
Concurrent Constraint Programming and

Non-Commutative Logic

Paul Ruet

?

, Fran�cois Fages

LIENS-CNRS, Ecole Normale Sup�erieure

45 rue d'Ulm, 75005 Paris, France

Phone : +33 1 44 32 20 83, Fax : +33 1 44 32 20 80

Email : fruet,fagesg@dmi.ens.fr

Abstract. This paper presents a connection between the intuitionis-

tic fragment of a non-commutative version of linear logic introduced by

the �rst author (NLI) and concurrent constraint programming (CC).

We re�ne existing logical characterizations of operational aspects of CC,

by providing a logical interpretation of �ner observable properties of

CC programs, namely stores, successes and suspensions.

1 Introduction

The class CC(X) of Concurrent Constraint programming languages introduced

by Saraswat [29] in 1987 arises as a natural combination of constraint logic

programming [11] and concurrent logic programming, with a synchronization

mechanism based on constraint entailment [16]. CC programming is a model

of concurrent computation, where agents communicate through a shared store,

represented by a constraint, which expresses some partial information on the

values of the variables involved in the computation. An agent may add informa-

tion c to the store (agent tell(c)), or ask the store to entail a given constraint

(c ! A). Communication is asynchronous: agents can remain idle, and senders

(constraints c) are not blocking. The synchronization mechanism of CC lan-

guages gives an account for the co-routining facilities of implemented CLP sys-

tems, like the freeze predicate of Prolog, the delay mechanism of CLP(R) [11], or

the constraint propagation schemes of CLP(FD). It also opens, to some extent,

constraint programming to a new �eld of applications which are traditional in

concurrent programming, like reactive systems and protocol speci�cations.

From the logic programming tradition however, the operational aspects of

CC programming should also be closely connected to a logical semantics, via the

program as formula, computation-as-proof-search paradigm. This paradigm, �rst

introduced for the Horn clause fragment of classical logic, has been smoothly ap-

plied to constraint logic programming, where the logical nature of the constraint

system extends to the goals and program declarations, and states strong connec-

tions between operational semantics and entailment [11, 16, 32, 6]. For instance,

success constraints (i.e. �nal states of computations) can be observed logically :

?

Current a�liation : McGill University. Post-doctoral fellowship from the INRIA.

any success entails the initial state (modulo the logical translation of the pro-

gram P

?

and the constraint system C); conversely any constraint c entailing a

goal G is covered (again modulo P

?

and C) by a �nite set of successes c

1

: : : c

n

,

i.e. C ` 8(c

1

: : : c

n

) c). Such results make easier the design and understanding

of programs, and provide useful tools for reasoning about them.

Maher in [16] was the �rst to suggest that the synchronization mechanism

in concurrent logic programming could be given a logical interpretation. In [15]

Lincoln and Saraswat give an interesting connection between the observation of

the stores of CC agents and entailment in intuitionistic logic (IL). The basic

idea is to express agents and observations by formulas and to read a sequent

� ` A as \the agent � satis�es the test A". Their main result establishes a

logical interpretation of the observation of the stores entailed in each branch of

the derivation tree : for any constraint c and any (formula associated to a CC)

agent � , � `

IL

c i� � �!

cc

(c

1

^ B

1

) _ ::: _ (c

n

^ B

n

) and for all 1 � i � n

C ` 8(c

i

! c).

However such a logical semantics does not capture other notions of observa-

tions. Actually let a success of an agent A be a store c such that A evolves to c,

and let a suspension be an agent B = c k (d! A) such that A evolves to B and

c does not entail d (the exact de�nition is slightly longer). The three programs

p(x) = x � 1, p(x) = x � 1 k p(x), and p(x) = x � 1 k (false ! A) have the

same stores and are therefore indistinguishable, although the �rst one succeeds,

the second one loops and the third one suspends. As shown in [26] through ex-

amples the observation of successes or suspensions is in fact not expressible in

intuitionistic logic. Roughly speaking, the interpretation of CC agents as intu-

itionistic formulas stumbles against the structural rule of (left) weakening :

� ` B

�;A ` B

Girard's linear logic [9] enables a control on the weakening and contraction

structural rules of classical and intuitionistic logics. It seems therefore natural

to interpret concurrent constraint programs in linear logic. While moving to

linear logic, it is very natural to move to a non-monotonic version of CC at the

same time, where constraints are consumed, but where monotonic CC can be

easily encoded. Such variants have been introduced by Saraswat and Lincoln in

a higher-order setting [30], further studied in [3], where the logic of constraints

is linear logic : in this version, constraints can be consumed, and the language

is therefore closer to process calculi like Milner's �-calculus [20].

In [7, 26], a �rst-order non-monotonic variant, LCC (linear CC), is de�ned

in which both stores and successes are characterized in ILL (intuitionistic linear

logic). However suspensions cannot be characterized in ILL, because from

A
 (c(B) ` c((A
B)

one cannot conclude that A k (c! B)suspends : A might add enough informa-

tion into the store to unblock the constraint c (for instance c
 (c(1) ` c(

(c
1) but c
 (c(1) ` 1 as well, and indeed the agent c k c! 1 succeeds with

1, and does not suspend).

There is a lack of a \sequential" connective, that is a non-commutative one.

The Pomset logic of Retor�e [25] combines commutativity and non-commutativity,

however it does not provide an immediate solution to our problem, since the non-

commutative before connective < enjoys the same `porosity' property as linear

implication : A
 (c < B) ` c < (A
B).

In this paper we show that the intuitionistic fragment of a mixed non-

commutative version of linear logic (NLI) copes with this di�culty (Section 4) :

this logic combines both commutative and non-commutative connectives, and

is based on previous proposals of de Groote [5] and of the �rst author [27]. Its

classical version, which extends commutative linear logic on one hand and the

cyclic non-commutative linear logic of Girard and Yetter [10, 33] on the other

hand, is presented in [28]. Here we just consider an intuitionistic fragment : NLI.

We show that the stores, the successes and the suspensions of an LCC com-

putation can be characterized in NLI (Section 6) and that these results hold for

usual monotonic CC as well.

2 Preliminaries on concurrent constraint programming

2.1 Monotonic CC

De�nition 1 (Intuitionistic constraint system) A constraint system is a

pair (C;`

C

), where :

{ C is a set of formulas (the constraints) built from a set V of variables, a

set � of function and relation symbols, with logical operators : 1 (true), the

conjunction ^ and the existential quanti�er 9;

{ is a subset of C �C, which de�nes the non-logical axioms of the constraint

system. Instead of (c; d) 2

C

, we write c

C

d.

{ `

C

is the least subset of C

?

� C containing

C

and closed by the rules of

intuitionistic logic (IL) for 1, ^ and 9.

In the following, c; d; e : : : will denote constraints. Note that the intuitionistic

logical framework (rather than the classical one) is not essential, it is simply suf-

�cient, taking into account that the constraints are only built from conjunctions

and existential quanti�cations.

De�nition 2 (Syntax) The syntax of CC agents is given by the following gram-

mar:

A ::= p(x) j tell(c) j (A k A) j A+A j 9xA j c! A

where 1 stands for inaction, k for parallel composition, + for non-deterministic

choice, 9 for variable hiding and ! for blocking ask. The atomic agents p(x) : : :

are called process names or procedure names.

Recursion is obtained by declarations:

D ::= � j p(x) = A j D;D

We make the very natural hypothesis that in a declaration p(x) = A, all the

free variables occurring in A have a free occurrence in p, and that in a relation

c

1

: : : c

n

C

c, all the free variables occurring in c have a free occurrence in

c

1

: : : c

n

. Notice that this is exactly the meaning associated with the Horn clauses

in the logic programming languages, for instance : the variables which are free in

the body but not in the head are considered (implicitly in the syntax, explicitly

in the semantics) as existentially quanti�ed in the body (because universally in

the clause).

The operational semantics is de�ned on con�gurations (rather than agents)

where the store is distinguished from agents:

De�nition 3 (Con�gurations) A con�guration is a triple (x; c;�), where x

is a set of variables, c is a constraint, and � a multi-set of agents.

In a con�guration (x; c;�), x denotes the set of fresh variables and c is the

store. A (resp. B) denotes the set of agents (resp. con�gurations).

The semantics is de�ned by a transition system which does not take into

account speci�c evaluation strategies. The transition system is given in the style

of the CHAM [2] (see also [24]). A congruence relation between con�gurations

is thus distinguished from the very transition relation (between con�gurations).

In this presentation the constraint system is implicit.

De�nition 4 The structural congruence � is the least congruence such that:

Parallel composition

(x; c;A k B; �) � (x; c;A;B; �)

Inaction

(x; c; 1; �) � (x; c;�)

�-Conversion

(x; y; c;�) � (x; z; c[z=y];� [z=y])

Hiding

y 62 fv(c; �) [x

(x; c; 9yA;�) � (x; y; c;A; �)

y 62 fv(c; �)

(x; y; c;�) � (x; c;�)

The transition relation �! is the least transitive relation such that:

Tell

(x; c; tell(d); �) �! (x; c ^ d;�)

Ask

c `

C

d

(x; c; d! A; �) �! (x; c;A;�)

Declarations

(p(y) = A) 2 P

(x; c; p(y); �) �! (x; c;A; �)

Congruence

(x

0

; c

0

;�

0

) � (x; c;�) �! (y; d;�) � (y

0

; d

0

;�

0

)

(x

0

; c

0

;�

0

) �! (y

0

; d

0

;�

0

)

Non-determinism

(blind choice)

(x; c;A+B; �) �! (x; c;A;�)

(x; c;A+B; �) �! (x; c;B; �)

As usual, the precise operational semantics depends on the choice of observ-

ables. We shall consider the stores, successes and suspensions:

De�nition 5 (Observables) The store of a con�guration (x; c;�) is the con-

straint 9xc. We shall say that 9xc is accessible from the agent A if there exists

a multi-set of agent � such that (;; 1;A) �! (x; c;�).

A success for an agent A is a constraint c such that (;; 1;A) �! (;; c; 1);

A suspension for A is a con�guration (x; c; d

1

! A

1

; : : : ; d

n

! A

n

) such

that (;; 1;A) �! (x; c; d

1

! A

1

; : : : ; d

n

! A

n

) and for no i, c `

C

d

i

.

Note that the non-deterministic agent A + B, can behave either like A or

like B. The operator of non-deterministic choice +, called blind choice, is thus

di�erent from the one-step guarded choice de�ned by:

A �! A

0

A+B �! A

0

and

B �! B

0

A+B �! B

0

.

As remarked in [12, 8] the di�erence between (backtracking) non-determinism

and (committed-choice) in-determinism arises in the way observations are de-

�ned, more than the way transitions are de�ned. However backtracking non-

determinism generally refers to the blind choice rule, which is the only choice

rule considered in this paper. (In-determinism de�nitely requires more material,

namely proofs semantics, at least for the observation of suspensions, and this

goes beyond the scope of the present paper.)

An essential property of this calculus is that the execution is monotonic :

the informations contained in the store are not consumed by the communication

rule (ask):

Proposition 6 (Monotonicity of the store [31])

{ If (x; c;�) �! (y; d;�) then 9yd `

C

9xc.

Proposition 7 (Monotonicity of the transitions [31])

{ If (x; c;�) �! (y; d;�), then for every multi-set of agents � and every con-

straint e, (x; c ^ e;�;�) �! (y; d ^ e;�;�).

These properties provide CC with a denotational semantics where the agents

are seen as closure operators on the semi-lattice of constraints [31, 12]. The prop-

erty of monotonicity can however be dropped from CC programming, by con-

sidering linear constraint systems where constraints are formulas in linear logic

[9].

2.2 Linear CC

Non-monotonic variants of CC have been introduced by Saraswat and Lincoln

[30], then further studied in [3].

As for the monotonic CC, we de�ne the constraint systems, the agents, the

con�gurations and the transition system.

De�nition 8 (Linear constraint system) A linear constraint system is a pair

(C;`

C

), where:

{ C is a set of formulas (the linear constraints) built from a set V of vari-

ables, a set � of function and relation symbols, with logical operators : 1, the

multiplicative conjunction
, the existential quanti�er 9 and the exponential

connective !;

{

C

is a subset of C�C which de�nes the non-logical axioms of the constraint

system. 1 is the neutral element of
.

{ `

C

is the least subset of C

?

� C containing

C

and closed by the following

rules (fv(A) denotes the set of free variables occurring in A):

c ` c

�; c ` d � ` c

�;� ` d

` 1

� ` c

�; 1 ` c

�; c

1

; c

2

` c

�; c

1

 c

2

` c

� ` c

1

� ` c

2

�;� ` c

1

 c

2

� ` c

� ` 9xc

�; c ` d

x 62 fv(�; d)

�; 9xc ` d

�; c ` d

�; !c ` d

!� ` d

!� `!d

� ` d

�; !c ` d

�; !c; !c ` d

�; !c ` d

These are the rules of intuitionistic linear logic (ILL) for 1,
, 9 and ! (see

[9]).

The de�nition of LCC agents

1

, declarations and con�gurations is the same as

in the monotonic case (Section 2.1), and we assume again that in a declaration

1

We have chosen to limitate the use of ! to constraints only, because the usual repli-

cation operator of process calculi (like the �-calculus [20], where it is also noted !)

does not have the same behavior as the exponential connective : it allows replication

(!A �! (!A k!A)) but not erasing (!A9 1).

p(x) = A, all the free variables occurring in A have a free occurrence in p, and

that in a relation c

1

: : : c

n

C

c, all the free variables occurring in c have a free

occurrence in c

1

: : : c

n

.

De�nition 9 The structural congruence � is the same as for monotonic CC

(De�nition 4). The transition relation �! is de�ned by the same rules as for

monotonic CC (De�nition 4), except for Tell and Ask :

Tell

(x; c; tell(d); �) �! (x; c
 d;�)

Ask

c `

C

d
 e

(x; c; e! A; �) �! (x; d;A; �)

The only di�erences compared to monotonic CC is that constraints are for-

mulas of linear logic and that the communication rule ask consumes information.

The calculus is thus intrinsically non-deterministic, even without the choice oper-

ator +, since several constraints can satisfy the condition of the rule. Of particu-

lar interest in this context (see also section 3) are the synchronization constraints

which are linear atomic constraints without entailment.

De�nition 10 (Synchronization constraints) Given a linear constraint sys-

tem (C;

C

), a set C

s

of synchronization constraints is a set of atomic formulas

of C not occurring in

C

.

A well-formed constraint is a (tensor) product of synchronization constraints

and of constraints not containing a synchronization constraint as a subformula.

An agent or a con�guration is said to be well-formed if all the constraints in

it are well-formed.

We call these constraints synchronization constraints to indicate that it is this

type of constraints which is considered in CC programs of protocol speci�cation.

They are the constraints that allow one to translate into CC process calculi : for

instance the asynchronous version of Milner's �-calculus [20, 4] can be translated

in a LCC language [30] with the atomic formulas x : y as constraints, where x

and y are variables and : is a predicate symbol (x : y means : \the channel name

x carries the channel name y), and these constraints are indeed synchronization

constraints. The dining philosophers (cf. section 2.3) provide another example.

Another worthnoting property of synchronization constraints is that an ask

with a synchronization constraint is deterministic.

Because constraints are linear formulas, we must slightly modify the de�ni-

tion of stores and suspensions :

De�nition 11 (Observables) The successes are de�ned as in the monotonic

case.

A store accessible from A is a constraint d such that there exist a constraint

c and a multiset � of agents such that (;; 1;A) �! (;; c;�) and c > d, where

the relation between constraints \c > d" is the least relation containing `

C

and

closed by the rule 8e 2 C(c > d) (c
 e) > d).

A suspension for A is a con�guration (x; c; d

1

! A

1

; : : : ; d

n

! A

n

) such

that (;; 1;A) �! (x; c; d

1

! A

1

; : : : ; d

n

! A

n

) and for no i, c > d

i

. An agent A

suspends with the store c on the constraints d

1

; :::; d

n

, if there exist a suspension

for A of the form (x; c; d

1

! A

1

; : : : ; d

n

! A

n

).

2.3 Example

A classical benchmark of expressiveness for concurrent languages is the dining

philosophers : n philosophers are sitting around a table and alternate thinking

and eating. Each one of them has a fork on his right, and thus also on his left,

and needs these two forks to eat (the chop-sticks version may be more realistic).

As suggested in [3, 22], this problem has an extremely simple solution in LCC.

All constraints are atomic : either fork

i

, or eat

i

(1 � i � n), or ticket.

philosopher

i

= ticket ! fork

i

! fork

i+1modn

!

(tell(eat

i

) k

eat

i

! (tell(fork

i

) k tell(fork

i+1modn

) k

tell(ticket) k philosopher

i

)).

init = tell(ticket) k � � � k tell(ticket)

| {z }

n�1 times

k

tell(fork

1

) k � � � k tell(fork

n

) k

philosopher

1

k � � � k philosopher

n

.

This program enjoys safety and liveness properties : two adjacent philoso-

phers cannot eat at the same time, at least one philosopher can eat, the program

is suspension-free (absence of deadlock).

2.4 Translation from CC to LCC

The LCC languages are a re�nement of usual monotonic CC. Indeed the mono-

tonicity of CC can simply be restored with the exponential connective ! of linear

logic, allowing replication of hypotheses and thus avoiding constraint consump-

tion during an application of the ask rule :

De�nition 12 Let (C;

C

) be an intuitionistic constraint system. We de�ne the

translation of (C;

C

), which is the linear constraint system (C;

C

)

�

, as follows,

at the same time as the translation of CC agents to LCC agents :

c

�

=!c, if c is an atomic constraint

(c ^ d)

�

= c

�

 d

�

(9xc)

�

= 9xc

�

tell(c)

�

= tell(c

�

) p(x)

�

= p(x)

(A k B)

�

= A

�

k B

�

(A+B)

�

= A

�

+B

�

(c! A)

�

= c

�

! A

�

(9xA)

�

= 9xA

�

The entailment relation

�

C

is de�ned by : c

C

d i� c

�

�

C

d

�

. The relation

`

C

�

is obtained from

C

�

by the rules of linear logic for 1, !,
 and 9. The

translation of a CC con�guration (x; c;�) is the LCC con�guration (x; c

�

;�

�

).

The transition relation �!

�

is the one of LCC.

For constraints, the above translation is a well-known translation of intu-

itionistic logic into linear logic [9, p.81], hence :

Proposition 13 Let (C;

C

) be an intuitionistic constraint system, and c; d be

intuitionistic constraints : c`

C

d i� c

�

`

C

�

d

�

.

from which follows the soundness of the translation :

Proposition 14 Let (x; c;�) and (y; d;�) be CC con�gurations :

(i) (x; c;�) � (y; d;�) i� (x; c

�

;�

�

) �

�

(y; d

�

;�

�

);

(ii) if (x; c;�) �! (y; d;�) then (x; c

�

;�

�

) �!

�

(y; d

�

;�

�

);

(iii) if (x; c

�

;�

�

) �!

�

(y; d

�

;�

�

) then (x; c;�) �! (y; e;�), with e ` d.

3 Observing suspensions : preliminary remarks

There are some obvious general obstacles to the logical observation of suspen-

sions, namely :

(1) d
 (c(d)
 (d(A) ` d
 (c(A) (2)

c ` A

1 ` c(A

and

(3)

c ` c

0

c
 (d(A) ` c

0

 (d(A)

(4)

d

0

` d

c
 (d(A) ` c
 (d

0

(A)

Obstacles (3) and (4) bear on the nature of the constraints considered, and

suggest naturally to restrict ourselves to characterize the suspensions for which

the blocking constraints are elementary informations : namely synchronization

constraints (de�nition 10). Note that this does not prevent us from using more

general constraints in the program : we will just not be interested in suspensions

on those non-synchronization constraints.

Consider now the �rst implication : it constitutes an obstacle to the charac-

terization of suspensions if one chooses to translate the agent c! A by c(A :

then indeed, if d 6` c, d
 (c (A) looks like a suspension, whereas the agent

translated by d
 (c(d)
 (d(A) can have a success (if A unblocks c) and

not suspend. The simplest idea is thus to translate c ! A by c ((�
 A),

where � is a new atomic formula (neither a constraint, nor a procedure name).

Intuitively � ensures that the communication between agents happens through

the store, and avoids this type of \composition of suspensions". At the same

time this translation of ask prevents from obstacle (2).

The obstacle

A
 (c(B) ` c((A
B);

exposed in the introduction, is more serious and leads to non-commutative logic.

4 Intuitionistic non-commutative logic

We just present here an intuitionistic fragment of this logic, which we call NLI.

Also not all the connectives are considered here. The complete presentation of

this non-commutative logic, based on previous proposals [5, 27], is the topic of

[28].

The set F of formulas is built from atoms p; q; : : : , the constant 1, the exis-

tential quanti�er 9 and connectives : a multiplicative commutative conjunction

tensor
, a left non-commutative implication �

�

, the additive conjunction with

&, and the exponential connective !.

De�ning a sequent calculus for a linear logic mixing both commutative and

non-commutative multiplicatives raises the problem of representing the informa-

tion on the way the formulas in the sequent must be combined (either by
 or

by �

�

). Sequents are of the form � ` A, where A 2 F and � 2 H, and H (resp.

H

0

), the sets of contexts (resp. non-empty contexts) are de�ned by the following

grammar :

{ H ::= () j H

0

{ H

0

::= F j (H

0

,H

0

) j (H

0

;H

0

)

�;� : : : will denote (possibly empty) contexts. We use the notation � [] to

denote a context with a hole, and � [�] is the context obtained by \�lling" the

hole with �. We use the notation !� for any context whose formulas are all

under a !.

For sake of simplicity, we will assume the set of contexts quotiented by the as-

sociativity of \," and \;" (� ,(�,�)) = ((� ,�),�) and (� ;(�;�)) = ((� ;�);�),

and the commutativity of \," : (� ,�) = (�,�)

2

.

The rules of the sequent calculus for NLI are :

Axiom - Cut Entropy

A ` A ` 1

� ` A �[A] ` B

�[�] ` B

� [�;�] ` A

� [�,�] ` A

Logical rules

� [�] ` A

� [�;1] ` A

� [�] ` A

� [1;�] ` A

� [A;B] ` C

� [A
B] ` C

� ` A � ` B

� ,� ` A
B

2

The quotient of the set of sequents by associativity and commutativity is therefore the

set of series-parallel orders labeled by formulas (see, e.g., [21] for a survey on series-

parallel orders). Note that it is not the case in classical NL, where the quotient of

sequents by the reversible structural rules is a set of cyclic orders labeled by formulas

(see [28]).

� ` A �[B] ` C

�[� ;A�

�

B] ` C

A;� ` B

� ` A�

�

B

� [A] ` C

� [A&B] ` C

� [B] ` C

� [A&B] ` C

� ` A � ` B

� ` A&B

� [A] ` B

x 62 fv(�; B)

� [9xA] ` B

� ` A[t=x]

� ` 9xA

� [A] ` B

� [!A] ` B

!� ` A

!� `!A

� [!�,!�] ` C

� [!�;!�] ` C

� [!A,!A] ` B

� [!A] ` B

� [�] ` B

� [�;!A] ` B

� [�] ` B

� [!A;�] ` B

The structure of sequents enables to express sequentiality constraints on for-

mulas, speci�cally in the rules for
 and �

�

.

In contrast to the purely commutative case however, one cannot prove A

(c�

�

B) ` c�

�

(A
 B) in general, and this is why we will be able to solve the

problem of `porosity' of suspensions exposed in the introduction.

The rules for & and 9 are self-evident. The rules for ! express the fact that

!-formulas should commute (!A�!B

�

=

!(A&B)).

Theorem 15 The sequent calculus for NLI enjoys cut-elimination.

This can be proved as a consequence of the completeness of the phase se-

mantics [28] : the cut rule is sound and the cut-free calculus is complete.

5 Translation of agents into formulas

One translates LCC agents and con�gurations into formulas of intuitionistic non-

commutative logic, more precisely in the fragment of NLI with the constant 1,

the connectives &,
 and �

�

, and the quanti�er 9.

Fix a linear constraint system (C;

C

) and a set of declarations D. Fix also a

set C

s

of synchronization constraints. One makes henceforth the hypothesis that

the constraints of

C

and the agents in the declarations of D are all well-formed.

(This hypothesis is in fact only used for the observation of suspensions.)

The fact of being a well-formed con�guration is then preserved during the

execution :

Lemma 16 A subformula of a well-formed constraint is a well-formed con-

straint.

A subagent of a well-formed agent is a well-formed agent.

If � is a well-formed LCC con�guration and � �! �

0

, then �

0

is well-formed.

As it is suggested in the previous paragraph, one introduces a new atomic

formula �, considered neither as a constraint, nor as a procedure name.

!

� denotes

the product of n occurrences of � (n arbitrary � 0) : �
 � � �
 �.

De�nition 17 LCC agents are translated into formulas of (intuitionistic) non-

commutative logic as follows :

c

�

= c, if c is a constraint

tell(c)

�

= c p(x)

�

= p(x)

(c! A)

�

= c�

�

(�
A

�

) (A k B)

�

= A

�

B

�

(A+B)

�

= A

�

&B

�

(9xA)

�

= 9xA

�

If � is the multi-set (A

1

: : : A

n

) of agents, de�ne �

�

= A

�

1

 � � �
 A

�

n

. The

translation (x; c;�)

�

of a con�guration (x; c;�) is the formula 9x(c
 �

�

).

NLI(C,D) denotes the deduction system obtained by adding to NLI :

{ the non-logical axiom c ` d for every c

C

d in

C

,

{ the non-logical axiomp(x) ` A

�

for every declaration p(x) = A in D.

Theorem 18 (Soundness) Let (x; c;�) and (y; d;�) be LCC con�gurations.

If (x; c;�) � (y; d;�) then (x; c;�)

�

a`

NLI(C;D)

(y; d;�)

�

.

If (x; c;�) �! (y; d;�) then (x; c;�)

�

`

NLI(C;D)

(y; d;�)

�

!

� .

Proof. By induction on � and �!.

{ For parallel composition, the �-conversion, it is immediate.

{ For inaction, remark that A

y

 1 a` A

y

.

{ For local variables, 9x(A
B) a` A
9xB and 9xA a` A whence x 62 fv(A).

{ For Tell, � and the declarations, it is immediate.

{ For Ask, we have c
 (d �

�

(�
A)) ` e
 �
A if c

C

d
 e :

c ` d
 e

d ` d

e ` e �
A ` �
A

e; �
A ` e
 �
A

e; (d; d �

�

(�
A)) ` e
 �
A

e; d; d �

�

(�
A) ` e
 �
A

d; e; d �

�

(�
A) ` e
 �
A

d
 e; d �

�

(�
A) ` e
 �
A

c; d �

�

(�
A) ` e
 �
A

c
 (d �

�

(�
A)) ` e
 �
A

�

6 Logical characterization of LCC stores, successes and

suspensions

De�nition 19 (Tests) Let us call a test � :

{ a procedure name,

{ or an agent c
 (d

1

�

�

A

1

)
� � �
 (d

n

�

�

A

n

), n � 0, such that c is a constraint,

and for every i(0 � i � n) d

i

is a synchronization constraint and for every

i(0 � i � n) c � d

i

, where the relation > between linear constraints is the

one de�ned in De�nition 11. In the last case we shall say that the test � is a

suspension, even if n = 0, in other terms one considers a success as a particular

case of suspension.

Let � be an LCC con�guration, and � a test. We shall say that � satis�es

the test � (denoted by �

.

�! �) under the following conditions :

{ if � is a procedure name : \there exists a con�guration (y; d;�), such that

vl(�) \ y = ;, d `

C

1 and � �! (y; d;�)",

{ if � = c
 (d

1

�

�

A

1

)
 � � �
 (d

n

�

�

A

n

) is a suspension : \there exists a

con�guration

�

0

= (y; d; d

1

! B

1

; : : : ; d

n

! B

n

);

such that � �! �

0

, d `

C

c and for every i(0 � i � n) : d � d

i

".

Lemma 20 Let � and �

0

be two LCC con�gurations such that �

�

= �

0

�

, and �

a procedure name or a suspension.

�

.

�! � i� �

0

.

�! �.

Lemma 21 If c is a synchronization constraint, A a translation of agent and �

and � two contexts whose formulas are translations of agents, then

c;(�,�);� 6`

NLI(C;D)

�
A.

Proof. It is almost evident by absurdum : one shows by induction that if

there is a proof of c;(�,�);� `

NLI(C;D)

�
 A, then c is not a synchronization

constraint.

The last applied rule is a left unary rule (1, &,
, 9 or entropy) or a left

binary rule (�

�

or a cut), not a right rule because of the \;" to the left. One

veri�es then easily that in all cases the premisse(s) has (have) the required form.

The important point is that the � to the left does not disappear when one

travels up into the proof, because the constraints d in the formulas d�

�

D which

are translations of agents contain no �. �

The following lemma is immediate :

Lemma 22 If c and d are of synchronization constraints and c `

C

d, then c = d.

If c is a synchronization constraint, d a well-formed constraint, and c `

C

d, then

c a` d.

We shall avoid the bureaucratic distinctions between two logically equivalent

formulas, thus if c a` d we shall consider that c = d.

Theorem 23 Let � = (x; c;�) be a well-formed LCC con�guration, and � be a

procedure name or a suspension.

If �

�

`

NLI(C;D)

!

�
 �

�

, then �

.

�! �.

Proof. In a proof in the sequent calculus NLI(C;D) of a sequent whose for-

mulas are built with 1,
, �

�

, 9 and &, one can assume that the cuts bear only

on non-logical axioms coming from C and D (cut-elimination of NLI), so every

formula in the proof contains the above mentioned connectives and quanti�er.

Now in such a proof, the left members of sequents contain separators of two

kinds : \," and \;". Assume that a \;" has been introduced, necessarily by the

�

�

` rule

� ` c �[A] ` B

�[� ;c �

�

A] ` B

Travel down along this proof until this occurrence of \;" is eliminated. This

has to happen with the entropy rule or ` �

�

.

The important point is that in case it is eliminated by ` �

�

, the part of

the proof which is between the introduction and the elimination is very simple,

because of the hypothesis on the nature of � (suspensions bearing on synchro-

nization constraints). Indeed when traveling down along the proof, the formulas

on the left of the \;" considered are in particular built from formulas of � . The

hypothesis on the nature of � forces thus � to be either ; or just a synchroniza-

tion constraint (atomic formula).

In the �rst case one would then have �[] = d;[];�

0

for some synchronization

constraint d, but as A = �
A

0

one would then have a proof of d; �
A

0

;�

0

` B,

what is impossible according to lemma 21 as B is of the form �
B

0

.

Therefore �[] = [] and � = d, with d a synchronization constraint. As d ` c

and c is a well-formed constraint (by hypothesis), lemma 22 says that d a` c, so

d = c up to logical equivalence. Moreover, as �[� ;c�

�

A] = c;c�

�

A, the only

possible next rule in the proof is ` �

�

. In the case of a \;" eliminated by ` �

�

,

the proof has therefore the following necessary form :

c ` c A ` B

c;c �

�

A ` B

c �

�

A ` c �

�

B

what we shall abbreviate by

A ` B

c �

�

A ` c �

�

B

considering more simply that no sequentiality (\;") has been actually intro-

duced in this part of the proof.

Hence (with the above convention) every \;" introduced is eliminated by the

entropy rule.

Now that the useful \;" have been isolated, one can concentrate on the main

part of the proof : let us show that if � `

NLI(C;D)

!

�
 �

�

, where � is an

arbitrary context whose formulas are translations of agents A

1

; : : : ; A

n

, then

(;; 1;A

1

; : : : ; A

n

)

.

�! �. One proceeds by induction on a proof of � ` � in

the sequent calculus NLI(C;D), with the associativity of \," and \;" and the

commutativity of \," implicit, and with the above convention. This induction

has a meaning because one can assume that cuts bear only on non-logical axioms

(theorem 15), so that when traveling up through such a proof, the formula on

the right of the sequent remains a constraint and the formulas on the left remain

translations of agents.

Now each logical rule simulates an LCC transition rule.

{ � is an axiom : one uses the reexivity of �! in the case of a logical axiom,

the rule declarations for an axiom p ` q; the case of an axiom d `

C

e is trivial.

{ � ends with a cut. Consider for instance :

p `

�

�

�

[

�

] ` �

�

�

�

[p] ` �

�

By induction hypothesis, (;; 1;�;

�

)

.

�! �, and (p =) 2 P , thus by

applying the rule declaration, one obtains (;; 1;�; p)

.

�! �, qed.

The other cases are similar.

{ � ends with a left introduction of 1 : immediate by the rule inaction.

{ � ends with a left or right introduction of
 : immediate.

{ � ends with :

�

�

[A

�

] ` �

�

�

�

[A

�

&B

�

] ` �

�

By induction hypothesis, (;; 1;A;�)

.

�! �. Now (;; 1;A + B;�) �!

(;; 1;A;�), thus (;; 1;A+B;�)

.

�! �.

{ � ends with a right (case when � is a constraint, n = 0) introduction of 9 :

immediate.

{ � ends with :

�

y

[A

y

] ` �

x 62 fv(�; �)

�

y

[9xA

y

] ` �

By induction hypothesis, (;; 1;A;�)

.

�! �. As x 62 fv(�), (;; 1; 9xA; �) �

(x; 1;A;�), and moreover x 62 fv(�), so by lemma 20, (;; 1; 9xA; �)

.

�! �, qed.

{ � ends with :

�

�

` c �

�

[A

�

] ` �
 �

�

�

�

[�

�

; c �

�

A

�

] ` �
 �

�

By induction hypothesis, (;; 1;�)

.

�! c, i.e. there exists a con�guration

(y; d; 1), such that d `

C

c and (;; 1;�) �! (y; d; 1). Thus by applying the

rule ask, one obtains (;; 1; c ! A;�) �! (y; d; c ! A) �! (y; 1;A). There-

fore, (;; 1; c ! A;�; �) �! (y; 1;A;�). Moreover by induction hypothesis,

(;; 1;A;�)

.

�! �, whence (;; 1; c! A;�; �)

.

�! �.

{ � ends with :

A

�

` B

�

c �

�

A

�

` c �

�

B

�

(With our convention, this rule replaces the right introduction of �

�

.) It is

clear, since (;; 1; c! A)

.

�! c! B.

{ � ends with an entropy : immediate, we have already done the job of

collecting the interesting \;" 's (i.e. those which are eliminated by the rule ` �

�

).

{ � ends with a dereliction, a weakening or a contraction : immediate.

{ � ends with a promotion : in this case all the formulas are necessarily

constraints, therefore it is immediate. �

Corollary 24 (Observation of suspensions) Let A be an LCC agent and

� = c
 (d

1

�

�

A

1

)
 � � �
 (d

n

�

�

A

n

) be a suspension formula.

If A

�

`

NLI(C;D)

!

�
�, then A suspends with a store d > c on the constraints

d

1

; :::; d

n

.

Proof. Evident, by de�nition of a suspension (11), applying the previous

theorem to the con�guration (;; 1;A). �

Corollary 25 (Observation of successes) Let A be an LCC agent and c be

a linear constraint. If A

�

`

NLI(C;D)

!

�
 c, then c is a success for A, i.e. there

exists a constraint d such that d `

C

c and (;; 1;A) �! (;; d; 1).

Proof. It is a particular case of corollary 24, with � a constraint (n = 0). �

Recall that > is the additive true constant [9], which is neutral for &.

Corollary 26 (Observation of stores) Let A be an LCC agent and c be a

linear constraint. If A

�

`

NLI(C;D)

c
>, then c is a store accessible from A, i.e.

there exist a constraint d such that d > c and a multiset � of agents such that

(;; 1;A) �! (;; d;�).

Proof. One shows by easy induction on a proof of � `

NLI(C;D)

c
>, where

� is an arbitrary context whose formulas are translations of agents A

1

; : : : ; A

n

,

that c is accessible from (;; 1;A

1

; : : : ; A

n

). The proof uses corollary 25, for the

right introduction of the tensor connective in c
>. �

7 Conclusion and perspectives

The intuition behind CC computations has served to de�ne a new non-com-

mutative linear logic which combines both commutative and non-commutative

connectives, and is further studied in [28]. That logic extends the intuitionistic

version of de Groote [5] (and thus Lambek's calculus [14]) and is an intuitionistic

fragment of the proposal of the �rst author in [27]. It di�ers from other proposals

made by Retor�e [25] to combine both kinds of connectives.

In this paper, we have considered monotonic and non-monotonic non-deter-

ministic CC programs (with blind choice), and introduced the class of synchro-

nization constraint systems. We have shown that non-commutative logic enables

the characterization of stores, successes, and suspensions with synchronization

constraints.

Besides the better understanding of the logical foundations of concurrent con-

straint programming, these results are directly relevant to CC program analysis

methods. In [7] we study a (commutative) linear logic semantics of CC programs

for the observation of both stores and successes, and show show how the phase

semantics of linear logic can be used to give simple \semantical" proofs of safety

properties of CC computations. The development of the phase semantics of NLI

[28] should provide in turn more powerful tools for the static analysis of con-

current programs, and a new denotational semantics of CC programs capturing

�ner observable properties of CC computations than the ones currently available

[31, 12, 29]. We believe that the phase semantics of NLI should be an interesting

research direction from both viewpoints of proof theory and concurrency.

Besides the logical characterization of �ner operational aspects of unrestricted

CC computations (e.g. one-step committed choice, sequential composition, which

have not been considered in this paper), the present work o�ers also new perspec-

tives to the connection between concurrency and proof theory, in the paradigm

of logic programming. Other examples of such correspondences have been pro-

posed for Petri nets and a propositional fragment of linear logic [17], for LO

[1] and the �-calculus [19] at the expense of extra-logical operators. It suggests

also an investigation of the usual semantics of concurrency, speci�cally that of

(bi)simulations in the light of proof theory as in [13, 18]. Another perspective is

the study the execution of (L)CC agents in the syntax of proof nets (which is

intrinsically parallel, thus naturally more suited for the representation of con-

current computations than are sequent calculi), as in [23].

References

1. J.M. Andreoli and R. Pareschi. Linear objects: logical processes with built-in

inheritance. New Generation Computing, 9, 1991.

2. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer

Science, 96, 1992.

3. E. Best, F.S. de Boer, and C. Palamidessi. Concurrent constraint programming

with information removal. In Proc. of Coordination'97. Springer LNCS, 1997.

4. G. Boudol. Asynchrony and the �-calculus. Technical Report RR 1702, INRIA,

1992.

5. Ph. de Groote. Partially commutative linear logic: sequent calculus and phase

semantics. In Proofs and Linguistic Categories, Proceedings 1996 Roma Workshop.

In V. M. Abrusci and C. Casadio, eds. Cooperativa Libraria Universitaria Editrice

Bologna, 1996.

6. F. Fages. Constructive negation by pruning. J. of Logic Programming, 32(2), 1997.

7. F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint programming:

operational and phase semantics. Technical Report LIENS, 1997.

8. F.S. de Boer, M. Gabbrielli, and C. Palamidessi. Proving correctness of constraint

logic programming with dynamic scheduling. In Proceedings of SAS'96, Springer

LNCS 1145, 1996.

9. J.Y. Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.

10. J.Y. Girard. Towards a geometry of interaction. Contemporary Mathematics,

92:69{108, 1989.

11. J. Ja�ar and J-L. Lassez. Constraint logic programming. In Proceedings of the 14th

ACM Symposium on Principles of Programming Languages, Munich, Germany,

pages 111{119. ACM, January 1987.

12. R. Jagadeesan, V. Shanbhogue, and V.A. Saraswat. Angelic non-determinism in

concurrent constraint programming. Technical report, Xerox Parc, 1991.

13. N. Kobayashi and A. Yonezawa. Logical, testing and observation equivalence for

processes in a linear logic programming. Technical Report 93-4, Department of

Computer Science, University of Tokyo, 1993.

14. J. Lambek. The mathematics of sentence structure. American Mathematical

Monthly, 65(3):154{170, 1958.

15. P. Lincoln and V.A. Saraswat. Proofs as concurrent processes. Parc Xerox Tech.

Report, 1991.

16. M.J. Maher. Logic semantics for a class of committed-choice programs. In Pro-

ceedings of ICLP'87, International Conference on Logic Programming, 1987.

17. N. Marti-Oliet and J. Meseguer. From petri nets to linear logic. In Proceedings of

Category Theory and Computer Science, pages 313{340, Springer LNCS 389, 1989.

18. N. Mendler, P. Panangaden, P.J. Scott, and R.A.G. Seely. A logical view of con-

current constraint programming. Nordic J. of Computing, 2, 1995.

19. D. Miller. The �-calculus as a theory in linear logic: preliminary results. In

Proceedings Workshop on Extensions of Logic Programming, Springer LNCS 660,

1992.

20. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.

Information and Computation, 100(1), 1992.

21. R. Mohring. Computationally tractable classes of ordered sets. NATO ASI Series

(I.Rival, ed), 255, 1989.

22. C. Palamidessi. Constraint programming for concurrent and distributed comput-

ing. In Proc. of the JFPLC-UNIF '97, Invited talk, pages 11{20, 1997.

23. G. Perrier. Concurrent programming as proof net construction. Technical Report

CRIN 96-R-132, INRIA-Lorraine, 1996.

24. A. Podelski and G. Smolka. Operational semantics of constraint logic programming

with coroutining. In Proceedings of ICLP'95, International Conference on Logic

Programming, Tokyo, 1995.

25. Ch. Retor�e. Pomset logic - A non-commutative extension of commutative linear

logic. In TLCA'97, Springer LNCS 1210, 1997.

26. P. Ruet. Logical semantics of concurrent constraint programming. In Proceedings

of CP'96, 2

nd

International Conference on Constraint Programming, Cambridge,

MA, Springer LNCS 1118, 1996.

27. P. Ruet. Non-commutative linear logic with mobilities. Presented at the Logic

Colloquium'96, San Sebastian, Spain, Bulletin of Symbolic Logic 3-2:274{275, Jan.

1997.

28. P. Ruet. Non-commutative logic and concurrent constraint programming. PhD

thesis, Universit�e Denis Diderot, Paris 7, 1997.

29. V.A. Saraswat. Concurrent constraint programming. ACM Doctoral Dissertation

Awards. MIT Press, 1993.

30. V.A. Saraswat and P. Lincoln. Higher-order linear concurrent constraint program-

ming. Parc Xerox Technical Report, 1992.

31. V.A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concur-

rent constraint programming. In POPL'91: Proceedings 18th ACM Symposium on

Principles of Programming Languages, 1991.

32. P.J. Stuckey. Constructive negation for constraint logic programming. Information

and Computation, 118(1), 1995.

33. D.N. Yetter. Quantales and (non-commutative) linear logic. J. of Symbolic Logic,

55(1), 1990.

