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Abstract— Implementing application-specific computation and con-
trol tasks within a biochemical system has been an important pursuit in
synthetic biology. Most synthetic designs to date have focused on realiz-
ing systems of fixed functions using specifically engineered components,
thus lacking flexibility to adapt to uncertain and dynamically-changing
environments. To remedy this limitation, an analog and modularized
approach to realize reconfigurable neuromorphic computation with
biochemical reactions is presented. We propose a biochemical neural
network consisting of neuronal modules and interconnects that are
both reconfigurable through external or internal control over the
concentrations of certain molecular species. Case studies on clas-
sification and machine learning applications using the DNA strain
displacement technology demonstrate the effectiveness of our design
in both reconfiguration and autonomous adaptation.

I. INTRODUCTION

Accelerating advances in synthetic and systems biology have
enabled complex design and application of biochemical processes.
For example, biochemically based computation and control [5], [8]
can be engineered to recognize patterns among biomarkers [6],
[13], [18] that are responsible for certain diseases and to further
rectify problematic pathways. However most engineered systems
have fixed functionality, and lacks flexibility in dynamic adaptation
to its changing biochemical environment, which is intrinsically full
of stochasticity and variability.

Not until recently, programmable [2] and reconfigurable [4], [3]
biochemical systems have been proposed in digital logic and linear
control domains, where reprogrammability is achieved through
concentration control of predefined species. However, autonomous
system adaptation remains an illusion as the reprogrammability
achieved by prior work relies on external control. Prior work
considers system scenarios identified before the design stage. Un-
fortunately, in many circumstances not all scenarios can be fully
characterized or defined in advance. The ability to achieve on-
site learning and to reconfigure accordingly is crucial to realize
autonomous system adaptation. Bio-inspired neuromorphic compu-
tation provides an ideal scheme for learning from high-dimensional
and noisy data for autonomous system reconfiguration.

Despite previous molecular implementations of neural networks
[10], [17], the proposed architectures lack reconfigurability. Im-
plementing neuromorphic systems with built-in learning capability
remains challenging. We present in this paper the first chemical
reaction construction of reconfigurable artificial neural networks.
Similar to the silicon-based field programmable gate arrays (FP-
GAs), a module-based architecture is proposed, which consists of
programmable neuron modules and their synaptic connections. The
reconfigurability lies in the adjustable firing thresholds and weighted
connections of the architecture. To demonstrate the feasibility of our
method in potential real-world applications, we perform case studies
on classification and machine learning, and exploit the DNA strand
displacement (DSD) technology as the underlying experimental
chassis realizing chemical reaction networks (CRNs) [16].
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II. PRELIMINARIES

A. Model of Chemical Reaction Dynamics

A chemical reaction network (CRN) is composed of a set of
reactants r, a set of products p, and a set of reactions describing
the transformations from some subset of reactants to some subset
of products. A reaction is often expressed in the form

n∑
i=1

αiri →
m∑
j=1

βjpj ,

where species ri ∈ r is the ith reactant, pj ∈ p the jth product, and
coefficients αi’s and βj’s specify the stoichiometric amounts. Under
the classical chemical kinetic (CCK) model, we assume that the
molecules involved in the reaction are of large quantities such that
the spatial non-uniformity of molecule distribution is negligible and
the intrinsic discrete and stochastic molecular interactions can be
safely approximated with continuum and determinism. Specifically
the dynamics of the above reaction, with rate constant k, can be
described by

k

n∏
i=1

[ri]
αi = − 1

αi

d[ri]

dt
=

1

βj

d[pj ]

dt
,

where [pj ] represents the concentration of species pj . Accordingly
the dynamics of a CRN can be characterized by a set of ordinary
differential equations (ODEs).

In the sequel, to simplify notation, we do not distinguish a species
(treated as a signal) and its concentration (as the non-negative value
of the signal) when they are clear from the context.

B. Neuron Model

There are various existing neuron models under different levels of
abstraction appropriate for different uses. We adopt the well-known
binary neuron model. Under this model, the output of a neuron with
n inputs and threshold: i1, ..., in, θ ∈ R+ ∪ {0} is determined by
the activation function

f(
−→
i ) =

{
1, if

∑n
j=1 wjij > θ,

0, otherwise,
(1)

where wj ∈ R is the corresponding synaptic weight of input ij .
Note that, by implementing neuronal behavior with biochemical
reactions, the above step function f is approximated with a sigmoid
function, which is differentiable thus advantageous in learning such
as the backpropagation algorithm.

III. ARCHITECTURE

Similar to FPGAs, our proposed neuromorphic architecture con-
sists of reconfigurable neuron modules and interconnects.

A. Neuron Module

To represent a real-valued signal x, two species xp and xn are
designated with x = [xp] − [xn], similar to [14]. When the input
weight wi of a neuron is positive (resp. negative), [wip] (resp.
[win]) is set to the absolute value of positive (resp. negative) weight
and [win] (resp. [wip]) is set to zero. By interpreting non-negative
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Fig. 1. A neuron with three inputs.

threshold value θ as an auxiliary input aθ ≡ 1 with negative
weight equal to −|θ|, a neuron can always be transformed into an
equivalent one with threshold equal to 0, as the one illustrated in
Fig. 1. Therefore it suffices to implement a single bistable reaction
system for a neuron whose output toggles at the zero threshold
point. We use the three-input neuron as depicted in Fig. 1 to explain
the two main components of CRN implementation listed below:

(I) To compute the weighted sum (represented by the generation
rate difference between molecules v(1)buf and v(0)buf ) of inputs
(including ix and the threshold input aθ) for neuron v, we rely on
the following reactions, with x = 1, 2, 3 for three inputs:

Weighted input ix to neuron v :

wxp + ix
k−→ v(1)buf + wxp + ix (I.1)

wxn + ix
k−→ v(0)buf + wxn + ix (I.2)

Threshold as negatively weighted input:

θ + aθ
k−→ v(0)buf + θ + aθ (I.3)

(II) To determine whether the weighted sum exceeds 0, we
depend on the bistability created with the following reactions.

v(0)buf + v(1)buf
K−→ ∅ (II.1)

v(0)buf + v(1)
K−→ v(0) (II.2)

v(1)buf + v(0)
K−→ v(1) (II.3)


v(0) + v(1)

k̃−→ Sv (II.4)

Sv + v(0)
k̃−→ 3v(0) (II.5)

Sv + v(1)
k̃−→ 3v(1) (II.6)

We start our discussion from (II). Reactions (II.4)∼(II.6) create
a bistable system [11] with two stable steady states (represented
by dual-rail output (v(0), v(1)) = (0, 1) signifying neuron output
1; (1, 0) signifying neuron output 0) and one unstable steady state
(at (v(0), v(1)) = (0.5, 0.5)). To decide whether the weighted sum
of inputs is larger than zero (i.e., whether the sum of the positively
weighted inputs is larger than the absolute value of the sum of
the negatively weighted inputs) and to require (v(0), v(1)) = (0, 1)
(resp. (1, 0)) when the sum of the positively weighted inputs is
larger (resp. smaller) than the sum of the negatively weighted
inputs, we establish the correspondence between v(0) (resp. v(1))
and negatively (resp. positively) weighted inputs by the reactions in
(I) and (II.1)∼(II.3). It should be clarified that reactions (I.1) and
(I.2) are not an intrinsic part of the module, but rather their presence
depends on the existence of their corresponding interconnects
between modules, as to be detailed in Sec. III-B.

When the weight of the xth input ix is positive (effectively
wxn = 0), only the reaction with wxp involved is activated and
thus v(1)buf is generated at rate (k ·wxp · ix). For the yth input iy
with a negative weight, the same reasoning applies and v(0)buf is
generated at rate (k · wyn · iy). Reaction (I.3) effectively subtracts
the threshold value θ from the weighted sum of inputs. With the re-
actions in (I), the generation rates of molecules v(1)buf and v(0)buf
correspond respectively to the intended sums of the positively and
negatively weighted inputs. Reactions (II.1)∼(II.3) then convert the
comparison between the generation rates of v(1)buf and v(0)buf
to the comparison between the concentrations of v(0) and v(1).
Finally, reactions (II.4)∼(II.6) enforce the concentrations of v(0)
and v(1) at equilibrium stabilize to one of two the stable steady
states discussed in the previous paragraph. Note that the conversion

achieved by reactions (II.1)∼(II.3) is crucial in preserving the total
number of output molecules ([v(0)]+[v(1)]), so the system does not
require constant replenishment of species from outside. The effort
not only makes the system more practical, but also avoids deviation
of system behavior resulted from inaccurate replenishment.

To guarantee that the ratio of the positively to negatively weighted
sums of inputs is the same as the ratio of the generation rate of
v(1)buf to the generation rate of v(0)buf , all the reactions in (I) would
require the same rate constant k. This requirement is unrealistic and
can be overcome by our engineered reconfigurability [4]. Because
the rate of each reaction in (I) can not only be regarded as a function
of k but also as a function of k×wp, k×wn, or k× θ for species
wp, wn, or θ unique to that reaction, we can relax the original rate
constant constraint k(I.1) = k(I.2) = k(I.3) = k to (k(I.1)×w′xp) =
(k(I.2) × w′xn) = (k(I.3) × θ′), where the primed version w′ of w
signifies that the value of w′ corresponds not exactly to an original
input weight as w, but to an input weight adjusted for the purpose
of rate matching.

B. Programmable Interconnect

∑
vj(0)

vj(1)1 1⋅θaθ=1

0∑ 0

mi mj
wij(n)⋅vi(1)
wij(p)⋅vi(1)

Fig. 2. Interconnect configuration for positive and negative weight. Other
interconnects to the neurons are left out for clarity.

Once the set of available neuron modules m are constructed, a
directed interconnect from a module mi ∈ m to another module
mj ∈ m with reconfigurable weighting wij ∈ R, as shown in
Fig. 2, can be realized with the following reactions.{

wij(p) + vi(1)
k−→ vj(1)buf + wij(p) + vi(1)

wij(n) + vi(1)
k−→ vj(0)buf + wij(n) + vi(1)

A directed interconnect requires two reactions: one for the positively
weighted input and the other for the negatively weighted input.
Corresponding to the two reactions are two species (wij(p), wij(n))
whose concentrations are used to control the weight. Therefore
implementing an interconnect costs 2 reactions and 2 species.
Note that the reactions for an interconnect from neuron mi to mj

are designed such that they will not alter the equilibrium of the
source module mi—the concentration of vi(1) is not affected by
downstream reactions.

C. Resource Requirements and Scalability

For the required resources, each neuron (interconnect) requires
6 (2) species and 7 (2) reactions. A feedforward neural network
with x inputs, z outputs, and one hidden layer of y nodes requires
[(x+ 1) + 6× (y + z)] + [2× (xy + yz)] species and [7× (y +
z)] + [2 × (xy + yz)] reactions. (When working as a classifier, it
may classify up to 2z classes in x-dimensional input space [19]).
On the other hand, given any neural network, the mapping of its
neurons and interconnects to our architecture is doable in linear
time by assigning reaction species of (I.1) (I.2) and (II.1) (II.6) for
each interconnect and neuron, respectively.

IV. CASE STUDIES

We perform two case studies mapping classifier and learning
applications to our proposed architecture. All synthesized CRNs
are first simulated on Biocham [7] for verification, and further



mapped into two-domain DSD reactions [1], which are suitable for
modularized composition among reactions. The simulation results
of the mapped DSD reactions are provided to justify the feasibility
of our design.

A. Classification
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Fig. 3. A feedforward network with one hidden layer.

We demonstrate the reconfigurability of our neuromorphic ar-
chitecture with the mapping of a classification example. Consider
the feedforward network with one input, one hidden, and one
output layer as shown in Fig. 3, which implements a classifier that
separates the input space spanned by u1, u2 ∈ R+ ∪ {0} into two
classes based on whether the criterion below is satisfied:

(5u1 − u2 > 3) ∨ [(−u1 + 2u2 > 1.5) ∧ (u1 + u2 > 1.5)]

(Note that any arbitrary classification task can be achieved by a
feedforward neural network with one hidden layer [9], and can
be realized in our proposed system by setting corresponding con-
centrations in the following systematic way, thus reconfigurable.)
The input layer consists of two inputs u1 and u2; the output
layer requires dlog2(number of classes)e neurons. Each neuron in
the hidden layer can define a separating hyperplane in the input
space, so the number of required neurons equals the number of
distinct inequalities involved in the criterion specified. Accordingly
the parameters of Fig. 3 are assigned as follows:

w11 = 5, w21 = −1, θh1 = 3
w12 = −2, w22 = 4, θh2 = 3
w13 = 2, w23 = 2, θh3 = 3

Each neuron hi in the hidden layer checks the satisfiability of
its corresponding inequality. So for the output layer, the criterion
to realize is the Boolean formula h1 ∨ (h2 ∧ h3). The last step
of the mapping procedure is to transform a logic formula into a
linear inequality with binary variables. In this example, one possible
assignments is (w1, w2, w3, θout) = (6, 4, 2, 5).

Fig. 4(a) shows the Biocham simulation result of the correspond-
ing CRN; Fig. 4(b) summarizes the inequalities implemented by
each neuron; Fig. 4(c) plots the partition of input space given
the classification constraints. Due to space limitation, Fig. 6 only
shows part of the DSD reactions mapped from the CRN. The
DSD simulation results by Visual DSD [12] under static inputs
(u1, u2) = (0.5, 2) and (0, 0) are shown in Fig. 5.

B. Supervised Learning

We justify our claim that autonomous learning ability can be
embedded into the proposed biochemical reaction-based module
by realizing autonomous weight update. In real-world application,
the input vector and correct classification result can both be time-
series data of species concentrations read from the environment.
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Fig. 5. DSD stochastic simulation results for classification of static inputs.

For example, the input vector can be the concentrations of a
set of potential biomarkers for diabetes, and the correct answer
corresponds to recent statistics of blood glucose value (which can be
obtained by cascading a reaction-based, constant-leakage integrator
with a neuron whose threshold equals the upperbound of normal
value). The system can then be trained into diabetes diagnostic
device based on biomarkers.

For clarity, we demonstrate autonomous adaptation by using the
perceptron learning algorithm [15] to train the composing neuron
into a one-dimensional classifier on positive real that outputs 0
when the input is smaller than 6, and outputs 1 otherwise. The
training pairs of input and its corresponding correct answer are
presented as concurrent concentrations to the neuron with the
network structure shown in Fig. 7. The threshold value θ of the
neuron is arbitrarily initialized to 3 and remains fixed; the training
target is the input weight represented by its positive and negative
components wp, wn. Let the input weight be initialized to 2, i.e.,
(wp, wn) = (2, 0). Given our goal, the target training result ŵp
without changing θ is one that satisfies: (ŵp × input > 3) ≡
(input > 6). Hence, our target result is (ŵp, ŵn) = (0.5, 0). The
system keeps comparing its current response with the correct output
continuously in time as inputs of the training set are fed serially into



Fig. 6. DSD reactions for a weighted input of a neuron; corresponding to
CRN component (I) described in Sec. III-A.

input
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functionθ

correct	
0/1

Fig. 7. Structure of the one dimensional classifier to be trained.

the system, and updating the weights according to the formula:

wi+1 = wi + α× input× (outcorrect − outreal),

where wi is the updated weight after the ith training input is fed.
The positive α determines the learning rate of the system. The
impact of an erroneous output on wi grows faster under higher
learning rate. To implement the update function of the perceptron
learning algorithm, the following reactions are added to the neural
network CRN.

input + v(1)
klearn−−−→ input + v(1) + wn

input + correct
klearn−−−→ input + correct + wp

wn + wp
k−→ ∅,

where the rate constant k here has value similar to the one in neuron
implementation, without particular requirement. The reactions work
as follows. When the system’s output is correct (v(1) = correct),
wn and wp are generated in the same rate by the first two reactions,
and the impact will be canceled out by the third reaction. Hence the
weight value will not be changed. When v(1) = 1 but correct = 0,
error occurs. The weight’s negative component wn is produced at
rate Klearn = klearn × input×v(1) when no positive component is
produced. Combined with the third reaction, the weight is reduced
at constant rate Klearn for a time period4t before the next training
input comes in. The weight is thus updated by (Klearn × 4t),
an increase that conforms with the update rule. Finally, when an
error occurs in another direction with v(1) = 0 and correct = 1,
wp is produced and no negative component is produced in the
same period. Following similar reasoning, the weight is updated
by (−klearn × input ×4t), a decrease.

The CRN simulation results of the training process under input
series in Fig. 8(a) are shown. Note that the proposed system allows
online learning, so can be tuned in real-time as the training inputs
come in. Fig. 8(b) nicely approximates the correct training result
with appropriate learning rate, and the module’s output value v(1)
conforms better with expected output as training proceeds. Fig. 8(c)
and Fig. 8(d) show the system’s behaviors when the learning rate
is too large or small, leading to oscillation or slow convergence
respectively. Since the Visual DSD tool currently does not support
simulation for time-varying inputs, we do not show DSD simulation
results. However our mapped DSD reactions were verified to have

wp

wp wp

v(0)

v(0)

v(1)

wn

v(1)wn v(1) v(0)wn

(c) (d)

Fig. 8. (a) Training input series. The applied period of each input pattern
can vary, as long as the corresponding desired output is presented concur-
rently. (b)-(d) Simulation results under different learning rates klearn: (b)
appropriate, under k, (c) too fast, under 3k (d) too slow, under k/3.

correct weight adjusting behavior given static input pairs.

V. CONCLUSIONS

We proposed a reconfigurable neuromorphic architecture im-
plementable with modularized biochemical reactions. Case studies
were performed to demonstrate the supported system reconfigura-
bility and autonomous adaptability. Our method may provide a step
forward to system engineering enabling neuromorphic computation
in potential biomedical applications.
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