A Metalevel Compiler of CLP(FD) and its
Combination with Intelligent Backtracking

Philippe Codognet ! 2
Francois Fages 3 2

Thierry Sola 2

Abstract

We propose an implementation of constraint solving over finite domains, as pio-
neered by CHIP, on top of any Prolog system that provides a delay mechanism
and backtrackable assignment. The aim is to propose a simple, portable, easily-
maintenable, but yet efficient package. The performances of our system are of
the same order of magnitude than a ”"wired” implementation of finite domains
such as CHIP, even on quite large programs. We have also designed some basic
low-level (WAM) extension to Prolog’s delay mechanism to make it more suited
for handling constraint solving, such as priority queues for scheduling woken
goals, that allow to preferentially treat cheap primitive constraints and investi-
gate various constraint solving heuristics.

Moreover, we propose an intelligent backtracking scheme for Finite Domain CLP
Languages. Intelligent backtracking consists in determining, upon unsolvability
of the constraint system, a pertinent choice-point which can ”cure” the fail-
ure, and departs from the naive approach usually found in logic programming
which always goes to the most recent choice-point, whether it is pertinent or
not. As non-determinism is used in CLP to express disjunctive constraints (eg.
disjunctive scheduling) or heuristic search techniques, our method can be used
to improve the efficiency in such problems. We propose an implementation of
this scheme by using the finite domains constraint solver on top of a Prolog
compiler with intelligent backtracking.

Interestingly, our framework also leads to a new (and efficient) execution model
for Hierarchical Constraint Languages, and can be the basis for general incre-
mental constraint solving.

1INRIA, domaine de Rocquencourt, 78153 Le Chesnay, FRANCE
2LLCR Thomson-CSF, domaine de Corbeville, 91404 Orsay, FRANCE
SLIENS CNRS, 45 rue d’Ulm, 75005 Paris, FRANCE

1 Introduction

Constraint Logic Programming (CLP) languages provide an attractive paradigm
which combines the advantages of Logic Programming (declarative semantics,
non-determinism, partial answer) with the efficiency of special-purpose constraint-
solving algorithms over specific domains such as reals or rationals, finite domains
or booleans. Several languages, such as Prolog-IIT [9], CHIP [12], CLP(R) [16],
show the usefulness of this approach for real applications in various domains
as combinatorial problems, scheduling, cutting-stock, circuit simulation, diag-
nosis, finance, etc. Interesting domains of computation proposed by the CHIP
language are finite domains together with linear equations, inequations and dis-
equations. Such finite domains allow a very efficient constraint solving, even for
large combinatorial problems, and are useful for a variety of applications, and
are even competitive on some applications most suited for rational or boolean
domains.

Finite domain constraint solving typically considers a discrete domain D, such
as the set of integers or an enumerated type, and requires that each variable used
in the constraint system has an associated domain which is a finite subset of D.
The usual constraints over finite domains are (linear) equations (=), inequations
(<, <), disequations (#), list membership (e.g. element(I,[x1,...,xn],V)
meaning z; = V'), cardinalities (e.g. atmost(n, [X1,...,Xk],v) meaning
card{i|X;} < v), but more complicated constraints can be considered, eg. the
user-defined active constraints of CHIP. The usual constraint solving mechanism
is the propagation of the constraints in order to mutually reduce the domains of
the variables by forward-checking or look-ahead techniques as proposed in [15]
and applied to CHIP in [21]. One can consider for instance the propagation of
the min and max values of variables for equations and inequations or the re-
moval of values for disequations, see [21] for a comprehensive treatment. Indeed,
as proposed by [22], the treatment of monotonic constraints on totally ordered
domains, eg. < on integers, can be made even more efficient. Also observe
that these propagation techniques are very close to the treatment of interval
arithmetics over reals proposed in BNR-Prolog [3].

The purpose of our approach was to design a finite domain constraint solver
on top of Prolog, aiming at proposing a simple, portable, easily-maintenable,
but yet efficient package. Such a package could be used to experiment various
and algorithms and heuristics for the constraint solving process while keeping
with the declarativity of the Prolog languages (instead of going into a ”wired”
implementation in C). It should however remain efficient enough to give credible
results, with a constant time slowdown w.r.t. high-speed systems such as CHIP,
even for large programs.

Another interesting feature of this approach is that we could thus benefit for
free of various extensions for Prolog systems, such as for instance an intelligent
backtracking scheme. We thus have a CLP language with intelligent backtrack-

ing, which could be used to efficiently treat disjunctive constraints.

The key-point for efficiently implementing finite domains on top of Prolog is
to use a delay mechanism, as pioneered by Prolog-II and now offered by some
(most ?) other Prolog systems, to handle the constraints and let this coroutining
mechanism take care of the constraints propagation. This idea indeed emerges
from seminal work at SICS [19], and is also based on the ”backtrackable as-
signment” facility of Sicstus Prolog [20]. [11] also describes a finite domain
package for Prolog with a delay mechanism, which is however quite different
from our implementation and uses a pre-processing phase. In our approach,
each constraint which is still active (i.e. not solved and still present in the cur-
rent constraint system) corresponds to a delayed predicate which will be woken
up as soon as the domain of one variable of the constraint is modified. This
predicate will then enforce its own domain modifications and propagations and
will be delayed again if the constraint is not completely solved. We use the
usual forward-checking and (partial) look-ahead techniques on finite domain to
perform the constraint propagation, see [21].

However we have experienced that the delay mechanism of Prolog systems was
not completely adequate to implement constraint systems, which is not very
surprising as it was not intented to do so anyhow. Indeed we would have like
more flexibility in the scheduling of woken goals, and we have thus designed
an enhanced delay mechanism. The most important feature we needed was to
allow some control over the scheduling and wakening of constraints, and to use
priorities. Hence, for a set of constraint that should be woken up at a given
time, the constraints with high priority will be treated first and those with low
priority second. We could thus treat preferentially cheap primitive constraints,
such as # or binary <, and perform their pruning before managing more costly
constraints such as linear equations. Another feature that we have introduced
at a low-level (into the WAM) is the ability for a goal to be waiting on a disjunc-
tion of variables, corresponding for a constraint in being waiting for a domain
modification of any of its variable.

We experiment our implementation with programs taken from [21], and compare
it with the timings given for the implementation of CHIP. The finite domain
implementation on top of Prolog is less than 7 times slower than the ”wired”
implementation, even for large program such as the disjunctive scheduling of
the bridge construction.

Another interesting feature of our approach was to experiment the finite do-
main package with our Prolog compiler with intelligent backtracking [8] in or-
der to investigate the use of intelligent backtracking (IB) in CLP languages.
Indeed, the nondeterminism of the underlying Prolog language is often used in
CLP languages to express for instance disjunctive constraints (eg. disjunctive

scheduling) or heuristic search techniques such as domain-splitting, see various
examples in [21]. The CLP languages however rely, as Prolog, on naive or blind
backtracking, and always backtrack to the most recent choice-point when a fail-
ure (inconsistency constraint system) is found. However this choice-point is not
necessarily related to the current failure, and such backtracking can amount
to useless computation work and lead to trashing behavior. Intelligent back-
tracking consist, upon failure of the computation, in analyzing the causes of the
failure and determining a pertinent backtrack point that can "cure” the failure.
It thus avoids useless computation work when compared to naive backtrack-
ing. Intelligent backtracking has been investigated in Logic Programming for
more than one decade [10] [4], [17], [5], and some efficient methods have been
developed [7] [8]. Indeed [8] describes an implementation inside a WAM-based
Prolog compiler where the overhead of the IB machinery is limited to 20 %,
leading to interesting speedups for non-deterministic programs. IB is related to
dependency-directed backtracking of the TMS framework [13].

The backbone of our method is to record for every domain modification which
coustraint is responsible of it (whodunnit ...). This allows to easily determine
upon unsolvability of the constraint system the (minimal) unsolvable subsys-
tem, i.e. the subsets of constraints responsible of the failure. This gives a set of
pertinent backtrack points that can cure the failure. When the constraint sys-
tem derives from a proof-tree, as in CLP languages, it is however not sufficient
to simply backtrack to the most recent intelligent backtrack point, and a special
backtracking process is needed to retain the completeness of the method. This
mechanism consists in managing sets of intelligent backtrack points attached
to the nodes of the proof-tree, and is identical to its counterpart in intelligent
backtracking methods for Logic Programming. We show how, by using the finite
domain package on top of our Prolog compiler with intelligent backtracking, we
can implement the proposed IB scheme.

An other application of our framework is to consider constraint hierarchies and
Hierarchical Constraint Logic Programming (HCLP) languages [2]. HCLP is
an extension that associates a strength level to each constraint and allows to
relax some constraints (those preferred but not required) when their introduc-
tion leads to inconsistency. Our scheme allows to handle all constraints as they
occurred, having thus a more constrained system and a better pruning of the
search space, and, thanks to the intelligent backtracking information, to selec-
tively relax some of them upon failure. This seems to be an adequate framework
for a general treatment of incrementality in constraint solving.

This paper is organized as follows. Section 2 describes the basis of the imple-
mentation of finite domains on top of a Prolog system with a delay mechanism
and backtrackable assignment, and Section 3 proposes some extensions for the
implementation of the delay mechanism in the WAM in order to increase ef-
ficiency. The performances of our system are presented in Section 4. Section
5 describes an intelligent backtracking scheme for a finite domain CLP and

presents a simple implementation by using the previous finite domain programs
on a Prolog compiler with intelligent backtracking.

2 Constraint Solving over Finite Domains on
Top of Prolog

2.1 Constraints over finite domains

A constraint in Logic Programming is an n-ary predicate whose ground instances
either succeed or finitely fail. Domain variables are declared with a domain of
possible values. We shall consider Constraint Logic Programming over finite
domains, CLP(FD), and for simplicity the only finite domains we shall con-
sider are finite sets of natural numbers. In addition to arithmetic constraints,
such as linear equalities, one can define also symbolic constraints, such as set
membership [21], or higher order constraints.

The declarative semantics of an answer to a goal G and a program P is a
conjunction of constraints C that entail G:

PE=ppV(C=G)

In order to cope with incomplete constraint solvers we do not suppose that the
answer constraints C' are F'D-satisfiable, this has to be checked independently.
In this way constraints are used actively to reduce the search space before the
instanciation of domain variables. To perform this behavior new inference rules
have to be added to the standard resolution rule of Logic Programming:

. *Al./ ...7Ai, ...,Am
: —(Al, ~~~7Ai717B1-, ...,Bn,Ai+1, Am)O'

RES

where B : —Bjy, ..., B,, is a rule whose head unifies with goal A; and o is the
most general unifier.

This inference rule is well suited to implement ” generate and test” procedures
but does not use domain informations to simplify constraints and achieve a priori
pruning of the search space. Following [21] two inference rules are thus added
for constraint propagation: forward-checking and look-ahead.

2.1.1 Forward Checking

A constraint is forward checkable if it contains exactly one domain variable all
the other arguments being ground. The forward checking inference rule consists
in solving a constraint forward checkable on 2% (d denotes the domain of variable
r) by substituting to % a new variable with the appropriate domain.

: 7A1, ...,A-L'7 ,Am

FC
: —(Al, ~~~-,Ai71-,Ai+1-, Am)J

where A; is forward checkable on z?,

e ={a € d|P = A;[z? — a]} is non-empty,

o= {2? —c}ife={c}, o0 = {a? « Y*) otherwise.

This definition can be directly implemented for forward checking arbitrary
constraint predicates over finite domains, but of course much more efficient
implementations exist for specific constraints.

2.1.2 Look Ahead

A constraint is look-ahead checkable if it contains at least one domain variable.
Depending on the number of domain variables remaining in the constraint after
looking-ahead the constraint is solved and can be eliminated, or is used only for
reducing the search space. This is formalized by two inference rules:

. *Al./ ...7Ai, ...,Am LA, . 7A1, ...,Ai, ...,Am

LA—
: —(Al, ...,Ai, Am)O' : —(Al, ...,Al‘,l,Ai+1...,Am)O'

where A; is look-ahead checkable,

e; = {a; € dj|3ar € dp,k # j, P = Aj[x1 — a1,...,Tn — Gy}

o={x; < v1,...,x, «— v,} where v; = cif e; = {c}, v; = y* otherwise.

LA applies if A;o contains at least two domain variables, otherwise LA’ ap-
plies and as A;o contains at most one domain variable the goal A; is solved.

In practice it is often more cost effective to compute an approximation of the
exact domain of each variable in a constraint used in look-ahead. The partial
look ahead inference rule (PLA) differs from LA by the domains used in the
substitution:

o ={x1 « v1,...,xn — vy} where v; = ¢ if e; = {c}, otherwise v; = yelf
with €; Q 69 Q dj.

Partial look ahead is employed for example for solving linear equalities by
reasoning only on the minimum and maximum values of each domain variable.

2.2 Efficient Constraint Propagation on Top of Prolog
2.2.1 Representation of Domain Variables

Domain variables can be represented by Prolog variables with their domain
attached to them as an attribute. The attributes of a variable can be represented
by frozen goals on that variable, and can be accessed by the standard freeze,
frozen predicates. When a variable is declared with a domain, a goal recording
information about its domain is frozen. Then some extra information can be
added by constraints in which the variable occurs. When a domain variable gets
instanciated the goal recording its domain is woken up to check membership of

the value to the domain. The general representation of domain variables ranging
over finite sets of natural numbers is the following*:

freeze(X,domain-check (X, Inst,nat (min,max,Vmin, Vmax,BV)))

Variable Inst is used to wake the constraints in forward checking, Inst is
instanciated as soon as a value is assigned to X. Components min, max indicate
the extremum values of the domain of X, these values can be changed by using
the backtrackable assignment instruction setarg. Variables Vmin and Vmax are
used to implement look ahead propagation, they get instanciated as soon as the
minimum, resp. the maximum value, of the domain of X changes.

BV provides optional extra informations used by some constraints. When it
is instanciated BV is an explicit representation of the domain of X by a boolean
vector, used for example for forward checking disequalities. BV contains also
a variable Vmid used to wake-up some constraints in look-ahead (e.g. a x X =
b*Y +cor element) as soon as a value is deleted from the middle of the domain
of a variable.

BV=bv(Bias,BooleanVector,Vmid)

2.2.2 Representation of Constraints

Constraints are represented by Prolog goals on which standard delay mecha-
nisms can apply. For example a linear equation, Y a;X; = > b;Yj, is repre-
sented by a goal eqln (Lx,Ly) where the couple (Lx,Ly) is some canonical form
of the equation.

A constraint used in forward checking is represented by a goal frozen on the
variable Inst of each domain variable occurring in the constraint. In this way
the constraint is woken-up at each instanciation of one of its domain variables to
check whether the constraint is forward checkable, and then apply the inference
rule FC.

A constraint used in look ahead, or partial look ahead, is represented by a
goal frozen on the disjunction of variables associated to the different kinds of
domain modification that may occur to each domain variable. In the case of nat-
ural numbers the variables Vmin, Vmax indicate a modification of the extremum
values of a domain variable, and when it is present Vmid indicates the deletion
of a value in the middle of the domain. Note that the freezing of constraints
on a disjunction of variables can be implemented on top of Prolog by using the
freeze predicate in two steps:

4In Prolog systems in which freeze and frozen are costly predicates, declarativity may be
sacrified to efficiency by representing the domain by a term bound to the variable instead of
a frozen goal.

freeze_or(L,G) :-
freeze(V,G),
freez_or(L,V).

freez_or([],_).

freez_or([X|L],V) :-
freeze(X,V=go),
freez_or(L,V).

A wired implementation of this metapredicate in our Prolog compiler is respon-
sible for a 50% speed-up in the N-queens problem but is neglectable in the other
benchmarks of section 4.

The general scheme for constraint propagation is:

1. wake the constraint

2. simplify

3. resolve and propagate

4. iterate on 2) and 3) until no change

5. refreeze the constraint

This general scheme can be specialized into two global versus selective con-
straint propagation schemes presented in the next sections.

2.2.3 Global Constraint Propagation Scheme

In this scheme a constraint on several variables is represented by a unique goal
frozen on a disjunction of variables. When the constraint is woken-up it is
checked for consistency independently of the causes for its waking. The global
propagation process is iterated as long as some domains of the variables in the
constraint are reduced. These domain reductions are caused either directly by
the propagation of the constraint itself, or by the waking of other constraints
during the propagation. The possibility to interrupt the propagation of a con-
straint to resolve another one is an important feature of the metaprogramming
approach. We shall come back on this point in section 3.

For example the program for solving linear equations is basically the following
one:

wake_eqln(LX,LY) :-
elim_cst(LX,LXs),
elim_cst(LY,LYs),
res_eqln(LXs,LYs).

res_eqln(LX,LY) :-
minmaxln(LX,Minx,Maxx),
minmax1ln(LY,Miny,Maxy),
min(Maxx,Maxy,Max),
max (Minx,Miny,Min),
Max >= Min,
propagate_minmax (LX,Minx,Maxx,Min,Max),
propagate_minmax(LY,Miny,Maxy,Min,Max),
((minmax1ln(LX,Minx,Maxx) ,minmax1ln(LY,Miny,Maxy))
->

freeze_eqln(LX,LY)

res_eqln(LX,LY)).

freeze_eqln(LX,LY):-
varminmax ([LX,LY],LV),
freeze_or(LV,wake_eqln(LX,LY)).

The purpose of predicate elim-cst is to simplify linear terms by eliminating
instanciated variables. Here constraint solving consists in propagating the ex-
tremum values of the terms in each member of the equation. This propagation
is iterated as long as the extremum values of linear terms are modified (notice
that these domain reductions may cause the waking of other constraints). Then
the constraint is frozen again on the list of variables attached to the domain
variable in the constraint.

The constraint solver recognizes also some simplified forms of the constraint,
such as linear equations with less than three variables. For these small con-
straints a more efficient propagation scheme is preferable.

2.2.4 Selective Constraint Propagation Scheme

Some simple constraints, such as a * X = bx Y + ¢, are better represented
by several specialized goals frozen as daemons, instead of by one unique goal.
Instead of executing the global propagation scheme on these constraints, it is
better to record the cause for a waking, perform the propagation limited to this
cause, and refreeze the constraint only on this cause, keeping unchanged the
other references to the constraint.

For example the predicate to implement looking ahead on X > Y + ¢ uses
in the first argument a flag which indicates the cause of the waking (i.e. ei-
ther the minimum of Y increased, either the maximum of X decreased). The
program is basically the following one:

wake_supXYC(_,X,Y,C):-
unique(X,X1),
unique(Y,Y1),
! E]

X1 >= Yi+C.

wake_supXYC(_,X,Y,C):-
unique(X,X1),
! E]

M is X1-C,
decrease_max(Y,M).

wake_supXYC(_,X,Y,C):-
unique(Y,Y1),
!

M is Y1+C,
increase_min(X,M).

wake_supXYC(minY,X,Y,C) :-
frozen(Y,domain-check(_,_,nat(Miny,_,_,_,_))),
Min is Miny+C,
increase_min(X,Min),
(Y=d(_,nat(_,Miny,_,LAy,_))

->
vararg(1l,LAy,Vmin),
freeze(Vmin,wake_supXYC(minY,X,Y,C))
wake_supXYC(minY,X,Y,C)).
wake_supXYC(maxX,X,Y,C):- ... symmetrical ...

Note that the predicate vararg uses backtrackable assignment to replace
an instanciated variable, such as Vmin, by a fresh variable used to refreeze the
constraint again.

In general the selective propagation scheme is preferable to the global prop-
agation scheme for constraints on less than three variables.

2.2.5 Compilation with the WAM

Constraint solvers are deterministic programs. Many features of the WAM
are precisely done for optimizing such Prolog programs, but as pointed out in
[1] particular attention has to be paid on the trailing of intermediate values
during constraint propagation. In our approach these intermediate values are
modified by the backtrackable assignment instruction setarg. Thus the general

10

optimisations of the trail mechanism in Prolog are inherited, furthermore we
shall see in section 5 that the labels used to implement intelligent backtracking
can be used as time stamps [1] to avoid the trailing of intermediate values
between two choice points.

In the previous programs the refreezing of a constraint leads to the recon-
struction of a frozen goal on the heap, while the old instance becomes inac-
cessible. It is thus desirable to reuse always the same instance, avoiding space
consumption and recourse to the garbage collector. This can be achieved in our
approach on top of Prolog by keeping a reference to the frozen goal in an extra
argument (this was responsible for dividing by 2 the space required on the heap
in an application with 60 variables and 2500 linear constraints over 6 variables
each).

3 Extension to the WAM for an Adequate De-
lay Mechanism

3.1 Interruptions during constraint solving

One important aspect of the constraint propagation scheme on top of Prolog is
the interruption of one constraint solver by another, the number of interruption
levels being bounded by the number of running constraints. During the prop-
agation of a constraint involving a large number of variables, if one domain is
modified, several small constraints can be woken-up. The propagation is then
interrupted, inconsistencies are detected earlier and in case of consistency the
global propagation of the large constraint continues with updated domain vari-
ables. Note that the iteration check has to take care of the fact that the domains
may be changed by other constraints during the propagation phase. However
if it is not controlled this interruption mechanism may have the opposite effect
as well. If several small constraint in forward checking are woken-up by the in-
stanciation of a domain variable, then during the solving of the first constraint,
a costly constraint can be woken-up, but then the solving of the other small
constraints will not occur before the end of the propagation of the costly con-
straint which can be woken-up in this way several times.

Clearly one has to distinguish at least two levels of priorities according to the
two propagation schemes. Constraints of priority 1, constraints of low cost, are
those used in forward checking, or those containing few variables relying on the
selective propagation scheme in look-ahead. Constraints of priority 2 are those
containing several variables for which the global propagation scheme is prefer-
able. It is important that the constraints of priority 2 should be interrupted
only by constraints of priority 1, but not by other constraints of same prior-
ity. The propagation of a constraint of priority 2 has to be terminated before
the execution of any other lower priority constraint. Indeed by postponing the
execution of lower priority woken constraints the additional causes of waking

11

(that may occur during the execution of higher priority constraints or of the
preceding lower priority woken constraints) are simply ignored and the costly
constraint is executed only once.

Priority Constraints Interrupts
Freezed pred. prio. 1 | selective propag. | priority 1
Freezed pred. prio. 2 | global propag. priority 1
Standard predicate priorities 1 and 2

Of course after propagation and simplification a lower priority constraint may
be refreezed as a higher priority constraint.

3.2 Extension to the WAM for a wait with two-level pri-
orities

The method presented in [6] to incorporate a delay mechanism into the WAM
can be extended to implement two-level priorities.

Constrained variables have attached to them two lists of frozen goals, corre-
sponding to the two priorities. The manipulation of these variables is similar to
[6]. Two wakeup registers W1 and W2 are introduced. These registers play the
same game as register W in [6], i.e. they contain the woken goals to execute at
the next inference. W1 and W2 contain respectively the goals of priority 1 and
those of priority 2.

The particularity of our mechanism appears when a list of frozen goals is
woken up. If there is a list of woken goals of priority 1 to execute (i.e. W1 <>
nil) then the execution is always interrupted at the next inference to execute
this list of goals. It is therefore necessary to save the current environment in
order to restore it at the end of the execution. This is achieved by the instruction
”continue” introduced by [6] for the restoration of the goal after its interruption.

For the waking-up of goals of priority 2, the current resolution step is tested
to know whether it has been caused by the execution of a woken goal or not. For
this check a new register RQ is introduced. RQ is a pointer to the last element
of the list of woken goals that are executed after an interruption. This register
is equal to nil initially and after the demonstration of the last woken goal. If
RQ@ = nil then the waking-up of goals of priority 2 causes an interruption, the
list pointed by W1 and W2 are merged to form the list of goals to execute, and
RQ is initialized to the last element:

last(W1) = «xW2

RQ = last(W?2)

If RQ <> nal then the list of woken goals pointed by W2 is added at the end
of the list of woken goals that are currently executed:

*RQ) = «xW2

12

RQ = last(W?2)

In this way the list of woken goals is treated as a diff-list instead of an ordinary
list. The woken goals of priority 1 cause always an interruption while those of
priority 2 cause an interruption only if no woken goals are currently executed
(RQ = nil). Otherwise they are simply added at the end of the list of currently
executed woken goals. In particular with priority 1 several levels of interruption
are possible while with priority 2 only one level of interruption is possible.

4 Performance Results

In this section we compare the performances of our implementation on top of
Prolog on a Sun-3/50, to the performances of the Chip system on a Vax/785
given in [21]°. Both machines are given for 1.5 Mips and can be considered as
equivalent. The first benchmark is the N-queens problem. This program uses
only forward checking on disequalities, together with the first-fail principle. The
second example is the puzzle “send+more=money” given in [21]. This program
uses both forward checking on disequalities between variables, and look ahead on
one linear equation. The third example is the search of a magic series of length 7
with (CAC) and without (CWC) additional redundant constraints. The fourth
example is a disjunctive scheduling problem for the construction of a bridge,
consisting of 44 variables and 400 constraints. That program uses a branch and
bound procedure with look ahead on precedence constraints and choice points
on disjunctive constraints. The timings for this benchmark indicate the time
taken to find the first solution (cost 110), the optimal solution (cost 104), and
the proof of optimality.

Two timings are given on our implementation. Meta-1 indicates the running
time on top of Sicstus-Prolog 0.6. Meta-2 is on top of our Prolog compiler with
the highest level of priority for constraints involving less than three variables,
The last column indicates the ratio between Meta-2 and Chip.

5Since the publication of the timings given in [21] the Chip system has been improved but
new timing results are not available and this book is still the main reference.

13

Bench Chip | Meta-1 | Meta-2 | Meta-2/Chip
8 queens 0.77 2.14 1.02 1.4
32 queens 4.05 10.1 4.75 1.2
96 queens 36.2 88.3 39.6 1.1
send 0.06 0.48 0.42 7
crypta 0.15 0.8 0.72 4.8
magic 7 CAC 12.9 14.0 14.0 1.1
magic 7 CWC 171 131 37.9 0.22
bridge

110 1.5 2.92 2.82 1.9
104 6 6.71 6.5 1.1
proof 90 161 159 1.8

The N-queens problem is not a representative benchmark, however on this
example we obtain nearly the same performances as Chip. The speed-up by
a factor 2 between Meta-1 and Meta-2 on the N-queens problem is due to the
wired implementation of the freezing of a goal on a disjunction of variables.

On the cryptarithmetic puzzle the speed-up between Meta-1 and Meta-2 is
limited to 10%. This is quite deceiving as in this example a large linear equation
of priority 2 is mixed with several small inequalities of priority 1. However a
speed-up by a factor 2.5 has been measured on a different version where the
problem is written with several linear equations of priority 2. On the magic
series program, the good speedup for CWC is due to the use of priority 2 for
the delayed predicate occur defined in the program, all constraints being in
priority 1. In CAC however, a better result (8.93 seconds) can be achieved by
using priority 1 for occur.

5 Intelligent Backtracking in Finite Domains

We will now describe the basic techniques to perform intelligent backtracking
in CLP(FD). Naive backtracking upon failure (unsolvability of the constraint
system) comsists in simply going back to the most recent choice-point, remov-
ing the corresponding constraints and choosing an alternative clause. This may
however not be enough to cure the failure, as the removed constraints may be
independent of the previous failure, and this will lead to redo the same failure
and backtrack further. In order to have a better behavior and avoid useless
computation/backtracking steps, one has to determine upon unsolvability of
the constraint system the subsystem consisting of the constraints which are the
”causes” of the failure. Such a subsystem is called a conflict, and the removal of
a single constraint of the conflict from the original system can ”cure” the failure,
i.e. restore satisfiability. One has however to take care of the management of
intelligent backtrack points as some hidden dependencies exists between con-
straints due to previous conflicts and as the constraint system indeed derives

14

from a proof-tree, which also induces a dependency relation.

We will first present the extensions that are needed to achieve such a behavior,
and then see how they are indeed enjoyed by running the previous Prolog im-
plementation of finite domain constraint solving on top of our Prolog compiler
with intelligent backtracking.

5.1 Finding the Causes of Unsolvability

Due to the propagation techniques, the unsolvability (or inconsistency) of the
coustraint system is discovered as soon as the domain of (at least) one variable
becomes empty during the propagation phase. In order to be able to analyze the
failure upon unsolvability of the constraint system, some extra-information has
to be attached to the variables. This information should be computed during
forward execution, when the domain of the variable is updated, and will contain
the "history” of the domains modification.

We thus associate to each element e in the domain of a variable V' an set of
(references to) constraints called the label of e, that will refer to the constraints
that leads to the removal of e from the domain of V. Observe that, due to the
presence of unification constraints (simple equalities), a set of constraints (cor-
responding to a chain of aliased variables) instead of simply a single constraint
can be responsible of the removal of a single value from a domain.

When, during the propagation phase, the domain of some variable becomes
empty, the failure analysis is performed as follows.

Consider a variable X whose domain becomes empty due to a constraint ¢;. In
order to determine the constraints responsible of the inconsistency, one has first
to compute the clashing subdomain of X, i.e. the set of values that have been
removed from the domain but that are compatible with ¢; alone. The union of
¢; and the labels of all the values in the clashing subdomain forms the conflict
corresponding to the unsolvability and represents the set of all constraints re-
sponsible of it.

The clashing subdomain, and hence the conflict can be easily determined. If
¢; is a disequation constraint, it remove only a single value from the domain
of X, and this value forms the clashing subdomain. For equations and inequa-
tions, one just need to consider the values ranging from the value imposed by
the constraint to the extremity of the original domain of X to determine the
clashing subdomain. Remark however that, as these constraints are treated by
propagation on the min and max values of domains only, and that it is possible
to associate only two labels to each domain, one to the min value and another
to the max value. The clashing subdomain is then determined by considering
either the label associated to the min or that of the max, depending on which
the inconsistency occurs.

Observe that, of course, ¢; is always an element of the conflict, because the
consistency check is performed after each domain modification. Removal of any

15

of the constraint of the conflict (if it is possible, i.e. if they correspond to a non-
deterministic node) will give a solvable constraint system, and the conflict hence
represents the set of intelligent backtracking points associated to the failure.

5.2 Backtracking Process

Let us now precise the backtracking process, i.e. how to manage intelligent
backtracking points that represent nodes of a proof-tree and handle determin-
istic and non-deterministic nodes.

5.3 Backtrack Points and Constraints

In the previous section, we have assumed that labels and conflicts contain refer-
ences to constraints. However, as our language does not contain an explicit dis-
junction operation between constraints but relies on the non-determinism of the
underlying constraint language, backtracking takes place not directly between
constraints but between non-deterministic nodes of the proof-tree corresponding
to the current computation. Indeed, at the implementation level, the system re-
lies on a Prolog-like backtracking mechanism. The simplest way to match both
visions is to consider that a constraint implicitly refers to the choice-point which
is the closest non-deterministic ancestor above it in the proof-tree. Therefore
backtracking to this choice-point is the minimal way of removing the constraint.
Such a scheme is simple to implement and corresponds indeed to the handling
of deterministic predicates in intelligent backtracking for logic programming.
We will thus assume for the rest of this section that labels contain references to
non-deterministic nodes as described above.

5.4 Backtracking Process

In logic programming, all intelligent backtracking methods are essentially based
on two ideas : the first is that of computing a conflict in case of failure by some
failure-analysis, and the second is that, while backtracking to one element of
the conflict, one must store the remaining elements of the conflict as alternative
solutions to cure the failure.

It is indeed not enough to just backtrack to the most recent intelligent backtrack
point and forget about the other elements of the conflict, as this will lead to
incompleteness of the method w.r.t. naive backtracking, see [5] [7] for a deep
analysis and illustration of this phenomenon. Intuitively, if the most recent
intelligent backtrack point does not lead to cure the failure, one then needs
another alternative and, as distinct conflicts can occur and be mixed during the
computation, considering always the current conflict is not enough. Recording
alternative backtrack points for every conflict and selectively consider which
are pertinent for a given failure is necessary.

In intelligent backtracking methods, a set containing intelligent backtrack points

16

is thus attached to this end to each node of the proof-tree. These sets are called
Alt (for Alternative backtrack points) in [7], and have similar counterparts in
other methods. One Alt set has to be attached to every (non-deterministic)
node, and it has to contain all intelligent backtrack points related to it. That
is, roughly, all conflicts that occurred during the resolution of the call literal
and also all intelligent backtrack points associated to its father node in the
proof-tree as the father is always a pertinent backtrack point. The Alt set is
thus computed as follows. When a new node is created, its Alt set is initialized
by that of its father node. Now consider a failure with associated conflict K
that leads to a backtracking step to a node ¢ =max(K), i.e. to the most recent
intelligent backtrack point. Al#(i) has to be updated to include the remaining
of the conflict K — {i}.

The backtracking process consists, when backtracking to a node ¢ that has no
more alternative clauses (i.e. becomes deterministic), in inspecting Al#(7) and in
further backtracking to max(Alt(i)), i.e. to the most recent alternative solution,
see for instance [7] [8] for all the details.

5.5 Implementation

The idea, to experiment the integration of intelligent backtracking in CLP lan-
guages, was simple : just use the finite-domain algorithms written in Prolog on
top of a Prolog compiler with intelligent backtracking [8]. We have however to
take care that the two above mentioned schemes are compatibles ...

5.5.1 Domains

A finite domain of size n is implemented as a Prolog term that contains n slots
representing the elements of the domain and slots for the min and max values.
The IB machinery will roughly associate to each variable a label containing
references to the literals that modified its value. In fact such a label will be
associated to a class of (aliased) variables sharing the same value and imple-
mented as an extra field for the value. We thus have the desired labels for the
finite domains.

5.5.2 Domain Modification

The removal of a value in a domain (assignment of a free variable to false) will
results, due to the IB machinery, in the recording of the current literal (the
coustraint) in the label of the variable. One point to take care about is the
treatment of variables updated by the backtracking assignment, such as min
and max. The associated label must be the union of the labels associated to
all previous values and to the current one, so that the label keep track of all
modifications to the value.

17

Observe that the IB machinery takes care of recording for a determinate literal
(eg. a constraint) the nearest non-deterministic node above it in the proof tree.

5.5.3 Labels and Alt Sets

Labels are implemented as bitvectors with one bit corresponding to each choice-
point in the current computation (i.e. in Prolog’s local stack). Hence the size
of the bitvector is proportional to the number of real choice-points and not to
the number of constraints.

Alt sets are also implemented as bitvectors, and thus basic operations on Alt
sets, such as taking the union or extracting the maximal element, are very ef-
ficient (bitwise OR and shift). Indeed our experiments show that in a simple
implementation of Alt sets as lists of references to choice-points these operations
are quite costly, and take up to 30 % of the total execution time in a compiled
system (although it was 5 % in an interpreted system). Our bitvector scheme
cuts down the overhead to less than 5 % allows standard memory reclaim tech-
niques for deterministic parts of the proof-tree, see [8] for details. The conflict
is accordingly a bitvector, which is used to scan down the stack of choice-points
until reaching a pertinent backtrack point.

5.6 Evaluation

Our implementation of IB is very efficient and limits the overhead of the IB ma-
chinery to 20 %, giving good speedup (from a factor 2 to 9) for non-deterministic
Prolog programs, see [8].

To investigate the impact of IB in CLP languages, we have used as a benchmark
program a disjunctive planning example due to [21]. The application consists
in constructing a bridge, and the use of shared resources leads to disjunctive
coustraints, which are implemented as backtrack points [21]. However in this
problem every task is related to another one by some constraint in such a way
that intelligent backtracking does not provide any speedup.

The speedup due to intelligent backtracking with constraint propagation
can be measured on problems having a graph of constraints with more than
one strongly connected components. Otherwise all variables are connected by
constraints and nearly all backtrack points are intelligent. The following table
provides experimental results on the 6-queens problems with up to 4 chess-
boards played simultaneously, and on a version of the bridge construction prob-
lem where unconnected components are created. Of course the independence is
idealized in these examples, but this phenomenon appears when resource allo-
cation is mixed with task scheduling.

18

Bench Nb reductions Time | Nb. reductions Time Ratio
without IB | without IB with IB | with IB | (time)
6-queens 1989 0.03 1989 0.03 1.0
2x 6-queens 27294 0.58 5204 0.12 4.8
3x6-queens 439 468 9.43 9 634 0.24 39
4x6-queens 7 106 360 151.18 15 286 0.43 352
Bridge* 40 039 1.28 7 068 0.22 5.8
2x Bridge* 1 554 364 53.09 13 624 0.39 136

5.7 Application to Hierarchical Constraint Logic Program-
ming

An extension to CLP languages, proposed in [2], consists in associating a strength
to each constraint, that is a positive integer indicating the degree of requirement
of this constraint to hold. A strength O denotes constraints that are required
(i.e. as usual), while other strengths denote constraints that are more or less
preferred, i.e. that should hold if possible, but that can be removed if their in-
troduction leads to inconsistency. A constraint hierarchy consists in a multiset
of such labelled constraints. The method to handle constraint hierarchies in
a Hierarchical CLP language [2] cousists in adding only vrequired constraints
when they occur during the computation, whereas preferred constraints are de-
layed until a global solution is found for all the required constraints. They are
then added by decreasing preference until it leads to inconsistency. However
this approach suffers some deficiencies as for instance the preferred constraints
satisfied by the final solution have not been used actively for pruning the search
space during computation. It can be better to consider preferred constraint as
they occur, especially for those easy to satisfy that have good chances to be
part of the final solution. This allows indeed a further pruning of the search
space and early discovery of inconsistencies (first-fail principle). This scheme is
feasible in our system as one can isolate upon failure the responsible constraints
(conflict) and relax first the preferred ones. We are currently designing such a
language extension in our system.

6 Conclusion

Metaprograms for constraint solving can be surprisingly efficient provided some
critical primitives are implemented in the logic programming shell. We have
shown that the addition of backtrackable assignment in Prolog together with
the introduction of priorities in the standard delay mechanisms of Prolog are
sufficient to limit the overhead due to the programming of constraints over finite
domains on top of Prolog, to a factor less than 7 in comparison to an integrated
system as Chip, even on quite large problems.

19

Having defined a very limited extension of the WAM for constraint prop-
agation on top of Prolog it is possible to benefit from other improvements.
This point has been illustrated by the combination of constraint solving with
intelligent backtracking. We have described the basic techniques to perform
intelligent backtracking in CLP(FD), and have shown how these techniques are
indeed realized by the finite domain package on top of our Prolog compiler with
intelligent backtracking.

This framework is also appropriate to investigate other constraint propaga-
tion techniques. We are particularly interested in constraint relaxation for hier-
archical CLP and reactive CLP. We are currently investigating these techniques
in the light of the basic mechanisms developed for intelligent backtracking.

References

[1] A. Aggoun, N. Beldiceanu, ” Time Stamps Techniques for the Trailed Data
in Constraint Logic Programming Systems”, Se’minaire Programmation en
Logique CNET, Tregastel. 1990.

[2] A. Borning, M. Maher, A. Martindale and M. Wilson : ”Constraint Hier-
archies and Logic Programming”, proceeding of the 6th Int. Conf. on Logic
Programming, Lisboa, MIT Pres 1989.

[3] BNR-Prolog User’'s Manual, Bell Northern Research, Canada, 1988.

[4] M. Bruynooghe : "Intelligent backtracking for an interpreter of Horn Clause
logic programs”, report CW 16, K.U. Leuven, September 1978.

[5] M. Bruynooghe and L. M. Pereira : ”Deduction revision by intelligent
backtracking”, in Implementations of Prolog, J. A. Campbell (Ed.), 194-
215, Ellis Horwood 1984.

[6] M. Carlsson, ”Freeze, Indexing and Other Implementation Issues in the
WAM”, proceedings of the 4th Int. Conf. on Logic Programming, Mel-
bourne, MIT Press 1987.

[7] C. Codognet, P. Codognet and G. File : ”Yet Another Intelligent Back-
tracking Method”, proceedings of the 5th Int. Conf. on Logic Programming,
Seattle, MIT Press 1988.

[8] P. Codognet and T. Sola : "Extending the WAM for Intelligent Backtrack-
ing”, proceedings of the 8th Int. Conf. on Logic Programming, Paris, MIT
Press 1991.

[9] A. Colmerauer : ”Opening the Prolog-III universe”, Byte, August 1987.

20

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

P. T. Cox : "Deduction plans, a graphical proof procedure for first-order
predicate calculus”, Ph.D. dissertation, Dept. of Computer Science, Uni-
versity of Waterloo, Canada, 1977.

D. De Schreye and M. Bruynooghe : "implementation of finite domains for
Prolog with a delay mechanism”, proceeding ESOP 90.

M. Dincbas, H. Simonis and P. Van Hentenryck : ”Solving large combina-
torial problems in Logic Programming”, ECRC technical report TR-LP-21,
1987, and Journal of Logic Programming, 1988.

J. Doyle : ” A Truth Maintenance System”, Artificial Intelligence 24 (1980).

F. Fages. J. Fowler: “Programmation logique avec contraintes sur les do-
mainejs finis: manuels de Meta(F) version 2.3”, Rapport LCR Thomson-
CSF, LACS-91-6. Sept. 1991.

R. M. Haralick and G. L. Elliot : "Increasing tree search efficiency for
constraint satisfaction problems”, Artificial Intelligence 14 (1980), 263-313.

J. Jaffar and J-L. Lassez : ”Constraint Logic Programming”, research re-
port, University of Melbourne, 1986, also in the proceedings of POPL 87.

L. M. Pereira and A. Porto : ”intelligent Backtracking and Sidetracking in
Horn clause programs - the theory”, research report CINUL 2/79, Univer-
sitade Nova de Lisboa, 1979.

V. J. Saraswat : ”Concurrent Constraint Programming Languages”, re-
search report CMU-CS-89-108, Carnegie Mellon University, 1989,
to be published in MIT Press series in Logic Programming, 1991.

S. Haridi, personal communication, Dec 89.
Sicstus Prolog User’s Manual, SICS, Sweden, 1989.

P. Van Hentenryck : " Constraint Satisfaction in Logic Programming”, MIT
Press 1989.

P. Van Hentenryck and Y. Deville : ”Efficient Arc Consistency Algorithm
for a class of CSP Problems”, proc. IJCAT 91, Sidney, 1991.

21

