varying variables). Logical entities, instead, arerepresented as processes ac-
tively performing control activities. In addition, they can use variables of the con-
straint store either as control variables or to exchange information. Finally, each in-
teraction is associated to a process modifying the value of certain measurable stream
variables of the system. Associating variables to measurable entities means that they
are represented as part of the environment, while the activeagents are associated to
the different actions capabilities of the system. These actions have a certain duration
and a certain propensity to happen: a fact represented here in the standard way, i.e.
associating to each action a stochastic rate.

Constraints maintain information about the biological entities. This leads to the
definition of a general purpose library of processes that canbe used in the modeling
phase. However, this is only a part of the general picture, asthere are more complex
classes of biological systems that need to be modeled, like transport networks and
membranes. In addition, all these systems are strongly interconnected, and they must
be modeled altogether in order to extract deep information about living beings. The
authors believe that the flexibility of constraints makes sCCP a powerful general pur-
pose language that can be simply programmed, extended with libraries, and used to
model all these different classes of systems in a compact way.

Biochemical reactions can be challenging to be modeled, because proteins can
form very big complexes that are built incrementally. Therefore, the cell is populated
by a huge number of sub-complexes. Usually, these networks are described by biol-
ogists with diagrams, like Kohn maps,that are very compact,because they represent
complexes and sub-complexes implicitly. Constraints can be used to encode the calcu-
lus elegantly, by representing complexes implicitly, i.e.as lists of basic constituents.

WCB06 19

Functional rates can be used in enzymatic reactions to represent more complex
kinetic dynamics, allowing a more compact description of the networks. In this direc-
tion, the authors need to make deeper analysis of the relation between these different
kinetics in the context of stochastic simulation, in order to characterize the cases where
these different kinetics can be used equivalently. Notice that the use of complex rates
can be seen as an operation on the Markov Chain, replacing a subgraph with a smaller
one, hiding part of its complexity in the expression of rates. Finally, the authors plan to
implement a more powerful and fast interpreter for the language, using also all avail-
able tricks to increase the speed of stochastic simulations. Moreover, the authors plan
to tackle the problem of distributing efficiently the stochastic simulations of programs
written in sCCP.

1.4. Chemera: Constraints in Protein Structural Problems—by Pedro Barahona
and Ludwig Krippahl.

Chemera is a molecular modelling software package that includes the algorithms
BiGGER (Bimolecular complex Generation with Global Evaluation and Ranking), for
modelling protein interactions and protein complex structures [KRI 05], and PSICO
(Processing Structural Information with Constraint programming and Optimisation),
to integrate experimental and theoretical data to solve protein structures [KRI 02].
Authors’ contribution to the workshop focuses on the constraint programming as-
pects of Chemera, namelyconstrained docking, which allows the user to restrict the
search for protein-protein complex models in a manner consistent with the ambiguity
of some experimental data, and the processing of structuralconstraints to generate
approximate models of protein structures from heterogeneous data (e.g. spectroscopy,
site-directed mutagenesis, homology models, secondary structure prediction, reaction
mechanisms).

Protein-protein interactions play a central role in biochemical reactions. Modelling
software provides useful tools to help researchers elucidate protein interaction mecha-
nisms. A common trend in these approaches is to try to model interactions using only
knowledge derived from the structure and physico-chemicalproperties of the proteins
involved.

In modelling the structure of a protein, the common approaches have been either
theoretical, to try to predict the structure from the physical properties of the amino
acid sequence in the protein, possibly using homologies with other known structures,
or experimental, specializing on the processing of data from specific techniques like
Nuclear Magnetic Resonance (NMR) spectroscopy. PSICO aimsat bringing the two
approaches together by providing a flexible framework for processing geometrical
constraints and thus integrate information from all relevant sources in the modelling
of a protein structure. NMR data can be modelled as distance constraints [KRI 02]
or as torsion-angle constraints [KRI 05], homology or secondary structure prediction
data can be modelled as rigid-group constraints [KRI 05], energy functions can be

20 Future and trends of Constraint Programming

included in the local-search optimization stage, and aminoacid properties relevant
for protein folding, such as hydrophobicity, can be part of the enumeration heuristics
during constraint processing.

The core of protein docking algorithm is the representationof the protein shapes
and the measure of surface contact. The former is a straightforward representation
using a regular cubic lattice of cells. In BiGGER the cells donot correspond to nu-
merical values, but each cell can be either an empty cell, a surface cell, or a core
cell. The surface cells define the surface of the structure, and the overlap of surface
cells measures the surface of contact. BiGGER also models side-chain flexibility im-
plicitly by adjusting the core grid representation and allows for hard or soft docking
simulations depending on the nature of the interaction to model. Furthermore, this
representation and the search algorithm can take advantageof information about the
interaction to simultaneously improve the results and speed up the calculations.

Grids are composed of lists of intervals specifying the segments of similar cells
along thex coordinate. The fact that core cells can not overlap inducesa powerful
constraint that is able to prune the relative shifts betweenthe two structures. Moreover,
a branch and bound search is applied in order to optimize the overlap of surface cells,
and restrict the search to those regions where this overlap can be higher than that of
the lowest ranking model to be kept.

In some cases there is information about distances between points in the structures,
information that can be used to restrict the search region. The most common situation
is to have a set of likely distance constraints of which not all necessarily hold. To cope
with this, the program supports the constraint of the form:At least K atoms of set A
must be within R of at least one atom of set B, where set A is on one protein and set B
on the other, and R a distance value.

There are several sources of information that can help modelthe structure of a
protein. First of all, the amino acid sequences of the protein chains determines most
chemical bonds, restricting interatomic distances in manyatom pairs, angles formed
by atom triplets, of even larger groups of atoms that are effectively rigidly bound
together by the chemical bonds. NMR data provides several types of distance con-
straints by showing that two atoms must be close enough, by limiting the angles of
rotation around some chemical bonds, by suggesting limits for relative special orien-
tations of groups of atoms. Furthermore, homology with known structures or mod-
elling secondary structure can provide detailed information of the structure of parts of
the protein being modelled. This information identifies three types of constraints im-
plemented in the program: distance constraints between twoatoms, group constraints
that fix the relative positions of a group of atoms in a rigid configuration, and torsion
angle constraints that restrict the relative orientation of two groups joined together by
a chemical bond.

WCB06 21

A B C

Figure 1.2. Visualisation possibilities in Chemera. See text for details.

Chemera is the interface to all BiGGER and PSICO calculations and includes tools
for handlingElectrostatics(Fig. 1.2–A), Clustering and Scoring(Fig. 1.2–B) andWeb
Services— interface with several web services, to assign secondary structure ele-
ments, identify domains, display sequence conservation along the protein structure
(Fig. 1.2–C).

Constraint programming techniques in Chemera are seamlessly integrated into a
general molecular modelling package. This is an important aspect because research
and development in this area is very dependent on a close interaction with the end users
in the biochemistry community. Authors experience and workcurrently in progress
on several protein interactions (e.g. Aldehyde Oxidoreductase and Flavodoxin, Ferre-
doxin NADP Reductase and Ferredoxin, Fibrinogen and Gelatinase A) demonstrate
this for the BiGGER docking algorithm, which is currently available in Chemera 3.0
http://www.cqfb.fct.unl.pt/bioin/chemera/.

1.5. Exploiting Model Checking in Constraint-based Approaches to the Protein
Folding Problem—by Elisabetta De Maria, Agostino Dovier, Angelo Monta-
nari, and Carla Piazza

In this paper the authors show howModel Checkingcould be used to drive the
solution search in the protein folding problem encoded as a constraint optimization
problem. The application of the model checking techniques allows the authors to
distinguish between meaningful protein conformations andbad ones. This classifica-
tion of conformations could be exploited by constraint solvers to significatively prune
the search space of the protein folding problem. Furthermore, the approach seems
promising in the study of folding/energy landscapes of proteins.

The authors consider foldings (i.e., self avoiding walks) of proteins on 2D discrete
lattices. If the first two points are set (w.l.o.g., the authors setω(0) = (n, n) and
ω(1) = (n, n + 1)), then a folding on this lattice can be uniquely representedby a
sequence of directions with respect to the preceding one: left (l), forward (f), and
right (r) (seeFig. 1.3for an example)

22 Future and trends of Constraint Programming

n − 1 n n + 1
n − 1

n

n + 1

6

n − 1 n n + 1
n − 1

n

n + 1

-1

-1 -1

Figure 1.3. The foldingfrrfll onZ
2 lattice (left). Contacts and energy contributions of the

string HHPHHHPH w.r.t. the same folding (right).

The authors exploits their analysis using the HP energy model (although the method
can be employed on richer energy models such as the20 × 20 contact energy table
used in [Dal 04]). Such a model reduces the 20-letter alphabet of amino acids to a
two-letter alphabet{H, P}, where H (resp., P) represents a hydrophobic (resp., po-
lar) amino acid. The energy function states that the energy contribution of acontact
between two non consecutive amino acids is -1 if both of them are H amino acids, 0
otherwise (seeFig. 1.3—right).

The authors then introduce the notion of valid transformations among foldings.
Roughly speaking, a valid transformation of a given foldingf consists in selecting at
random a position inf and performing a rotation of the part off between this position
and the ending position (pivot move). Precisely, letf = f1 . . . fn, with fi ∈ {l, f, r}
for all 2 ≤ i ≤ n, be a folding of a sequences. A folding f ′ of s is obtained from
f through apivot movewith pivot k if f ′

i = fi for all i 6= k andf ′

k 6= fk. As an
example, consider the 6 pivot moves from foldinglfl in Fig. 1.4. It is possible to show
that pivot moves are ergodic, namely, they allow to cover theentire folding space.

1
2
3
45

ffl ffr fff fll frl lfl rfl

Figure 1.4. The 6 pivot moves from stringfll. Large bullets are the pivots.

The authors then define the notion of2D Protein Transition Systemof a stringP
of lengthn over{H, P} as a tupleMP = (Q, T, L), where

– Q is the set of all foldings of lengthn on the2n × 2n 2D lattice;

– T ⊆ Q×Q is the set of pairs of states(q1, q2) such thatq2 can be obtained from
q1 by a pivot move;

– L : Q → 2AP is a labeling function over the set AP of atomic propositionswhich
consists of the following predicates:2nd_l, 2nd_f, 2nd_r, . . . , nth_l, nth_f, nth_r,
plus the following three predicates:min_en, inter_en, max_en, where for all
2 ≤ i ≤ n, the predicateith_l (resp.,ith_f , ith_r) holds at a stateq if the i-th seg-
ment ofq has aleft (resp.,forward, right) orientation andmin_en (resp.,inter_en,
max_en) holds at a stateq if the energy ofq is minimum (resp., intermediate, 0).

WCB06 23

Given a 2D Protein Transition SystemMP = (Q, T, L) and a temporal logic for-
mulaf expressing some desirable property of the system, themodel checking problem
consists in finding the set of all states inQ satisfyingf [CLA 99]. When a state does
not satisfy a formula, model checking algorithms produce a counterexample that fal-
sifies it, thus providing an insight to understand failure causes and important clues for
fixing the problem. The authors restrict their attention to two well-known fragments
of the computation tree logicCTL∗, namely, thebranching timelogic CTL and the
linear timelogic LTL.

The authors then show how meaningful properties of 2D Protein Transition Sys-
tems can be encoded in both CTL and LTL. Here two of them are reported:

F1: Does it exist a path of length at mostk that reaches a state with minimum energy?
CTL :

∨k
i=0 E1X1 . . . EiXimin_en.

LTL (actually, it expresses¬F1): A(
∧k

i=0 X1 . . . Xi¬min_en).
F2: Is energy the minimum one? Alternatively, if energy is the maximum one, is it
possible to reach a state with minimum energy without passing through states with
intermediate energy?
CTL, LTL : A(max_en U min_en).

The authors finally show some results of the tests of the properties described using
a model checker written in SICStus Prolog. A faster implementation of the method
using onon-the-flymodel checking is under analysis.

1.6. Global Constraints for Discrete Lattices—by Alessandro Dal Palù, Agostino
Dovier, and Enrico Pontelli

Constraint solving on discrete lattices has gained momentum as a declarative and
effective approach to solve complex problems such as protein folding determination.
In particular, [Dal 05] presented a comprehensive constraint solving platform (COLA)
dealing with primitive constraints in discrete lattices. The authors discuss some pre-
liminary ideas on possible global constraints that can be introduced in a constraint
system like COLA. Various alternatives are presented and preliminary results con-
cerning the computational properties of the different global constraints are reported.

Discrete finite lattices are often used for approximated studies of 3D conformations
of molecular structures. These models are used, in particular, to compute reasonable
approximations of foldings of protein structures in 3D space [SKO 04]. Polymers are
laid out in particular subsets ofN

3. These subsets are often described by the vectors
that specify the set of neighbors of each point. Lattice models like FCC and chess
knight are among them.

The protein structure prediction in the context of discretelattice structures has
been studied as aConstraint Optimization Problemin the FCC lattice, using sim-
plified energy models [BAC 06, Dal 04]. In these approaches, each pointP of the

24 Future and trends of Constraint Programming

lattice is identified by a triplet offinite domain variables(Px, Py, Pz). It is proved
that mantaining an independent variable for each point coordinate limits the power of
propagationw.r.t. an approach (as in COLA) where a point is considered asa whole.

The authors propose a study targeting the problem of dealingwith global con-
straints in the general context of constraint solvers on lattice domain. Global con-
straints are proven constructs that facilitate the declarative encoding of problems; at
the same time, they allow the programmer to express knowledge about relationships
between variables, that can be effectively employed by the search algorithm to prune
infeasible parts of the solution search space. The authors introduce different global
constraints, and they study the complexity of their satisfiability and of the associated
propagation process. For each global constraintC (with variablesX1, . . . , Xn) ana-
lyzed, the authors are interested in verifying two properties:

– consistency (CON):C 6= ∅

– generalized arc consistency (GAC):∀i ∈ {1, . . . , n} ∀ai ∈ DXi

∃a1 ∈ DX1 · · · ∃ai−1 ∈ DXi−1∃ai+1 ∈ DXi+1 · · · ∃an ∈ DXn (a1, . . . , an) ∈ C

• The alldifferent global constraint is used to describe that all the variables
must assume different points. It is well known that consistency and propagation of
alldifferent is polynomial.

• The contiguous global constraint is used to describe the fact that a list of
variables represent lattice points that are adjacent (in terms of positions in the lattice
graph) and has the form:

contiguous(X1, . . . , Xn) = (DX1 × · · · × DXn) \
{(a1, . . . , an) : ∃ i. (1 ≤ i < n ∧ (ai, ai+1) /∈ E)}

whereE is the set of edges in a lattice, andX1, . . . , Xn is a list of variables (respec-
tively, with domainsDX1 , . . . , DXn).

The authors prove that verifying CON and GAC are in P.

• The saw constraint is used to require that each assignment to the variables
X1, . . . , Xn represents a self-avoiding walk (SAW) in the lattice and hasthe form:

saw(X1, . . . , Xn) = contiguous(X1, . . . , Xn) ∩ alldifferent(X1, . . . , Xn)

Thesaw constraint can be used, for example, to model the fact that the primary se-
quence of a protein can not create cycles when placed in the 3Dspace. The authors
prove that CON ofsaw global constraint is NP-complete, and, consequently, GAC is
NP-hard.saw can be replaced by a set of binary constraints. AC filtering onthem is
a trivial polynomial approximation for GAC filtering. Iterating alldifferent and
contiguous GAC filtering is a second polynomial filtering. However, these polyno-
mial filterings are weaker propagation thansaw GAC filtering.

WCB06 25

• The alldistant constraint formalizes the fact that different amino acids of
a protein have a specific volume occupancy. Givenn variablesX1, . . . , Xn, with
respective domainsDX1 , . . . , DXn , andn numbersc1, . . . , cn, admissible solutions
X1 = p1, . . . , Xn = pn are searched such thatpi andpj are located at distance at
leastci + cj , with 1 ≤ i, j ≤ n. More formally:

alldistant(X1, . . . , Xn, c1, . . . , cn) = (DX1 × · · · × DXn) \
{(a1, . . . , an) : ∃i, j. 1 ≤ i < j ≤ n ∧ ||ai − aj ||2 < (ci + cj)}

Note thatalldistant with c1 = 1
2
, . . . , cn = 1

2
, is equivalent toalldifferent.

The authors prove that the CON and GAC test are both NP-complete.

The authors also introduce and study therigid block constraintand prove that CON
and GAC are in P. Future work is needed for fast implementation of the polynomial
time algorithms and of efficient approximations of the NP-complete tests and filtering.

1.7. Counting Protein Structures by DFS with Dynamic Decomposition—by Se-
bastian Will and Martin Mann

The authors introduce depth-first search with dynamic decomposition for counting
all solutions of a binary CSP. In particular, they use their method for computing the
number of minimal energy structures for a discrete protein model.

The number of minimal energy structures of proteins in a discrete model is an
important measure, which is strongly related to protein stability. The enumeration of
optimal and suboptimal structures has applications in the study of protein evolution
and kinetics [REN 97, WOL 06]. Even the prediction of proteinstructures in sim-
plified protein models is a complex, NP-completecombinatorial optimization problem
that received lots of interest in the past. Importantly for the presented work, it can be
successfully modeled as Constraint Satisfaction Problem (CSP) [BAC 01, BAC 06].
Recently, counting solutions of a CSP in general and relatedproblems gained a lot
of interest over considering only satisfiability [ROT 96]. This is partly due to the
increased complexity of counting compared to deciding on satisfiability [PES 05].
For general CSPs and in particular for protein structure prediction, solving is NP-
complete. However, the counting of CSP solutions is an even harder problem in the
complexity class #P. This class is defined as the class of counting problems associated
with nondeterministic polynomial time computations.

Standard solving methods in constraint programming like Depth-First Search (DFS)
combined with constraint propagation are well suited for determining one solution, but
leave room for saving redundant work when counting all solutions. Here, the authors
present a method that is especially tailored for this case. Applied to the CSP for-
mulation of structure prediction, it improves exhaustive counting and enumeration of
optimal protein structures.

26 Future and trends of Constraint Programming

Figure 1.5. Search tree traversed by DFS (left) and DDS (right) search.

Basically, the new methoddynamicallydecomposes the constraint (sub-)problems
that emerge during the search into independent partial problems along connected com-
ponents of the problem’s associated constraint graph. Separate counting in the partial
problems still allows to infer the number of solutions of thecomplete problem.Fig. 1.5
illustrates the new decomposing strategy. For a simple example CSP, the standard
non-decomposing search yields a search treeFig. 1.5(left). For the same problem,
dynamically decomposing search yields the search tree inFig. 1.5(right). Even for the
small example the tree is much reduced. Note that at the same time it yields a sort of
compressed representation of the solution space.

Instead ofstaticallyexploiting only properties of the initial constraint graph, dy-
namic strategies analyze the emerging constraint graphs during the search and employ
their features. The authors believe this is a major advantage in many constraint prob-
lems. In particular, if the initial constraint network is very dense (as in the structure
prediction problem), static methods don’t make an impact.

Decomposing into connected components and, more generally, utilizing the spe-
cial structure of the constraint graph is discussed alreadyfor a long time. As their
main contribution, Will and Mann demonstrate that the ideasof employing the graph
structure dynamically are applicable to binary CSPs, even including certain global
constraints, and are useful for constraint programming. Inparticular, this allows to
use the strategy in the complex problem of protein structurecounting. Furthermore,
they discuss several ideas going beyond previous approaches. For example, dynamic
decomposition can yield a more compact representation of the solution space.

The paper shows that the introduced method can be generalized such that even
global constraints can be used. As shown the strategy of dynamically decomposing
the (sub-)problems into partial problems reduces the search tree significantly. Since
partial problems can be efficiently detected using well established graph algorithms,
this results in a speed up of the search. Beyond this, the authors discussed how the
graph structure can guide the variable and value selection in order to achieve many
balanced decompositions, e.g. by the identification of articulation points. Such con-
siderations go beyond previous work on constraint graph decomposition.

WCB06 27

The application of dynamically decomposing search (DDS) tothe CPSP problem
shows the large capabilities of the method. First results with a prototypic implemen-
tation already show a significant speedup. Improving the ability for counting and enu-
merating optimal structures has important implications for the investigation of protein
evolution and the folding process.

The paper gives evidence that the more general approach of dynamically analyzing
the constraint graph during the search and employing its special structure has a large
potential for solution counting in constraint programming. To the authors conviction,
exploring these possibilities even further is an interesting field for future research.

1.8. Suffix Array and Weighted CSPs—by Matthias Zytnicki, Christine Gaspin,
and Thomas Schiex

The authors describe a new constraint that uses the data structure suffix array,
well-known in pattern matching. They show how it helps answering the question
of non-coding RNA detection (ncRNA), and more precisely, finding the best hybrid
in a duplex constraint. A ncRNA is usually represented by a sequel of letters, or
nucleotides: A, C, G andT and it also containsinteractions—mainly A–T andC–
G—that are essential to its biological function.

The authors work under the assumption that thestructure(namely, the set of in-
formation located on a ncRNA that discriminate for a given biological function) is
known. The aim of the work is to answer the following question: how can I get all the
candidates matching a given structure in a sequence that maycontain several billions
of nucleotides?

One of the main approaches to solve this problem uses statistical information in a
context-free grammar that describes this structure [EDD 94]. However, some complex
ncRNA families cannot be described within this formalism and [VIA 04] showed that
only NP-hard formalisms may correctly describe them. This favors a CSP model of
the problem.

However, usual queries give hundred of thousands of solutions and, in practice, it
is impossible to exploit this huge amount of solutions.

This is why the authors use the weighted CSP (WCSP) [LAR 04] formalism to
solve the ncRNA detection problem In WCSP a cost can be associated to each domain
value in order to express preferences. Avaluation structureS = 〈E,⊕,≤〉 specifies
the costs, where:E = [0..k] ⊆ N is theset of costs. The highest costk can possibly
be∞, and it represents aninconsistency. ≤ is the usual operator onN and⊕, the
additiononE, is defined by∀(a, b) ∈ N

2, a⊕ b = min{a + b, k}. A WCSP is a tuple
P = 〈S,X ,D, C〉, where:S is the valuation structure;X = {x1, . . . , xn} is a set of
n variables; D = {D(x1), . . . , D(xn)} is the set of possiblevaluesof each variable,

28 Future and trends of Constraint Programming

or domains, and the size of the largest one isd; C = {c1, . . . , ce} is the set ofe soft
constraints. Assignments, which are defined as usual, can now not only be permitted
or forbidden by a (soft) constraint but also be admissible with a certain cost. The cost
of an assignments is the sum of costs over all constraints.

In the model, the variables represent thepositionson the sequence of the elements
of structure. The initial domain of the variables will therefore be equal to the size of
the sequence. The constraints enforce the presence of the wished elements of structure
between the specified variables. Within this model, a solution is a position for each
variable, such that all the elements of structure specified by the constraints can be
found. The aim is to find all the solutions of the problem, i.e.assignments with a cost
less than a maximum costk.

The authors focus on theduplex constraint. This constraint ensures that there
exists a set of interactions between one sequence (themain sequence) and another
given sequence (thetarget sequence). It has two parameters: the target sequence and
the maximum number of errors in the interaction set. Similarly to the edit distance, the
number of errors of a hybridization is the number of nucleotides that do not interact
with any other nucleotide, plus the number of pairs of nucleotides associated through
a non-allowed interaction. This will be the cost given by theconstraint. Theduplex
constraint involves four variables:xi, xj , yk andyl. xi represents the start position of
the main stem,xj represents its end position, whereasyk andyl represent the start and
end positions of the target stem. To solve the problem, the authors use a depth-first
branch-and-bound algorithm that maintains an extension of2B-consistency adapted
to soft constraints, calledbound arc consistency(BAC*, [ZYT 06]).

The main contribution of the paper is to develop an algorithmfor maintaining
bound arc consistency for the duplex constraint. The algorithm uses the data structure
of suffix arrays. Suffix arrays have several advantages over the more widely known
suffix trees. Thesuffix treeis a tree with edges labeled with words. This data structure
has been widely used in pattern matching algorithms. Given atext, the paths from
the root node of its suffix tree and its terminal nodes enumerate all the suffixes of
this text (cf.Fig. 1.6(a)) for the stringAAACA). Basically, asuffix arrayis an array
where all the suffixes of a text are sorted through lexicographic order (cf.Fig. 1.6(b)),
which can be used to simulate a suffix tree. Both data structures allow fast lookup of
sub-sequences.

The algorithm takes as an input the suffix arrayS, a wordw of size n and a
maximum edit distancemaxErr. It returns the minimum distance betweenw and any
subsequence ofT , or maxErr + 1 if this distance is greater thanmaxErr. It uses a
hybridization cost matrixchyb, that, given two nucleotides, returns the hybridization
penalty (0 being a perfect hybridization).cins is the penalty cost for a non-hybridized
nucleotide.

WCB06 29

CA

A
CAA

CA

ACA

1

4

3

2 5

6

(a) suffix tree

1
2
3
4
5

i suf lcp
0

text
A
A AA CA
A A CA
A CA
CA

4
0
1
2
3

1
2
1
0

(1, 4)
a 1-interval

(2, 3)

letters((1, 4) → (2, 3)) = A

a 2-interval

(b) suffix array

Figure 1.6. Two representations of the suffixes ofAAACA

After introducing a version of their algorithm the authors discuss several optimiza-
tions, which save redundant work and take advantage of information in the WCSP
about already reduced domains. In the future, the authors are going to compare their
method with other existing ones, and provide for an empirical evaluation of their
approach. An implementation is available atcarlit.toulouse.inra.fr/Darn/

index.php.

1.9. Supertree Construction with Constraint Programming: recent progress and
new challenges—by Patrick Prosser

One goal of biology is to build theTree of Life(ToL), a representation of the evo-
lutionary history of every living thing. To date, biologists have catalogued about 1.7
million species, yet estimates of the total number of species ranges from 4 to 100 mil-
lion. Of the 1.7 million species identified only about 80,000species have been placed
in the ToL [PEN 03]. There are applications for the ToL: to help understand how
pathogens become more virulent over time, how new diseases emerge, and how rec-
ognizing species at risk of extinction. One approach to building the ToL is to combine
smaller trees into “supertrees”. Phylogenetic trees have been created for relatively
small sets of species (seewww.treebase.org). These trees are then combined to-
gether into supertrees.

The problem of supertree construction is to combine leaf labelled species trees,
where there is an intersection in the leaf labels of those trees. The trees must be
combined whilst respecting all the arboreal relationshipsin each tree. One of the first
techniques for supertree construction is the OneTree algorithm [NG 96]. Using the
same terminology, inFig. 1.7 (1), (2) and (3) there are the triples(ab)c, (ac)b, and
(bc)a2 and in (4) the fan(abc).

The constraint programming model for this problem [GEN 03] is based on the ob-
servation that any rooted species-tree isultrametric. Ultrametric trees can be uniquely
constructed from ultrametric matrices. In such matricesM , the ultrametric condition

2. where(xy)z can be read as “x is closer to y than z”

30 Future and trends of Constraint Programming

Figure 1.7. The four possible relationships between three leaf nodes ina tree.

holds, i.e. for any tripleti, j, k the distancesMi,j, Mi,k, andMk,j are either all equal
or two of them are equal and the remaining one is smaller [GUS 97]. Given an ul-
trametric treeT and its ultrametric matrixM , it holds that the most recent common
ancestormrca(i, j) of two leaf nodesi andj in T has depthMi,j .

The constraint encoding starts by producing ann × n matrix M of constrained
integer variables, each with a domain1..n − 1. Amongst the trees to be combined
there are exactlyn species and each specie is mapped to an integer. The arrayM is
symmetric such thatMi,j is the same constrained integer variable asMj,i and all di-
agonal elementsMi,i are preset to zero. An ultrametric constraint is blanketed across
the array. This means that for alli, j, k where1 ≤ i < j < k ≤ n the following
constraint is posted

Mi,j < Mi,k = Mj,k ∨ Mi,k < Mi,j = Mj,k∨

Mj,k < Mi,j = Mi,k ∨ Mi,j = Mi,k = Mj,k

The species trees are then broken up, using the BreakUp algorithm [NG 96], into
triples and fans. These triples and 3-fans are then used to break disjunctions in the
above constraint. TheM variables are used as decision variables for finding a solution.

After describing the basics, Prosser applies the model for constructing a supertree
of sea birds. Further, the author incorporates the ancestral divergence dates into the
into the constraint model. The idea follows the RANKEDTREE algorithm [BIN 04],
which takes as input two species trees where interior nodes are assigned integer values
such that if the divergence of species A and B predates the divergence of species X
and Y then the most recent ancestor of A and B will be assigned avalue less than the
most recent common ancestor of species X and Y.

The model is self limiting by its cubic size. There areO(n3) ternary constraints
and the same number of variables for the the optimization problem (minimizing fans).
The largest trees that were built have about 70 species. A next step is to make this
model more compact, and this might be done by implementing a specialized ultra-
metric constraint that involves three variables. This constraint might propagate more
efficiently than as at present (using toolkit primitives) and each of the constraints might
take less space. To reduce the number of constraints, ann-ary ultrametric constraint
that takes as arguments then × n arrayM could be introduced.

WCB06 31

The model is available atwww.dcs.gla.ac.uk/~pat/superTrees. The author
shows the versatility of the constraint programming technology, by taking a model that
essentially does the same as OneTree. Then he modified it to take a forest as input,
dealt with ancestral divergence dates, managed to produce all solutions compactly, and
addressed an optimization problem (although this might notbe biologically sound).
However, the model is limited in what it can do by its sheer size, and this should be
addressed soon. The author believes that constraint programming will be the technol-
ogy to retrieve the common information that is carried in allthese supertrees.

1.10. Bibliography

[BAC 01] BACKOFEN R., WILL S., “Fast, Constraint-based Threading of HP-Sequences to
Hydrophobic Cores”,CP2001, vol. 2239 ofLNCS, p. 494–508, 2001.

[BAC 06] BACKOFEN R., WILL S., “A Constraint-Based Approach to Fast and Exact Struc-
ture Prediction in Three-Dimensional Protein Models”,Constraints, vol. 11, num. 1, p. 5–
30, 2006.

[BIN 04] B ININDA -EMONDS O., Phylogenetic supertrees: Combining information to reveal
the Tree of Life, Springer, 2004.

[BOR 06] BORTOLUSSI L., “Stochastic Concurrent Constraint Programming”,4th Interna-
tional Workshop on Quantitative Aspects of Programming Languages, 2006.

[CAL 06] CALZONE L., CHABRIER-RIVIER N., FAGES F., SOLIMAN S., “Machine learning
biochemical networks from temporal logic properties”,Transactions on Computational
Systems Biology, vol. 4220 ofLNCS, 2006.

[CLA 99] CLARKE E. M., GRUMBERG O., PELED D. A., Model Checking, The MIT Press,
1999.

[Dal 04] DAL PALÙ A., DOVIER A., FOGOLARI F., “Constraint Logic Programming ap-
proach to protein structure prediction”,BMC Bioinformatics, vol. 5, num. 186, 2004.

[Dal 05] DAL PALÙ A., DOVIER A., PONTELLI E., “A New Constraint Solver for 3D Lattices
and Its Application to the Protein Folding Problem”,LPAR 2005, vol. 3835 ofLNCS, p. 48–
63, 2005.

[EDD 94] EDDY S., DURBIN R., “RNA sequence analysis using covariance models”,Nucleic
Acids Research, vol. 22, p. 2079–2088, 1994.

[FAG 04a] FAGES F., “From syntax to semantics in systems biology - towards automated rea-
soning tools”,Converging Sciences, vol. 3939 ofLNCS, 2004.

[FAG 04b] FAGES F., SOLIMAN S., CHABRIER-RIVIER N., “Modelling and querying inter-
action networks in the biochemical abstract machine BIOCHAM”, Journal of Biological
Physics and Chemistry, vol. 4, p. 64–73, 2004.

[GEN 03] GENT I. P., PROSSERP., SMITH B. M., WEI C. W., “Supertree Construction with
Constraint Programming”,CP2003, vol. 2833 ofLNCS, p. 837–841, 2003.

[GIL 77] GILLESPIE D., “Exact Stochastic Simulation of Coupled Chemical Reactions”, J. of
Physical Chemistry, vol. 81, num. 25, 1977.

32 Future and trends of Constraint Programming

[GUS 97] GUSFIELD D., Algorithms on Strings, Trees, and Sequences, Cambridge University
Press, 1997.

[KOH 99] KOHN K. W., “Molecular interaction map of the mammalian cell cycle control and
DNA repair systems”,Molecular Biology of the Cell, vol. 10, p. 2703–2734, 1999.

[KRI 02] K RIPPAHL L., BARAHONA P., “PSICO: Solving Protein Structures with Constraint
Programming and Optimization.”,Constraints, vol. 7, num. 3–4, p. 317–331, 2002.

[KRI 05] K RIPPAHL L., BARAHONA P., “Applying Constraint Programming to Rigid Body
Protein Docking.”,CP2005, vol. 3079 ofLNCS, p. 373–387, 2005.

[LAR 04] L ARROSAJ., SCHIEX T., “Solving weighted CSP by maintaining arc-consistency”,
Artificial Intelligence, vol. 159, p. 1–26, 2004.

[NG 96] NG M. P., WORMALD N. C., “Reconstruction of rooted trees from subtrees”,Dis-
crete Applied Mathematics, vol. 69, p. 19–31, 1996.

[PEN 03] PENNISI E., “Modernizing the Tree of Life”,Science, vol. 300, p. 1692–1697, 2003.

[PES 05] PESANT G., “Counting Solutions of CSPs: A Structural Approach”,IJCAI2005,
p. 260–265, 2005.

[PRI 01] PRIAMI C., REGEV A., SHAPIRO E. Y., SILVERMAN W., “Application of a stochas-
tic name-passing calculus to representation and simulation of molecular processes”,Inf.
Process. Lett., vol. 80, num. 1, p. 25–31, 2001.

[REG 01] REGEV A., SILVERMAN W., SHAPIRO E. Y., “Representation and simulation of
biochemical processes using the pi-calculus process algebra”, Proceedings of the sixth
Pacific Symposium of Biocomputing, p. 459–470, 2001.

[REN 97] RENNER A., BORNBERG-BAUER E., “Exploring the Fitness landscapes of lattice
proteins”,2nd. Pacif. Symp. Biocomp., Singapore, 1997.

[ROT 96] ROTH D., “On the Hardness of Approximate Reasoning”,Artif. Intelligence, vol. 82,
num. 1–2, p. 273-302, 1996.

[SAR 93] SARASWAT V. A., Concurrent Constraint Programming, MIT press, 1993.

[SKO 04] SKOLNICK J., KOLINSKI A., “Reduced models of proteins and their applications”,
Polymer, vol. 45, p. 511–524, 2004.

[TYS 91] TYSON J. J., “Modeling the cell division cycle: cdc2 and cyclin interactions”,Pro-
ceedings of the National Academy of Sciences, vol. 88, p. 7328–7332, 1991.

[VIA 04] V IALETTE S., “On the computational complexity of 2-interval patternmatching
problems”,Theoretical Computer Science, vol. 312, p. 223–249, 2004.

[WOL 06] WOLFINGER M., WILL S., HOFACKER I., BACKOFEN R., STADLER P., “Explor-
ing the lower part of discrete polymer model energy landscapes”, Europhysics Letters,
vol. 74, num. 4, p. 725–732, 2006.

[ZYT 06] ZYTNICKI M., SCHIEX T., GASPIN C., “A new local consistency for weighted CSP
dedicated to long domains”,SAC2006, p. 394–398, 2006.

