
A Metalevel Compiler of CLP(FD) and itsCombination with Intelligent BacktrackingPhilippe Codognet 1 2Fran�cois Fages 3 2Thierry Sola 2AbstractWe propose an implementation of constraint solving over �nite domains, as pio-neered by CHIP, on top of any Prolog system that provides a delay mechanismand backtrackable assignment. The aim is to propose a simple, portable, easily-maintenable, but yet e�cient package. The performances of our system are ofthe same order of magnitude than a "wired" implementation of �nite domainssuch as CHIP, even on quite large programs. We have also designed some basiclow-level (WAM) extension to Prolog's delay mechanism to make it more suitedfor handling constraint solving, such as priority queues for scheduling wokengoals, that allow to preferentially treat cheap primitive constraints and investi-gate various constraint solving heuristics.Moreover, we propose an intelligent backtracking scheme for Finite Domain CLPLanguages. Intelligent backtracking consists in determining, upon unsolvabilityof the constraint system, a pertinent choice-point which can "cure" the fail-ure, and departs from the naive approach usually found in logic programmingwhich always goes to the most recent choice-point, whether it is pertinent ornot. As non-determinism is used in CLP to express disjunctive constraints (eg.disjunctive scheduling) or heuristic search techniques, our method can be usedto improve the e�ciency in such problems. We propose an implementation ofthis scheme by using the �nite domains constraint solver on top of a Prologcompiler with intelligent backtracking.Interestingly, our framework also leads to a new (and e�cient) execution modelfor Hierarchical Constraint Languages, and can be the basis for general incre-mental constraint solving.
1INRIA, domaine de Rocquencourt, 78153 Le Chesnay, FRANCE2LCR Thomson-CSF, domaine de Corbeville, 91404 Orsay, FRANCE3LIENS CNRS, 45 rue d'Ulm, 75005 Paris, FRANCE1

1 IntroductionConstraint Logic Programming (CLP) languages provide an attractive paradigmwhich combines the advantages of Logic Programming (declarative semantics,non-determinism, partial answer) with the e�ciency of special-purpose constraint-solving algorithms over speci�c domains such as reals or rationals, �nite domainsor booleans. Several languages, such as Prolog-III [9], CHIP [12], CLP(R) [16],show the usefulness of this approach for real applications in various domainsas combinatorial problems, scheduling, cutting-stock, circuit simulation, diag-nosis, �nance, etc. Interesting domains of computation proposed by the CHIPlanguage are �nite domains together with linear equations, inequations and dis-equations. Such �nite domains allow a very e�cient constraint solving, even forlarge combinatorial problems, and are useful for a variety of applications, andare even competitive on some applications most suited for rational or booleandomains.Finite domain constraint solving typically considers a discrete domain D, suchas the set of integers or an enumerated type, and requires that each variable usedin the constraint system has an associated domain which is a �nite subset of D.The usual constraints over �nite domains are (linear) equations (=), inequations(<;�), disequations (6=), list membership (e.g. element(I,[x1,...,xn],V)meaning xI = V), cardinalities (e.g. atmost(n,[X1,...,Xk],v) meaningcardfijXig � v), but more complicated constraints can be considered, eg. theuser-de�ned active constraints of CHIP. The usual constraint solving mechanismis the propagation of the constraints in order to mutually reduce the domains ofthe variables by forward-checking or look-ahead techniques as proposed in [15]and applied to CHIP in [21]. One can consider for instance the propagation ofthe min and max values of variables for equations and inequations or the re-moval of values for disequations, see [21] for a comprehensive treatment. Indeed,as proposed by [22], the treatment of monotonic constraints on totally ordereddomains, eg. < on integers, can be made even more e�cient. Also observethat these propagation techniques are very close to the treatment of intervalarithmetics over reals proposed in BNR-Prolog [3].The purpose of our approach was to design a �nite domain constraint solveron top of Prolog, aiming at proposing a simple, portable, easily-maintenable,but yet e�cient package. Such a package could be used to experiment variousand algorithms and heuristics for the constraint solving process while keepingwith the declarativity of the Prolog languages (instead of going into a "wired"implementation in C). It should however remain e�cient enough to give credibleresults, with a constant time slowdown w.r.t. high-speed systems such as CHIP,even for large programs.Another interesting feature of this approach is that we could thus bene�t forfree of various extensions for Prolog systems, such as for instance an intelligentbacktracking scheme. We thus have a CLP language with intelligent backtrack-2

ing, which could be used to e�ciently treat disjunctive constraints.The key-point for e�ciently implementing �nite domains on top of Prolog isto use a delay mechanism, as pioneered by Prolog-II and now o�ered by some(most ?) other Prolog systems, to handle the constraints and let this coroutiningmechanism take care of the constraints propagation. This idea indeed emergesfrom seminal work at SICS [19], and is also based on the "backtrackable as-signment" facility of Sicstus Prolog [20]. [11] also describes a �nite domainpackage for Prolog with a delay mechanism, which is however quite di�erentfrom our implementation and uses a pre-processing phase. In our approach,each constraint which is still active (i.e. not solved and still present in the cur-rent constraint system) corresponds to a delayed predicate which will be wokenup as soon as the domain of one variable of the constraint is modi�ed. Thispredicate will then enforce its own domain modi�cations and propagations andwill be delayed again if the constraint is not completely solved. We use theusual forward-checking and (partial) look-ahead techniques on �nite domain toperform the constraint propagation, see [21].However we have experienced that the delay mechanism of Prolog systems wasnot completely adequate to implement constraint systems, which is not verysurprising as it was not intented to do so anyhow. Indeed we would have likemore exibility in the scheduling of woken goals, and we have thus designedan enhanced delay mechanism. The most important feature we needed was toallow some control over the scheduling and wakening of constraints, and to usepriorities. Hence, for a set of constraint that should be woken up at a giventime, the constraints with high priority will be treated �rst and those with lowpriority second. We could thus treat preferentially cheap primitive constraints,such as 6= or binary <, and perform their pruning before managing more costlyconstraints such as linear equations. Another feature that we have introducedat a low-level (into the WAM) is the ability for a goal to be waiting on a disjunc-tion of variables, corresponding for a constraint in being waiting for a domainmodi�cation of any of its variable.We experiment our implementation with programs taken from [21], and compareit with the timings given for the implementation of CHIP. The �nite domainimplementation on top of Prolog is less than 7 times slower than the "wired"implementation, even for large program such as the disjunctive scheduling ofthe bridge construction.Another interesting feature of our approach was to experiment the �nite do-main package with our Prolog compiler with intelligent backtracking [8] in or-der to investigate the use of intelligent backtracking (IB) in CLP languages.Indeed, the nondeterminism of the underlying Prolog language is often used inCLP languages to express for instance disjunctive constraints (eg. disjunctive3

scheduling) or heuristic search techniques such as domain-splitting, see variousexamples in [21]. The CLP languages however rely, as Prolog, on naive or blindbacktracking, and always backtrack to the most recent choice-point when a fail-ure (inconsistency constraint system) is found. However this choice-point is notnecessarily related to the current failure, and such backtracking can amountto useless computation work and lead to trashing behavior. Intelligent back-tracking consist, upon failure of the computation, in analyzing the causes of thefailure and determining a pertinent backtrack point that can "cure" the failure.It thus avoids useless computation work when compared to naive backtrack-ing. Intelligent backtracking has been investigated in Logic Programming formore than one decade [10] [4], [17], [5], and some e�cient methods have beendeveloped [7] [8]. Indeed [8] describes an implementation inside a WAM-basedProlog compiler where the overhead of the IB machinery is limited to 20 %,leading to interesting speedups for non-deterministic programs. IB is related todependency-directed backtracking of the TMS framework [13].The backbone of our method is to record for every domain modi�cation whichconstraint is responsible of it (whodunnit ...). This allows to easily determineupon unsolvability of the constraint system the (minimal) unsolvable subsys-tem, i.e. the subsets of constraints responsible of the failure. This gives a set ofpertinent backtrack points that can cure the failure. When the constraint sys-tem derives from a proof-tree, as in CLP languages, it is however not su�cientto simply backtrack to the most recent intelligent backtrack point, and a specialbacktracking process is needed to retain the completeness of the method. Thismechanism consists in managing sets of intelligent backtrack points attachedto the nodes of the proof-tree, and is identical to its counterpart in intelligentbacktracking methods for Logic Programming. We show how, by using the �nitedomain package on top of our Prolog compiler with intelligent backtracking, wecan implement the proposed IB scheme.An other application of our framework is to consider constraint hierarchies andHierarchical Constraint Logic Programming (HCLP) languages [2]. HCLP isan extension that associates a strength level to each constraint and allows torelax some constraints (those preferred but not required) when their introduc-tion leads to inconsistency. Our scheme allows to handle all constraints as theyoccurred, having thus a more constrained system and a better pruning of thesearch space, and, thanks to the intelligent backtracking information, to selec-tively relax some of them upon failure. This seems to be an adequate frameworkfor a general treatment of incrementality in constraint solving.This paper is organized as follows. Section 2 describes the basis of the imple-mentation of �nite domains on top of a Prolog system with a delay mechanismand backtrackable assignment, and Section 3 proposes some extensions for theimplementation of the delay mechanism in the WAM in order to increase ef-�ciency. The performances of our system are presented in Section 4. Section5 describes an intelligent backtracking scheme for a �nite domain CLP and4

presents a simple implementation by using the previous �nite domain programson a Prolog compiler with intelligent backtracking.2 Constraint Solving over Finite Domains onTop of Prolog2.1 Constraints over �nite domainsA constraint in Logic Programming is an n-ary predicate whose ground instanceseither succeed or �nitely fail. Domain variables are declared with a domain ofpossible values. We shall consider Constraint Logic Programming over �nitedomains, CLP(FD), and for simplicity the only �nite domains we shall con-sider are �nite sets of natural numbers. In addition to arithmetic constraints,such as linear equalities, one can de�ne also symbolic constraints, such as setmembership [21], or higher order constraints.The declarative semantics of an answer to a goal G and a program P is aconjunction of constraints C that entail G:P j=FD 8(C) G)In order to cope with incomplete constraint solvers we do not suppose that theanswer constraints C are FD-satis�able, this has to be checked independently.In this way constraints are used actively to reduce the search space before theinstanciation of domain variables. To perform this behavior new inference ruleshave to be added to the standard resolution rule of Logic Programming:RES : �A1; :::; Ai; :::; Am: �(A1; :::; Ai�1; B1; :::; Bn; Ai+1; :::; Am)�where B : �B1; :::; Bn is a rule whose head uni�es with goal Ai and � is themost general uni�er.This inference rule is well suited to implement "generate and test" proceduresbut does not use domain informations to simplify constraints and achieve a prioripruning of the search space. Following [21] two inference rules are thus addedfor constraint propagation: forward-checking and look-ahead.2.1.1 Forward CheckingA constraint is forward checkable if it contains exactly one domain variable allthe other arguments being ground. The forward checking inference rule consistsin solving a constraint forward checkable on xd (d denotes the domain of variablex) by substituting to xd a new variable with the appropriate domain.FC : �A1; :::; Ai; :::; Am: �(A1; :::; Ai�1; Ai+1; :::; Am)�5

where Ai is forward checkable on xd,e = fa 2 djP j= Ai[xd a]g is non-empty,� = fxd cg if e = fcg, � = fxd Y eg otherwise.This de�nition can be directly implemented for forward checking arbitraryconstraint predicates over �nite domains, but of course much more e�cientimplementations exist for speci�c constraints.2.1.2 Look AheadA constraint is look-ahead checkable if it contains at least one domain variable.Depending on the number of domain variables remaining in the constraint afterlooking-ahead the constraint is solved and can be eliminated, or is used only forreducing the search space. This is formalized by two inference rules:LA : �A1; :::; Ai; :::; Am: �(A1; :::; Ai; :::; Am)� LA0 : �A1; :::; Ai; :::; Am: �(A1; :::; Ai�1; Ai+1:::; Am)�where Ai is look-ahead checkable,ej = faj 2 dj j9ak 2 dk; k 6= j; P j= Ai[x1 a1; :::; xn an]g� = fx1 v1; :::; xn vng where vj = c if ej = fcg, vj = yej otherwise.LA applies if Ai� contains at least two domain variables, otherwise LA0 ap-plies and as Ai� contains at most one domain variable the goal Ai is solved.In practice it is often more cost e�ective to compute an approximation of theexact domain of each variable in a constraint used in look-ahead. The partiallook ahead inference rule (PLA) di�ers from LA by the domains used in thesubstitution:� = fx1 v1; :::; xn vng where vj = c if ej = fcg, otherwise vj = ye0jwith ej � e0j � dj .Partial look ahead is employed for example for solving linear equalities byreasoning only on the minimum and maximum values of each domain variable.2.2 E�cient Constraint Propagation on Top of Prolog2.2.1 Representation of Domain VariablesDomain variables can be represented by Prolog variables with their domainattached to them as an attribute. The attributes of a variable can be representedby frozen goals on that variable, and can be accessed by the standard freeze,frozen predicates. When a variable is declared with a domain, a goal recordinginformation about its domain is frozen. Then some extra information can beadded by constraints in which the variable occurs. When a domain variable getsinstanciated the goal recording its domain is woken up to check membership of6

the value to the domain. The general representation of domain variables rangingover �nite sets of natural numbers is the following4:freeze(X,domain-check(X,Inst,nat(min,max,Vmin,Vmax,BV)))Variable Inst is used to wake the constraints in forward checking, Inst isinstanciated as soon as a value is assigned to X. Components min, max indicatethe extremum values of the domain of X, these values can be changed by usingthe backtrackable assignment instruction setarg. Variables Vmin and Vmax areused to implement look ahead propagation, they get instanciated as soon as theminimum, resp. the maximum value, of the domain of X changes.BV provides optional extra informations used by some constraints. When itis instanciated BV is an explicit representation of the domain of X by a booleanvector, used for example for forward checking disequalities. BV contains alsoa variable Vmid used to wake-up some constraints in look-ahead (e.g. a �X =b�Y +c or element) as soon as a value is deleted from the middle of the domainof a variable. BV=bv(Bias,BooleanVector,Vmid)2.2.2 Representation of ConstraintsConstraints are represented by Prolog goals on which standard delay mecha-nisms can apply. For example a linear equation, P aiXi = P bjY j, is repre-sented by a goal eqln(Lx,Ly)where the couple (Lx,Ly) is some canonical formof the equation.A constraint used in forward checking is represented by a goal frozen on thevariable Inst of each domain variable occurring in the constraint. In this waythe constraint is woken-up at each instanciation of one of its domain variables tocheck whether the constraint is forward checkable, and then apply the inferencerule FC.A constraint used in look ahead, or partial look ahead, is represented by agoal frozen on the disjunction of variables associated to the di�erent kinds ofdomain modi�cation that may occur to each domain variable. In the case of nat-ural numbers the variables Vmin, Vmax indicate a modi�cation of the extremumvalues of a domain variable, and when it is present Vmid indicates the deletionof a value in the middle of the domain. Note that the freezing of constraintson a disjunction of variables can be implemented on top of Prolog by using thefreeze predicate in two steps:4In Prolog systems in which freeze and frozen are costly predicates, declarativity may besacri�ed to e�ciency by representing the domain by a term bound to the variable instead ofa frozen goal. 7

freeze_or(L,G) :-freeze(V,G),freez_or(L,V).freez_or([],_).freez_or([X|L],V) :-freeze(X,V=go),freez_or(L,V).A wired implementation of this metapredicate in our Prolog compiler is respon-sible for a 50% speed-up in the N-queens problem but is neglectable in the otherbenchmarks of section 4.The general scheme for constraint propagation is:1. wake the constraint2. simplify3. resolve and propagate4. iterate on 2) and 3) until no change5. refreeze the constraintThis general scheme can be specialized into two global versus selective con-straint propagation schemes presented in the next sections.2.2.3 Global Constraint Propagation SchemeIn this scheme a constraint on several variables is represented by a unique goalfrozen on a disjunction of variables. When the constraint is woken-up it ischecked for consistency independently of the causes for its waking. The globalpropagation process is iterated as long as some domains of the variables in theconstraint are reduced. These domain reductions are caused either directly bythe propagation of the constraint itself, or by the waking of other constraintsduring the propagation. The possibility to interrupt the propagation of a con-straint to resolve another one is an important feature of the metaprogrammingapproach. We shall come back on this point in section 3.For example the program for solving linear equations is basically the followingone:wake_eqln(LX,LY) :-elim_cst(LX,LXs),elim_cst(LY,LYs),res_eqln(LXs,LYs). 8

res_eqln(LX,LY) :-minmaxln(LX,Minx,Maxx),minmaxln(LY,Miny,Maxy),min(Maxx,Maxy,Max),max(Minx,Miny,Min),Max >= Min,propagate_minmax(LX,Minx,Maxx,Min,Max),propagate_minmax(LY,Miny,Maxy,Min,Max),((minmaxln(LX,Minx,Maxx),minmaxln(LY,Miny,Maxy))-> freeze_eqln(LX,LY); res_eqln(LX,LY)).freeze_eqln(LX,LY):-varminmax([LX,LY],LV),freeze_or(LV,wake_eqln(LX,LY)).The purpose of predicate elim-cst is to simplify linear terms by eliminatinginstanciated variables. Here constraint solving consists in propagating the ex-tremum values of the terms in each member of the equation. This propagationis iterated as long as the extremum values of linear terms are modi�ed (noticethat these domain reductions may cause the waking of other constraints). Thenthe constraint is frozen again on the list of variables attached to the domainvariable in the constraint.The constraint solver recognizes also some simpli�ed forms of the constraint,such as linear equations with less than three variables. For these small con-straints a more e�cient propagation scheme is preferable.2.2.4 Selective Constraint Propagation SchemeSome simple constraints, such as a � X = b � Y + c, are better representedby several specialized goals frozen as daemons, instead of by one unique goal.Instead of executing the global propagation scheme on these constraints, it isbetter to record the cause for a waking, perform the propagation limited to thiscause, and refreeze the constraint only on this cause, keeping unchanged theother references to the constraint.For example the predicate to implement looking ahead on X � Y + c usesin the �rst argument a ag which indicates the cause of the waking (i.e. ei-ther the minimum of Y increased, either the maximum of X decreased). Theprogram is basically the following one: 9

wake_supXYC(_,X,Y,C):-unique(X,X1),unique(Y,Y1),!,X1 >= Y1+C.wake_supXYC(_,X,Y,C):-unique(X,X1),!,M is X1-C,decrease_max(Y,M).wake_supXYC(_,X,Y,C):-unique(Y,Y1),!,M is Y1+C,increase_min(X,M).wake_supXYC(minY,X,Y,C):-frozen(Y,domain-check(_,_,nat(Miny,_,_,_,_))),Min is Miny+C,increase_min(X,Min),(Y=d(_,nat(_,Miny,_,LAy,_))-> vararg(1,LAy,Vmin),freeze(Vmin,wake_supXYC(minY,X,Y,C)); wake_supXYC(minY,X,Y,C)).wake_supXYC(maxX,X,Y,C):- ... symmetrical ...Note that the predicate vararg uses backtrackable assignment to replacean instanciated variable, such as Vmin, by a fresh variable used to refreeze theconstraint again.In general the selective propagation scheme is preferable to the global prop-agation scheme for constraints on less than three variables.2.2.5 Compilation with the WAMConstraint solvers are deterministic programs. Many features of the WAMare precisely done for optimizing such Prolog programs, but as pointed out in[1] particular attention has to be paid on the trailing of intermediate valuesduring constraint propagation. In our approach these intermediate values aremodi�ed by the backtrackable assignment instruction setarg. Thus the general10

optimisations of the trail mechanism in Prolog are inherited, furthermore weshall see in section 5 that the labels used to implement intelligent backtrackingcan be used as time stamps [1] to avoid the trailing of intermediate valuesbetween two choice points.In the previous programs the refreezing of a constraint leads to the recon-struction of a frozen goal on the heap, while the old instance becomes inac-cessible. It is thus desirable to reuse always the same instance, avoiding spaceconsumption and recourse to the garbage collector. This can be achieved in ourapproach on top of Prolog by keeping a reference to the frozen goal in an extraargument (this was responsible for dividing by 2 the space required on the heapin an application with 60 variables and 2500 linear constraints over 6 variableseach).3 Extension to the WAM for an Adequate De-lay Mechanism3.1 Interruptions during constraint solvingOne important aspect of the constraint propagation scheme on top of Prolog isthe interruption of one constraint solver by another, the number of interruptionlevels being bounded by the number of running constraints. During the prop-agation of a constraint involving a large number of variables, if one domain ismodi�ed, several small constraints can be woken-up. The propagation is theninterrupted, inconsistencies are detected earlier and in case of consistency theglobal propagation of the large constraint continues with updated domain vari-ables. Note that the iteration check has to take care of the fact that the domainsmay be changed by other constraints during the propagation phase. Howeverif it is not controlled this interruption mechanism may have the opposite e�ectas well. If several small constraint in forward checking are woken-up by the in-stanciation of a domain variable, then during the solving of the �rst constraint,a costly constraint can be woken-up, but then the solving of the other smallconstraints will not occur before the end of the propagation of the costly con-straint which can be woken-up in this way several times.Clearly one has to distinguish at least two levels of priorities according to thetwo propagation schemes. Constraints of priority 1, constraints of low cost, arethose used in forward checking, or those containing few variables relying on theselective propagation scheme in look-ahead. Constraints of priority 2 are thosecontaining several variables for which the global propagation scheme is prefer-able. It is important that the constraints of priority 2 should be interruptedonly by constraints of priority 1, but not by other constraints of same prior-ity. The propagation of a constraint of priority 2 has to be terminated beforethe execution of any other lower priority constraint. Indeed by postponing theexecution of lower priority woken constraints the additional causes of waking11

(that may occur during the execution of higher priority constraints or of thepreceding lower priority woken constraints) are simply ignored and the costlyconstraint is executed only once.Priority Constraints InterruptsFreezed pred. prio. 1 selective propag. priority 1Freezed pred. prio. 2 global propag. priority 1Standard predicate priorities 1 and 2Of course after propagation and simpli�cation a lower priority constraint maybe refreezed as a higher priority constraint.3.2 Extension to the WAM for a wait with two-level pri-oritiesThe method presented in [6] to incorporate a delay mechanism into the WAMcan be extended to implement two-level priorities.Constrained variables have attached to them two lists of frozen goals, corre-sponding to the two priorities. The manipulation of these variables is similar to[6]. Two wakeup registers W1 and W2 are introduced. These registers play thesame game as register W in [6], i.e. they contain the woken goals to execute atthe next inference. W1 and W2 contain respectively the goals of priority 1 andthose of priority 2.The particularity of our mechanism appears when a list of frozen goals iswoken up. If there is a list of woken goals of priority 1 to execute (i.e. W1 <>nil) then the execution is always interrupted at the next inference to executethis list of goals. It is therefore necessary to save the current environment inorder to restore it at the end of the execution. This is achieved by the instruction"continue" introduced by [6] for the restoration of the goal after its interruption.For the waking-up of goals of priority 2, the current resolution step is testedto know whether it has been caused by the execution of a woken goal or not. Forthis check a new register RQ is introduced. RQ is a pointer to the last elementof the list of woken goals that are executed after an interruption. This registeris equal to nil initially and after the demonstration of the last woken goal. IfRQ = nil then the waking-up of goals of priority 2 causes an interruption, thelist pointed by W1 and W2 are merged to form the list of goals to execute, andRQ is initialized to the last element:last(W1) = �W2RQ = last(W2)If RQ <> nil then the list of woken goals pointed by W2 is added at the endof the list of woken goals that are currently executed:�RQ = �W212

RQ = last(W2)In this way the list of woken goals is treated as a di�-list instead of an ordinarylist. The woken goals of priority 1 cause always an interruption while those ofpriority 2 cause an interruption only if no woken goals are currently executed(RQ = nil). Otherwise they are simply added at the end of the list of currentlyexecuted woken goals. In particular with priority 1 several levels of interruptionare possible while with priority 2 only one level of interruption is possible.4 Performance ResultsIn this section we compare the performances of our implementation on top ofProlog on a Sun-3/50, to the performances of the Chip system on a Vax/785given in [21]5. Both machines are given for 1.5 Mips and can be considered asequivalent. The �rst benchmark is the N-queens problem. This program usesonly forward checking on disequalities, together with the �rst-fail principle. Thesecond example is the puzzle \send+more=money" given in [21]. This programuses both forward checking on disequalities between variables, and look ahead onone linear equation. The third example is the search of a magic series of length 7with (CAC) and without (CWC) additional redundant constraints. The fourthexample is a disjunctive scheduling problem for the construction of a bridge,consisting of 44 variables and 400 constraints. That program uses a branch andbound procedure with look ahead on precedence constraints and choice pointson disjunctive constraints. The timings for this benchmark indicate the timetaken to �nd the �rst solution (cost 110), the optimal solution (cost 104), andthe proof of optimality.Two timings are given on our implementation. Meta-1 indicates the runningtime on top of Sicstus-Prolog 0.6. Meta-2 is on top of our Prolog compiler withthe highest level of priority for constraints involving less than three variables,The last column indicates the ratio between Meta-2 and Chip.
5Since the publication of the timings given in [21] the Chip system has been improved butnew timing results are not available and this book is still the main reference.13

Bench Chip Meta-1 Meta-2 Meta-2/Chip8 queens 0.77 2.14 1.02 1.432 queens 4.05 10.1 4.75 1.296 queens 36.2 88.3 39.6 1.1send 0.06 0.48 0.42 7crypta 0.15 0.8 0.72 4.8magic 7 CAC 12.9 14.0 14.0 1.1magic 7 CWC 171 131 37.9 0.22bridge110 1.5 2.92 2.82 1.9104 6 6.71 6.5 1.1proof 90 161 159 1.8The N-queens problem is not a representative benchmark, however on thisexample we obtain nearly the same performances as Chip. The speed-up bya factor 2 between Meta-1 and Meta-2 on the N-queens problem is due to thewired implementation of the freezing of a goal on a disjunction of variables.On the cryptarithmetic puzzle the speed-up between Meta-1 and Meta-2 islimited to 10%. This is quite deceiving as in this example a large linear equationof priority 2 is mixed with several small inequalities of priority 1. However aspeed-up by a factor 2.5 has been measured on a di�erent version where theproblem is written with several linear equations of priority 2. On the magicseries program, the good speedup for CWC is due to the use of priority 2 forthe delayed predicate occur de�ned in the program, all constraints being inpriority 1. In CAC however, a better result (8.93 seconds) can be achieved byusing priority 1 for occur.5 Intelligent Backtracking in Finite DomainsWe will now describe the basic techniques to perform intelligent backtrackingin CLP(FD). Naive backtracking upon failure (unsolvability of the constraintsystem) consists in simply going back to the most recent choice-point, remov-ing the corresponding constraints and choosing an alternative clause. This mayhowever not be enough to cure the failure, as the removed constraints may beindependent of the previous failure, and this will lead to redo the same failureand backtrack further. In order to have a better behavior and avoid uselesscomputation/backtracking steps, one has to determine upon unsolvability ofthe constraint system the subsystem consisting of the constraints which are the"causes" of the failure. Such a subsystem is called a conict, and the removal ofa single constraint of the conict from the original system can "cure" the failure,i.e. restore satis�ability. One has however to take care of the management ofintelligent backtrack points as some hidden dependencies exists between con-straints due to previous conicts and as the constraint system indeed derives14

from a proof-tree, which also induces a dependency relation.We will �rst present the extensions that are needed to achieve such a behavior,and then see how they are indeed enjoyed by running the previous Prolog im-plementation of �nite domain constraint solving on top of our Prolog compilerwith intelligent backtracking.5.1 Finding the Causes of UnsolvabilityDue to the propagation techniques, the unsolvability (or inconsistency) of theconstraint system is discovered as soon as the domain of (at least) one variablebecomes empty during the propagation phase. In order to be able to analyze thefailure upon unsolvability of the constraint system, some extra-information hasto be attached to the variables. This information should be computed duringforward execution, when the domain of the variable is updated, and will containthe "history" of the domains modi�cation.We thus associate to each element e in the domain of a variable V an set of(references to) constraints called the label of e, that will refer to the constraintsthat leads to the removal of e from the domain of V . Observe that, due to thepresence of uni�cation constraints (simple equalities), a set of constraints (cor-responding to a chain of aliased variables) instead of simply a single constraintcan be responsible of the removal of a single value from a domain.When, during the propagation phase, the domain of some variable becomesempty, the failure analysis is performed as follows.Consider a variable X whose domain becomes empty due to a constraint ci. Inorder to determine the constraints responsible of the inconsistency, one has �rstto compute the clashing subdomain of X , i.e. the set of values that have beenremoved from the domain but that are compatible with ci alone. The union ofci and the labels of all the values in the clashing subdomain forms the conictcorresponding to the unsolvability and represents the set of all constraints re-sponsible of it.The clashing subdomain, and hence the conict can be easily determined. Ifci is a disequation constraint, it remove only a single value from the domainof X , and this value forms the clashing subdomain. For equations and inequa-tions, one just need to consider the values ranging from the value imposed bythe constraint to the extremity of the original domain of X to determine theclashing subdomain. Remark however that, as these constraints are treated bypropagation on the min and max values of domains only, and that it is possibleto associate only two labels to each domain, one to the min value and anotherto the max value. The clashing subdomain is then determined by consideringeither the label associated to the min or that of the max, depending on whichthe inconsistency occurs.Observe that, of course, ci is always an element of the conict, because theconsistency check is performed after each domain modi�cation. Removal of any15

of the constraint of the conict (if it is possible, i.e. if they correspond to a non-deterministic node) will give a solvable constraint system, and the conict hencerepresents the set of intelligent backtracking points associated to the failure.5.2 Backtracking ProcessLet us now precise the backtracking process, i.e. how to manage intelligentbacktracking points that represent nodes of a proof-tree and handle determin-istic and non-deterministic nodes.5.3 Backtrack Points and ConstraintsIn the previous section, we have assumed that labels and conicts contain refer-ences to constraints. However, as our language does not contain an explicit dis-junction operation between constraints but relies on the non-determinism of theunderlying constraint language, backtracking takes place not directly betweenconstraints but between non-deterministic nodes of the proof-tree correspondingto the current computation. Indeed, at the implementation level, the system re-lies on a Prolog-like backtracking mechanism. The simplest way to match bothvisions is to consider that a constraint implicitly refers to the choice-point whichis the closest non-deterministic ancestor above it in the proof-tree. Thereforebacktracking to this choice-point is the minimal way of removing the constraint.Such a scheme is simple to implement and corresponds indeed to the handlingof deterministic predicates in intelligent backtracking for logic programming.We will thus assume for the rest of this section that labels contain references tonon-deterministic nodes as described above.5.4 Backtracking ProcessIn logic programming, all intelligent backtracking methods are essentially basedon two ideas : the �rst is that of computing a conict in case of failure by somefailure-analysis, and the second is that, while backtracking to one element ofthe conict, one must store the remaining elements of the conict as alternativesolutions to cure the failure.It is indeed not enough to just backtrack to the most recent intelligent backtrackpoint and forget about the other elements of the conict, as this will lead toincompleteness of the method w.r.t. naive backtracking, see [5] [7] for a deepanalysis and illustration of this phenomenon. Intuitively, if the most recentintelligent backtrack point does not lead to cure the failure, one then needsanother alternative and, as distinct conicts can occur and be mixed during thecomputation, considering always the current conict is not enough. Recordingalternative backtrack points for every conict { and selectively consider whichare pertinent for a given failure { is necessary.In intelligent backtracking methods, a set containing intelligent backtrack points16

is thus attached to this end to each node of the proof-tree. These sets are calledAlt (for Alternative backtrack points) in [7], and have similar counterparts inother methods. One Alt set has to be attached to every (non-deterministic)node, and it has to contain all intelligent backtrack points related to it. Thatis, roughly, all conicts that occurred during the resolution of the call literaland also all intelligent backtrack points associated to its father node in theproof-tree as the father is always a pertinent backtrack point. The Alt set isthus computed as follows. When a new node is created, its Alt set is initializedby that of its father node. Now consider a failure with associated conict Kthat leads to a backtracking step to a node i =max(K), i.e. to the most recentintelligent backtrack point. Alt(i) has to be updated to include the remainingof the conict K � fig.The backtracking process consists, when backtracking to a node i that has nomore alternative clauses (i.e. becomes deterministic), in inspecting Alt(i) and infurther backtracking to max(Alt(i)), i.e. to the most recent alternative solution,see for instance [7] [8] for all the details.5.5 ImplementationThe idea, to experiment the integration of intelligent backtracking in CLP lan-guages, was simple : just use the �nite-domain algorithms written in Prolog ontop of a Prolog compiler with intelligent backtracking [8]. We have however totake care that the two above mentioned schemes are compatibles ...5.5.1 DomainsA �nite domain of size n is implemented as a Prolog term that contains n slotsrepresenting the elements of the domain and slots for the min and max values.The IB machinery will roughly associate to each variable a label containingreferences to the literals that modi�ed its value. In fact such a label will beassociated to a class of (aliased) variables sharing the same value and imple-mented as an extra �eld for the value. We thus have the desired labels for the�nite domains.5.5.2 Domain Modi�cationThe removal of a value in a domain (assignment of a free variable to false) willresults, due to the IB machinery, in the recording of the current literal (theconstraint) in the label of the variable. One point to take care about is thetreatment of variables updated by the backtracking assignment, such as minand max. The associated label must be the union of the labels associated toall previous values and to the current one, so that the label keep track of allmodi�cations to the value. 17

Observe that the IB machinery takes care of recording for a determinate literal(eg. a constraint) the nearest non-deterministic node above it in the proof tree.5.5.3 Labels and Alt SetsLabels are implemented as bitvectors with one bit corresponding to each choice-point in the current computation (i.e. in Prolog's local stack). Hence the sizeof the bitvector is proportional to the number of real choice-points and not tothe number of constraints.Alt sets are also implemented as bitvectors, and thus basic operations on Altsets, such as taking the union or extracting the maximal element, are very ef-�cient (bitwise OR and shift). Indeed our experiments show that in a simpleimplementation of Alt sets as lists of references to choice-points these operationsare quite costly, and take up to 30 % of the total execution time in a compiledsystem (although it was 5 % in an interpreted system). Our bitvector schemecuts down the overhead to less than 5 % allows standard memory reclaim tech-niques for deterministic parts of the proof-tree, see [8] for details. The conictis accordingly a bitvector, which is used to scan down the stack of choice-pointsuntil reaching a pertinent backtrack point.5.6 EvaluationOur implementation of IB is very e�cient and limits the overhead of the IB ma-chinery to 20 %, giving good speedup (from a factor 2 to 9) for non-deterministicProlog programs, see [8].To investigate the impact of IB in CLP languages, we have used as a benchmarkprogram a disjunctive planning example due to [21]. The application consistsin constructing a bridge, and the use of shared resources leads to disjunctiveconstraints, which are implemented as backtrack points [21]. However in thisproblem every task is related to another one by some constraint in such a waythat intelligent backtracking does not provide any speedup.The speedup due to intelligent backtracking with constraint propagationcan be measured on problems having a graph of constraints with more thanone strongly connected components. Otherwise all variables are connected byconstraints and nearly all backtrack points are intelligent. The following tableprovides experimental results on the 6-queens problems with up to 4 chess-boards played simultaneously, and on a version of the bridge construction prob-lem where unconnected components are created. Of course the independence isidealized in these examples, but this phenomenon appears when resource allo-cation is mixed with task scheduling.
18

Bench Nb reductions Time Nb. reductions Time Ratiowithout IB without IB with IB with IB (time)6-queens 1989 0.03 1989 0.03 1.02�6-queens 27294 0.58 5204 0.12 4.83�6-queens 439 468 9.43 9 634 0.24 394�6-queens 7 106 360 151.18 15 286 0.43 352Bridge� 40 039 1.28 7 068 0.22 5.82�Bridge� 1 554 364 53.09 13 624 0.39 1365.7 Application to Hierarchical Constraint Logic Program-mingAn extension to CLP languages, proposed in [2], consists in associating a strengthto each constraint, that is a positive integer indicating the degree of requirementof this constraint to hold. A strength 0 denotes constraints that are required(i.e. as usual), while other strengths denote constraints that are more or lesspreferred, i.e. that should hold if possible, but that can be removed if their in-troduction leads to inconsistency. A constraint hierarchy consists in a multisetof such labelled constraints. The method to handle constraint hierarchies ina Hierarchical CLP language [2] consists in adding only vrequired constraintswhen they occur during the computation, whereas preferred constraints are de-layed until a global solution is found for all the required constraints. They arethen added by decreasing preference until it leads to inconsistency. Howeverthis approach su�ers some de�ciencies as for instance the preferred constraintssatis�ed by the �nal solution have not been used actively for pruning the searchspace during computation. It can be better to consider preferred constraint asthey occur, especially for those easy to satisfy that have good chances to bepart of the �nal solution. This allows indeed a further pruning of the searchspace and early discovery of inconsistencies (�rst-fail principle). This scheme isfeasible in our system as one can isolate upon failure the responsible constraints(conict) and relax �rst the preferred ones. We are currently designing such alanguage extension in our system.6 ConclusionMetaprograms for constraint solving can be surprisingly e�cient provided somecritical primitives are implemented in the logic programming shell. We haveshown that the addition of backtrackable assignment in Prolog together withthe introduction of priorities in the standard delay mechanisms of Prolog aresu�cient to limit the overhead due to the programming of constraints over �nitedomains on top of Prolog, to a factor less than 7 in comparison to an integratedsystem as Chip, even on quite large problems.19

Having de�ned a very limited extension of the WAM for constraint prop-agation on top of Prolog it is possible to bene�t from other improvements.This point has been illustrated by the combination of constraint solving withintelligent backtracking. We have described the basic techniques to performintelligent backtracking in CLP(FD), and have shown how these techniques areindeed realized by the �nite domain package on top of our Prolog compiler withintelligent backtracking.This framework is also appropriate to investigate other constraint propaga-tion techniques. We are particularly interested in constraint relaxation for hier-archical CLP and reactive CLP. We are currently investigating these techniquesin the light of the basic mechanisms developed for intelligent backtracking.References[1] A. Aggoun, N. Beldiceanu, "Time Stamps Techniques for the Trailed Datain Constraint Logic Programming Systems", Se'minaire Programmation enLogique CNET, Tregastel. 1990.[2] A. Borning, M. Maher, A. Martindale and M. Wilson : "Constraint Hier-archies and Logic Programming", proceeding of the 6th Int. Conf. on LogicProgramming, Lisboa, MIT Pres 1989.[3] BNR-Prolog User's Manual, Bell Northern Research, Canada, 1988.[4] M. Bruynooghe : "Intelligent backtracking for an interpreter of Horn Clauselogic programs", report CW 16, K.U. Leuven, September 1978.[5] M. Bruynooghe and L. M. Pereira : "Deduction revision by intelligentbacktracking", in Implementations of Prolog, J. A. Campbell (Ed.), 194-215, Ellis Horwood 1984.[6] M. Carlsson, "Freeze, Indexing and Other Implementation Issues in theWAM", proceedings of the 4th Int. Conf. on Logic Programming, Mel-bourne, MIT Press 1987.[7] C. Codognet, P. Codognet and G. Fil�e : "Yet Another Intelligent Back-tracking Method", proceedings of the 5th Int. Conf. on Logic Programming,Seattle, MIT Press 1988.[8] P. Codognet and T. Sola : "Extending the WAM for Intelligent Backtrack-ing", proceedings of the 8th Int. Conf. on Logic Programming, Paris, MITPress 1991.[9] A. Colmerauer : "Opening the Prolog-III universe", Byte, August 1987.20

[10] P. T. Cox : "Deduction plans, a graphical proof procedure for �rst-orderpredicate calculus", Ph.D. dissertation, Dept. of Computer Science, Uni-versity of Waterloo, Canada, 1977.[11] D. De Schreye and M. Bruynooghe : "implementation of �nite domains forProlog with a delay mechanism", proceeding ESOP 90.[12] M. Dincbas, H. Simonis and P. Van Hentenryck : "Solving large combina-torial problems in Logic Programming", ECRC technical report TR-LP-21,1987, and Journal of Logic Programming, 1988.[13] J. Doyle : "A Truth Maintenance System", Arti�cial Intelligence 24 (1980).[14] F. Fages. J. Fowler: \Programmation logique avec contraintes sur les do-maine<s �nis: manuels de Meta(F) version 2.3", Rapport LCR Thomson-CSF, LACS-91-6. Sept. 1991.[15] R. M. Haralick and G. L. Elliot : "Increasing tree search e�ciency forconstraint satisfaction problems", Arti�cial Intelligence 14 (1980), 263-313.[16] J. Ja�ar and J-L. Lassez : "Constraint Logic Programming", research re-port, University of Melbourne, 1986, also in the proceedings of POPL 87.[17] L. M. Pereira and A. Porto : "intelligent Backtracking and Sidetracking inHorn clause programs - the theory", research report CINUL 2/79, Univer-sitade Nova de Lisboa, 1979.[18] V. J. Saraswat : "Concurrent Constraint Programming Languages", re-search report CMU-CS-89-108, Carnegie Mellon University, 1989,to be published in MIT Press series in Logic Programming, 1991.[19] S. Haridi, personal communication, Dec 89.[20] Sicstus Prolog User's Manual, SICS, Sweden, 1989.[21] P. Van Hentenryck : "Constraint Satisfaction in Logic Programming", MITPress 1989.[22] P. Van Hentenryck and Y. Deville : "E�cient Arc Consistency Algorithmfor a class of CSP Problems", proc. IJCAI 91, Sidney, 1991.
21

