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Models of biochemical systems presented as a set of formal reaction rules can be interpreted in different for-
malisms, most notably as either deterministic Ordinary Differential Equations, stochastic continuous-time
Markov Chains, Petri nets or Boolean transition systems. While the formal composition of reaction systems
can be syntactically defined as the (multiset) union of the reactions, the composition and simulation of mod-
els in different formalisms remains a largely open issue. In this article, we show that the combination of
reaction rules and events, as already present in SBML, can be used in a non-standard way to define stochas-
tic and boolean simulators and give meaning to the hybrid composition and simulation of heterogeneous
models of biochemical processes. In particular, we show how two SBML reaction models can be composed
into one hybrid continuous-stochastic SBML model through a high-level interface for composing reaction
models and specifying their interpretation. Furthermore, we describe dynamic strategies for automatically
partitioning reactions with stochastic or continuous interpretations according to dynamic criteria. The per-
formances are then compared to static partitioning. The proposed approach is illustrated and evaluated on
several examples, including the reconstructions of the hybrid model of the mammalian cell cycle regulation
of Singhania et al. as the composition of a Boolean model of cell cycle phase transitions with a continuous
model of cyclin activation, the hybrid stochastic-continuous models of bacteriophage T7 infection of Alfonsi
et al., and the bacteriophage λ model of Goutsias, showing the gain in both accuracy and simulation time of
the dynamic partitioning strategy.

Categories and Subject Descriptors: I.6.5 [Model Development]: Modeling methodologies

General Terms: Algorithms, Performance

Additional Key Words and Phrases: hybrid simulation, stochastic simulation, computational systems biol-
ogy, synthetic biology

ACM Reference Format:
Hui-Ju K. Chiang, François Fages, Jie-Hong R. Jiang, and Sylvain Soliman, 2014. Hybrid Simulations of
Heterogeneous Biochemical Models in SBML. ACM Trans. Model. Comput. Simul. V, N, Article A (January
YYYY), 22 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Systems biology aims at elucidating the high-level functions of the cell from their
biochemical basis at the molecular level [Ideker et al. 2001]. A lot of work has
been done for collecting genomic and post-genomic data, making them available in
databases [Ashburner et al. 2000; Kanehisa and Goto 2000], and organizing the knowl-
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edge on pathways and interaction networks into models of cell metabolism, signaling,
cell cycle, apoptosis, etc. now published in model repositories (e.g. http://biomodels.
net/). In particular, the Systems Biology Markup Language (SBML) [Hucka et al. 2003]
provides a common exchange format for biochemical reaction systems and is nowadays
supported by a majority of modeling tools.

According to the knowledge available on the system and to the nature of the queries
that will be asked to the model, e.g. qualitative or quantitative predictions, these rule-
based reaction systems can be interpreted (and simulated) under different semantics
as either:

— ordinary differential equations (continuous semantics),
— continuous-time Markov chains (stochastic semantics),
— Petri nets (discrete semantics),
— Boolean transition systems (Boolean semantics), and many variants.

These different interpretations can be related by either approximation [Gillespie
1977; Gillespie 2001; Gillespie 2009] or abstraction [Fages and Soliman 2008a] rela-
tionships. Many modeling tools support several of them but provide no support for the
combination of heterogeneous models. However, in the perspective of applying engi-
neering methods to the analysis and control of biological systems, the issue of building
complex models by composition of elementary models is a central one. While reaction
systems can be formally composed by the multiset union of reaction rules, and inter-
preted by one common semantics, there is also a need to compose models with different
semantics, as will be shown here by some examples from the literature. What we call
a hybrid model is a model obtained by composition of models with heterogeneous se-
mantics (continuous, stochastic, Boolean, etc.), and hybrid simulation is the topic of
simulating such hybrid models.

In [Pahle 2009], the author observes that “A very promising direction is the devel-
opment of hybrid methods because they directly deal with the important problem of
stiffness, which is often present in biochemical models. [. . . ] There exist already a few
software tools, which allow for hybrid simulation, [. . . ] and this number is expected
to grow in the future.” In this paper, we propose a general approach to progress in
that direction by showing that the combination of reaction rules and events, as al-
ready present in SBML, can be used in a non-standard way to give meaning to the
hybrid composition and simulation of heterogeneous reaction models. In particular, we
show how hybrid continuous-Boolean models and hybrid continuous-stochastic models
can be assembled and simulated, through the specification of a high-level interface for
composing heterogeneous models, and producing as output a hybrid model in standard
SBML format, which can thus be executed with any SBML-compatible simulator.

Our high-level interface, prototyped in the modeling environment BIOCHAM [Cal-
zone et al. 2006; Fages and Soliman 2008b], takes two models with synchronization
information as inputs, and produces one SBML model with reactions and events as out-
put. For hybrid continuous-Boolean composition, it transforms a Boolean state transi-
tion model to events with extra triggers which express the links with the continuous
variables and the parameters of the continuous reaction model. For hybrid continuous-
stochastic composition, the interface described in this paper transforms stochastic re-
actions to a set of events, which implements Gillespie’s direct method for stochastic
simulation, and can be freely combined with the simulation of continuous reactions.
Furthermore, our framework supports the specification of dynamic strategies which
automatically choose between the stochastic and continuous interpretations of the
reactions according to particle counts, reaction propensities, or more specific model-
dependent criteria. We show that without the need to conduct time-consuming fully
stochastic simulations beforehand to obtain the scale information of particle count
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and propensity for all reactions, dynamic partitioning results in higher accuracy and
shorter simulation time than static partitioning – as static partitioning cannot adapt
to the possibly substantial scale variations over time, which can render the initial par-
tition inadequate.

This approach is illustrated and evaluated with several examples including the re-
constructions of the hybrid model of the mammalian cell cycle regulation of Singha-
nia et al. [Singhania et al. 2011] as the composition of a Boolean model of cell cycle
phase transitions and a continuous model of cyclin activation, plus a hybrid Boolean-
continuous-stochastic version of this model with dynamic partitioning strategy, and
of the hybrid stochastic-continuous model of bacteriophage T7 infection of Alfonsi et
al. [Alfonsi et al. 2005], and of bacteriophage λ of Goutsias [Henzinger et al. 2010],
showing the gain in both accuracy and simulation time of the dynamic strategy.

Since XML, and hence SBML, are not easy to read by humans, in this article we use
mathematical notation and BIOCHAM code. The BIOCHAM and SBML files of the ex-
amples of this paper are available at: http://lifeware.inria.fr/supplementary material/
TOMACS/. The BIOCHAM files can be executed via the BIOCHAM web application
http://lifeware.inria.fr/biocham/online without any installation.

Related Work
Hybrid simulation is a classical topic in physics, e.g. for numerically solving equations
describing stochastic systems using ordinary differential equations whenever possible
in place of stochastic equations, in order to speed-up simulations [Alfonsi et al. 2005;
Salis and Kaznessis 2005]. It is also ubiquitous in computer science for programming
and verifying hybrid systems which have both discrete and continuous dynamics [Alur
et al. 2001; Henzinger et al. 1997]. Hybrid modeling is also used in Systems Biology for
reducing the complexity of many modeling task, e.g. [Matsuno et al. 2000; Alur et al.
2001; Ghosh and Tomlin 2001; Bockmayr and Courtois 2002; Kiehl et al. 2004; Ahmad
et al. 2006; Singhania et al. 2011; Berestovsky et al. 2013], for speeding up stochastic
simulations [Salis et al. 2006; Hellander and Lotstedt 2007; Henzinger et al. 2010;
Golightly and Wilkinson 2011], and achieving whole cell simulation [Karr et al. 2012].
A review of the different approximate stochastic and hybrid methods used in Systems
Biology can be found in [Pahle 2009].

Due to the structure of SBML, which mostly relies on explicit and global reactions
and events, the composable modelling at the core of hybrid process algebra, e.g. [Galpin
et al. 2008; Akman et al. 2010] is out of reach of the presented work. On the other hand,
we show that SBML can express various form of hybrid systems. Indeed, a set of SBML
events and continuous reactions can also be visualized as a hybrid automaton [Hen-
zinger 1996] in which there is a state with a particular ODE for each combination of
the trigger values, and there is a transition from one state to another state when at
least one trigger changes value from false to true in the source state. Stochastic hy-
brid automata [Hahn et al. 2013] can be similarly simulated in SBML with a random
number generator coded by events. Since our focus in this paper is on SBML, we are
mainly focussed on simulations and on the reproduction of simulation results, as ex-
amplified for instance by the notion of “curated” model in the BIOMODELS project at
http://biomodels.net/. The use of existing verification tools for hybrid systems is thus
beyond the scope of this paper.

Another line of work also exists on the extension of Boolean models with con-
tinuous time delays. René Thomas’s discrete modeling of gene regulatory networks
(GRN) [Thomas 1973] is a well known approach to study the logical dynamics of a set
of interacting genes. It deals with a graph of positive and negative influences between
genes and logical functions that determine the possible trajectories in the state space.
Those parameters are a priori unknown, but they may generally be deduced from a
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large set of biologically observed behaviors in various conditions. Besides, it neglects
the time delays for a gene to pass from one level of expression to another one. In [Ah-
mad et al. 2006], it is shown that one can account for time delays depending on the
expression levels of genes in a GRN, while preserving powerful enough computer-aided
reasoning capabilities. The characteristic of this approach is that, among possible exe-
cution trajectories in the model, one can automatically find out both viability cycles and
absorption in capture basins. Model-checking techniques developed for hybrid systems
are used for this purpose [Ahmad et al. 2008]. The authors describe a Hybrid model for
the mucus production in the bacterium Pseudomonas aeruginosa and show that they
are able to discriminate between various possible dynamical behavior [Ahmad et al.
2006; Ahmad et al. 2008]. Such a model can be presented and compiled in a set of
reaction rules with events as described in this article.

Time constraints provide another means to refine Boolean or discrete models which
are often too coarse to be useful. In [Maler and Batt 2008], the authors present a new
technique for over-approximating (in the sense of timed trace inclusion) continuous
dynamical systems by timed automata for the purpose of efficiently checking timed (as
well as untimed) properties. The essence of this technique is the partition of the state
space into cubes and the allocation of a clock for each dimension. This is in contrast
with other approaches which use only one clock. This idea is a specific case of rect-
angular hybrid automata. This makes it possible to get better approximations of the
behavior. The timed automata produced by these techniques can be similarly composed
in our tool for simulation.

Organization of the article
In the next Section, we review reaction rules and events in SBML and discuss their
semantics. Then in Section 3, we focus on hybrid continuous-stochastic models. We
show how Gillespie’s stochastic simulation algorithm can be implemented in SBML
with events, and how this can be used to compose continuous and stochastic reaction
models in SBML, using a preprocessor which produces as output an SBML model with
events for emulating a hybrid simulator. Then in Section 4, we focus on dynamic par-
titioning criteria for automating the choice between the continuous and the stochastic
interpretations of the reactions. We describe our implementation of the dynamic par-
tioning strategy and evaluate its performance on simple examples from the literature,
both in terms of computation time and accuracy of the hybrid simulation. Section 5
shows how our SBML preprocessing approach can also be used to compose continu-
ous reaction models with Boolean models. This is illustrated with the hybrid cell cycle
model of Singhania et al. [Singhania et al. 2011], and generalized to a hybrid Boolean-
continous-stochastic model using dynamic partitioning. Finally, we conclude on the
merits of our non-intrusive approach for hybrid simulation based on a non-standard
use of SBML events.

2. SBML REACTION RULES AND EVENTS
2.1. Reaction Rules and Kinetics
In SBML [Hucka et al. 2003], a reaction rule is composed of a reaction rate, a left-hand
side and a right-hand side of molecular species given with stoichiometric coefficients.
In this article, an SBML reaction i is written in mathematical notation:∑

j

lij × Sj

vi−→
∑

rij × Sj
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or in the code in BIOCHAM syntax:

vi for
∑
j

lij∗Sj=>
∑

rij∗Sj

where the Sj are the species of the model, lij and rij are stoichiometric coefficients,
and vi is any mathematical function (given in a subset of MathML notation in SBML,
and in BIOCHAM with the abbreviation MA for mass action law kinetics) of the species
concentrations and parameters of the system, which defines the rate of reaction i. A
reaction model is a finite set of reactions.

According to the data available on the system and to the nature of the queries
that will be asked to the model, e.g. qualitative or quantitative predictions, a reaction
model can be interpreted under different semantics: continuous, stochastic, discrete or
boolean.

The stochastic semantics, detailed in Section 3.1 associates to a reaction model the
Continuous-Time Markov Chain (CTMC) where the states are defined by molecule
numbers, and the transitions by the reactions, with their reaction rates as propensi-
ties giving the transition probabilities after normalization. This CTMC realizes the
solution of the Chemical Master Equation [Gillespie 1977].

The continuous semantics associates to a reaction model the following Ordinary Dif-
ferential Equation (ODE) system:

d[Sj ]

dt
=

∑
i

(rij − lij)× vi

which describes the time evolution of molecular species concentrations according to
the reaction rates. The continuous semantics approximates the mean behavior of the
CTMC for large numbers of molecules. The continuous semantics usually leads to nu-
merical integration, whereas the stochastic semantics is either used for exact or ap-
proximate simulation, or for stochastic model checking (see for instance [Kwiatkowska
et al. 2008]).

The discrete semantics of a reaction model is a Petri net [Gilbert et al. 2007] which
forgets about the reaction rates vi but keeps the stoichiometric information. The Petri
net semantics can be seen as an abstraction of the stochastic semantics.

The Boolean semantics forgets about precise stoichiometry and keeps only informa-
tion about whether or not a species is active. It can be defined as an abstraction of the
previous discrete semantics, provided the combinatorics of all possible consumptions
is kept [Fages and Soliman 2008a]. The Boolean semantics of large networks is usually
used for proving reachability properties using symbolic model checkers [Chabrier and
Fages 2003] instead of doing simulations.

2.2. Events
SBML models can also be described with events. An SBML event is basically twofold:
it is built by a trigger, determining when it fires, and by an action, i.e., its influence on
the current state (parameters, concentrations), in the form of a list of assignments. In
this article, we will write an event in BIOCHAM syntax as follows:

event(trigger, [s1, . . . , sn], [f1, . . . , fn])

where the si indicate the variables that are modified by the event, and the fi are
mathematical functions of the state that give the new value to si.

There are many possible semantics for events but the basic idea is that an event
fires when its trigger changes from false to true. This induces however several issues:
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— what happens at the start of the simulation?
— how to find the precise time when a trigger becomes true?
— what happens if several events are enabled simultaneously?

The first point is easy to settle, deciding whether events that are true at time 0
should fire or not is an arbitrary choice which does not impact the expressive power of
the formalism, since the initial state can be adapted to both conventions. The simplest
choice is to avoid the firing of events at the initial point of the simulation, they will
only get triggered when going from false to true, and to reflect events that were meant
to be triggered at the start by modifying accordingly the initial state.

The second point has been solved in practical tools for a long time: since numerical
integration of ODEs goes by steps, one detects changes in triggers only in the interval
of a simulation step. If some triggers become true, one can thus go back in time until
one finds—with a given precision—the first time point where the first trigger becomes
true. Note however that if arbitrarily complex conditions appear in the events, a nu-
merical integrator unaware of the events can hide inside a single step that a trigger
went from false to true and back to false again. Therefore, a cautious implementation
is necessary, and fixed step size integration methods may be recommended to use in
presence of events, instead of more efficient adaptive step size methods.

The third point is again a question with multiple possible answers. Generally, the
set of events that are enabled simultaneously at a given time will all be fired, whatever
the actions of the events are, but what if several events modify the same variable? It is
possible to assume a synchronous semantics, where the simultaneous events execute
their actions in parallel, but then one must forbid events with conflicting actions, i.e.,
events that would modify in different ways the same variable at the same time point. A
more common choice is an asynchronous semantics, that will fire all the events enabled
at a given time one after the other. Conflicts in actions are then solved by the ordering
of events, which can be either random, i.e. non-deterministic, or given by the modeller,
e.g. by the order of writing (BIOCHAM choice) or by priorities (SBML choice). However,
if some actions invalidate the trigger of other enabled events, these events should be
disabled in a purely asynchronous semantics.

The SBML Level 3 choice1 is to keep a very flexible semantics, with semi-
asynchronous events, which can use either the values at the time they were enabled,
or the current values at the time they are actually executed, after the execution of the
simultaneous events with higher priority, and which can specify the permanence of an
event in order to define if it should be fired even if its trigger has been invalidated by
previous events firing at the same time.

In BIOCHAM, there are no priorities, and the events that are enabled simultane-
ously are executed in the order of their writing using current values. An event with n
assignments of fi to si is therefore equivalent to the sequence of n events with the same
trigger for each assignment fi to si. The semantics of events implemented in BIOCHAM
can thus be defined in SBML Level 3 using the current value and permanence options
and priorities corresponding to the order of writing.

It is worth noting that in SBML Level 3, thanks to the Distributions package, ran-
dom variables can be represented. This would be useful in the following sections to im-
plement stochastic semantics with SBML events. However, since the SBML Test Suite
Database and the page of the Distributions package show that there is apparently no
software currently able to cope both with prioritized events and random variables, we
have implemented a simple linear pseudo-random number generator (PRNG) using

1The Versions and Releases of the SBML Level 3 Core specification and officially-supported Level 3 package
specifications are available at: http://sbml.org/Documents/Specifications/SBML Level 3.
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SBML events. The files generated by our hybridization interfaces can therefore be run
with any SBML Level 3 core compatible simulator.

3. HYBRID CONTINUOUS-STOCHASTIC MODELS
Chemical reactions, originated from random collisions of particles, are discrete and
stochastic in nature. Although there is no way to predict the exact state of a chemi-
cal system at a specific time point, its statistical behavior can be effectively calculated
from known probabilistic properties, as done by Gillespie’s stochastic simulation algo-
rithm (SSA) [Gillespie 1976], to be detailed in Section 3.1. The SSA simulation can be
especially slow if one or more of the reactions have fast reaction rates (or high event oc-
currences) because the next reaction time will be very short due to the high probability
of firing (one of the) fast reactions.

Despite the fact that all reactions are innately stochastic, those with large reactant
counts and high reaction rates can be accurately approximated in terms of determin-
istic behavior expressed by ODEs. By incorporating both continuous and stochastic
semantics into one simulator, an optimal balance between simulation runtime and
accuracy can be achieved. This potentially lifts the scalability of simulating large bio-
logical systems. In Section 3.2, we provide an event-based view on the SSA, that serves
as basis to a hybrid continuous-stochastic simulator built upon an ODE simulator with
events.

3.1. Gillespie’s Stochastic Simulation Algorithm
A reaction model with kinetic expressions can be interpreted under the stochastic se-
mantics as a continuous-time Markov chain (CTMC). A CTMC can be simulated with
a stochastic simulation algorithm (SSA), for example, Gillespie’s direct method [Gille-
spie 1976]. Rather than solving all possible trajectories’ probabilities as in the case of
Master equations, the algorithm generates statistically correct trajectories.

Gillespie’s direct method first calculates when the next reaction will occur, then de-
cides which reaction should occur with the help of a random number generator. The
probability that a certain reaction i will be the next one is determined by the propen-
sities α of the reactions: αi = (#combinations of reactants) · ki where ki is the rate
coefficient of reaction i. The algorithm repeats the following steps.

(1) Calculate how long from now (4t) the next reaction will occur as a Poisson event.

4t =
−1∑
j αj
· log(ran1),

where ran1 is a random number within range [0, 1] and the αj are propensities at
the current state.

(2) Choose which reaction will occur according to the probability distribution of reac-
tions. This is done by generating a random number ran2 within range [0, 1], and
letting the reaction i be chosen for∑i−1

k=1 αk∑
j αj

< ran2 6

∑i
k=1 αk∑
j αj

.

(3) Update the numbers of molecules to reflect the execution of reaction i, and set
current time to t = t+4t.

3.2. Event-based Implementation of the Stochastic Simulation Algorithm
By considering every firing of a chemical reaction as one firing of an event, the event se-
mantics of Section 2 enables a direct embedding of stochastic reactions into an intrinsi-
cally continuous framework without additional implementation of a separate stochas-
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tic simulation algorithm. Under this framework, time is the only unifying variable to
keep track of current state at each instant. This event-based approach permits the sim-
ple integration of ODE and stochastic simulation as will be elaborated in Section 3.3.

Notice that, in the SSA of Section 3.1, when the next reaction will occur is inde-
pendent of which reaction will occur, and also that only one reaction is chosen each
time. These facts make it possible for the complete set of stochastic reaction rules to
be interpreted correctly as a single event. Essentially the simulation can be accom-
plished by compiling the when and which questions Gillespie’s direct method asks into
an event. Specifically the event is triggered by the calculated next reaction time (tau);
the event obtains a new random variable (ran) and then conditionally updates the par-
ticle counts depending on which reaction is chosen to occur next. To accommodate all
stochastic rules in one event, each update entry is composed of conditional expressions
over the propensities and the random number that decides which reaction occurs.

Example 3.1. Given the stochastic reaction rules A + 2B
k1−→ C and C k2−→ 2A from

[Gillespie 1976], we derive their propensities by

alpha1 = k1 × (nA)× (nB)× (nB − 1)

2

alpha2 = k2 × (nC)

where “nX” denotes the particle count of species X. Then the next reaction time from
the current time point can be decided by

e =
−1

alpha sum
· log(ran1)

for ran1 a random number within [0, 1] and where alpha sum = alpha1 + alpha2. The
first reaction is chosen for the next occurring reaction if 0 < (alpha sum × ran2) 6
alpha1, which leads to the consumption of one A and two B’s and producing one C.

This is achieved by the following event:

event(Time>tau, [ran, tau, ran, nA, nB, nC],
[rand, Time + e, rand,
if alpha_sum*ran =< alpha1 then nA-1 else nA+2,
if alpha_sum*ran =< alpha1 then nB-2 else nB,
if alpha_sum*ran =< alpha1 then nC+1 else nC-1]).

macro(rand, 1664525 * ran + 1013904223 / 4294967296 -
floor(1664525 * ran + 1013904223 / 4294967296)).

Where rand is a macro implementing a PRNG as explained in Section 2.2 and e is
defined as shown above. Note that the update of the particle counts of the first reaction
is reflected in the three then entries, and that of the second reaction is reflected in the
three else entries. Note also that a single parameter ran is used twice to store first
ran1 then ran2, this is in order to use our simple linear PRNG with a single seed.

This encoding relies on the left to right ordering of the different events associated to
a single trigger (see Section 2.2). This ordering is imposed to two kinds of parameters
– the random number, and a reaction’s propensity function – such that possible errors
are avoided. Because the two kinds of parameters depend on the current number of
molecules, they are listed in front of molecular species. So their values are not changed
before the completion of reaction firing, that is, all species’ counts have been updated
according to the chosen reaction.
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3.3. Preprocessor for Composing Continuous and Stochastic Models
The purpose of our preprocessor for composing heterogeneous biochemical models au-
tomatically is to provide a simple interface for specifying hybrid simulations without
digging into algorithmic details. The only work for the user is to decide the semantic
model for each of the reactions under simulation. The models are then processed into
a composed hybrid model suitable for simulation or analysis.

In classical work on hybrid simulation [Alfonsi et al. 2005; Kiehl et al. 2004], chemi-
cal reactions are divided into two groups according to their propensities and reactants’
concentrations: one consisting of reactions to be simulated stochastically using SSAs,
and the other consisting of reactions to be simulated deterministically using ODEs.
The former is referred to as the stochastic reactions and the latter continuous reac-
tions. While continuous reactions simply advance continuously according to their gov-
erning ODEs with the pass of time, stochastic reactions fire discretely in time with
frequency determined by their propensities. When the reactant concentrations/parti-
cle counts and the propensity of a reaction are sufficiently large, ODE simulation can
be faithfully applied without introducing unacceptably large errors in particle counts
when using the total counts of corresponding species as references. (i.e. keeping the

ratio
|nXexpected − nXODE|

nXODE

acceptably small, where nXexpected is the expected particle

count of species X in fully stochastic simulations, and nXODE is the particle count ob-
tained when ODE simulation is allowed.) At the same time, frequent updates of parti-
cle counts within a small time interval are avoided, thus accelerating the simulation
speed.

Hybrid species are referred to as those involved in both stochastic and continuous
reactions. This kind of species requires special attention because they are influenced
by two different mechanisms: ODEs that govern differential behavior by continuously
changing related concentrations, and events that regulate stochastic behavior by mod-
ifying particle counts discretely whenever triggered. So a hybrid species is under two
kinds of modification: one targets at the evolution of macroscopic concentrations and
the other targets at the changes in microscopic particle counts.

In our implementation, a fresh new variable is introduced for each hybrid species
to represent its total quantity (the summation of the numbers of particles from both
continuous and stochastic models). That variable is set equal to the sum of a contin-
uous variable multiplied by the corresponding volume and a small discrete number
of particles. ODEs will act on the continuous part, whereas discrete events will im-
pact the discrete one2. In all kinetic expressions (i.e. in rate equations and propensity
functions), the hybrid species are expressed by the corresponding new variables rep-
resenting the total amount. It is then a simple matter to put together the ODEs for
the continuous part and the events corresponding to the encoding of the stochastic
part as described in the previous section. It is worth noting however that while the
total amount of each species is guaranteed to be nonnegative, the continuous part can
sometimes become negative.

Example 3.2. The reaction model of bacteriophage T7 infection described in [Al-
fonsi et al. 2005] is an interesting example that can be hybridized by static partitioning
of the reactions with continuous semantics for protein synthesis and with stochastic
semantics for gene activation. The partition in [Alfonsi et al. 2005] consists in taking
the fifth and sixth reactions with the continuous semantics and the other reactions
with stochastic semantics, as follows:

2This specific implementation is related to the constraint that, contrary to the SBML specification,
BIOCHAM continuous variables cannot be modified by events.
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% Continuous reaction rules
MA(c5) for tem => tem + struc.
MA(c6) for struc => _.

parameter(c5, 1000).
parameter(c6, 1.99).

% Stochastic reaction rules
MA(c1) for gen => tem.
MA(c2) for tem => _.
MA(c3) for tem => tem + gen.
MA(c4) for gen + struc => virus.

parameter(c1, 0.025).
parameter(c2, 0.25).
parameter(c3, 1).
parameter(c4, 0.0000075).

In this example, tem and struc are hybrid species representing respectively the
template viral nucleic acids and the viral structural proteins, while gen and virus are
purely stochastic and represent the genomic viral nucleic acids and the final virus. The
full input files with parameters and output file after preprocessing in both BIOCHAM
and SBML are available at http://lifeware.inria.fr/supplementary material/TOMACS/
Alfonsi/. All experiments in this paper are conducted in BIOCHAM on a 2.9GHz Intel
Core i7 platform with 16GB 1600MHz DDR3 memory.

Table I summarizes the result from 1000 simulations over a time horizon of 100 days.
The experimental results shows that the hybrid simulation improves by three orders
of magnitude the simulation time. The accuracy of the hybrid simulation technique
will be demonstrated in more detail in Example 4.3.

method #fired events CPU time (sec)
stochastic 276556 218.7

hybrid 832 0.75
ratio 0.003 0.003

Table I: A comparison between purely stochastic and hybrid simulation implemented using
chemical reactions and events. Columns #fired events and CPU time respectively hold the num-
ber of events triggered and runtime in seconds. All values are the average of 1000 simulations
over a time horizon of 100 days. The last row shows the ratio of hybrid to stochastic statistics.

4. DYNAMIC STRATEGIES FOR HYBRID CONTINUOUS-STOCHASTIC SIMULATIONS
The above discussion assumes a static partition of a set of reactions into two subsets in-
terpreted under continuous and stochastic semantics. Once the partition is established
based on the system’s initial conditions and partition criteria, it stays fixed through-
out a simulation process. However, such a partition strategy may be inadequate for
two reasons: firstly, a good static partition may not be known a priori given only initial
conditions, secondly, a good static partition may not even exist. Essentially a fixed se-
mantic interpretation of a reaction can lead to inaccurate and/or inefficient simulation
when the reaction’s reactants’ counts and/or its propensity fluctuate substantially over
time, thus violating the legitimacy of abstraction with continuous semantics and/or be-
ing unnecessarily trapped in the too frequent firing of reaction events. It is therefore
desirable to adjust the reaction partition dynamically along the progress of a simula-
tion.

4.1. Dynamic Partitioning Criteria
Particle count and propensity value [Alfonsi et al. 2005] are predominant factors of
choice between the stochastic and continuous interpretation of reactions. Examples
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of other higher-level factors derived from the two include: critical relative fluctua-
tion [Bentele and Eils 2005] that describes a reaction’s influence on a species’ count
relative to each one’s total count; particle count of substrate involved, and ratio of a
reaction’s propensity to the sum of all reactions’ propensities [Puchaka and Kierzek
2004]. In [Wagner et al. 2006] however, the partitioning criteria themselves, composed
of particle count and propensity value, do not possess explicit meanings, rather they
are derived to guarantee that the error of each approximation is smaller than the user-
specified value.

We adopt a partition strategy that takes both particle counts and propensities into
account: A reaction can be interpreted as differential only if its propensity value ex-
ceeds some target threshold and its related species’ particle counts all exceed a certain
threshold. In the sequel, we will refer to the two threshold values as propensity thresh-
old and particle count threshold, respectively. To preserve flexibility on the user’s side
to decide the trade-off between accuracy and efficiency, both non-negative thresholds
can be tuned by users according to the need. Increasing the value(s) leads to more
accurate and less efficient simulations, while lowering the value(s) leads to more effi-
cient but less accurate simulations. Note that a threshold’s value can be set to zero if
the accuracy degradation caused by its corresponding property is assumed to be non-
substantial.

Consider the SBML reactions of Section 2.1. For reaction iwith
∑

j lij×Sj →
∑

j rij×
Sj , under the time step size ∆ of the ODE simulator used, by default we let

propensity threshold = (n1 ×∆)−1, and
particle count threshold = n2 ×maxi,j |rij − lij |,

where n1 and n2 are two parameters of non-negative real values. To determine the
value of n1, note that the expected time period from present to a reaction’s next firing
equals the reciprocal of its propensity value. To avoid simulation being trapped by the
frequent firing of a fast (with respect to ∆) reaction, we can interpret a reaction as con-
tinuous only if its expected time period from present to its next firing is shorter than
the reciprocal of the propensity threshold. Thereby we may potentially skip unneces-
sarily many event updates. The smaller the value of n1 is, the lesser the efficiency
is gained from continuous semantics. On the other hand, to determine n2, note that
maxi,j |rij − lij | is the largest possible change in particle count by one reaction firing
among all reactions. For continuous semantics to be legitimate, particle counts should
be large enough. Furthermore, for continuous semantics to be a good approximation,
the change in the particle count of each species by one reaction occurrence should be
relatively small compared to the species’ total count. The larger the value of n2 is, the
more stringent the condition is for a reaction to be interpreted as continuous.

4.2. Implementation
There are two directions of semantic switching in dynamic partitioning: (1) from con-
tinuous to stochastic, and (2) from stochastic to continuous. During simulation, instead
of monitoring the switching criteria all the time, the reactions are checked against the
criteria within the event that realizes stochastic reactions, and only at the time of re-
action firing. At the start of a simulation, all reactions are classified as stochastic by
default. When a reaction event is triggered, apart from updating the particle counts
according to the reaction selected, all reactions are checked against the user-specified
criteria whether they are eligible for continuous semantics. The eligibility is usually
based on the requirement of being theoretically sound (for accuracy concern) and can
favorably include being practically beneficial (to improve efficiency). Switching from
continuous to stochastic occurs when a reaction no longer satisfies the criteria; a reac-
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tion is switched from stochastic to continuous if its current condition can satisfy the
criteria.

For the first switching direction, postponement in switching can result in accuracy
degradation. Indeed, one continuous reaction requires switching to stochastic only
when the small error assumption for continuous interpretation is no longer satisfied.
With our event formulation, the delay is at most the time period between now and the
next reaction time of current set of stochastic reactions, provided that there is at least
one stochastic reaction. When there is no stochastic reaction, the sum of propensities
will be zero and thus resulting in infinite waiting time till the next reaction. To avoid
this infinite waiting problem, the absence of stochastic reactions can be detected to en-
force progress in simulation (this is achieved by the last macro, i.e., function definition,
as shown in the BIOCHAM code of Example 4.1).

For the second switching direction, postponement in switching does not lead to loss
of accuracy, although early switching can improve simulation efficiency. Since switch-
ing in both directions are realized in the same event, the upper bound of the delay is
the same as that of the first switching direction. To make the most out of the unavoid-
able trade-off between accuracy and efficiency, once the partitioning strategy and its
corresponding criteria are set, the goal becomes one of always maximizing the set of
continuous reactions without violating the criteria.

4.3. Simple Example
The following example shows the general implementation of dynamic partitioning by
SBML events for Example 3.1. Once the partitioning strategy is chosen, the corre-
sponding part of partitioning criteria that determine when a reaction can switch from
stochastic to continuous are incorporated into the event as conditions, in ways demon-
strated in the example.

Example 4.1. Consider again the system of two reactions: A+ 2B
k1−→ C and C k2−→

2A. The main structure of BIOCHAM code used to fulfill simulation with dynamic par-
titioning is as follows:
% Continuous semantics
MA(k1_diff) for A + 2*B => C.
MA(k2_diff) for C => 2*A.

% Event for stochastic semantics and dynamic partitioning
event(Time>tau,

[ran, tau, ran, k1_diff, k1_stoch, k2_diff, k2_stoch, nA, nB, nC],
[rand, Time + e, rand,

if (condition for reaction 1 to be continuous is satisfied)
then k1 else 0,

if k1_diff=0 then k1 else 0,
if (condition for reaction 2 to be continuous is satisfied)

then k2 else 0,
if k2_diff=0 then k2 else 0,
if alpha_sum*ran =< alpha1 then nA-1 else nA+2,
if alpha_sum*ran =< alpha1 then nB-2 else nB,
if alpha_sum*ran =< alpha1 then nC+1 else nC-1]).

% Hybrid species
macro(A_total, [A]*volume + nA).
macro(B_total, [B]*volume + nB).
macro(C_total, [C]*volume + nC).
macro(alpha1, k1*A_total*B_total*(B_total-1)/2).
macro(alpha2, k2*C_total).
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macro(alpha_sum, alpha1 + alpha2).
macro(e, if alpha_sum=0

then (-1/propensity threshold)
else (-1/alpha_sum)*log(ran)).

Under dynamic partitioning, all species are treated as hybrid continuous-stochastic
species; each reaction can become either continuous or stochastic, but not both, at any
time point. Specifically, each rate constant ki is duplicated into ki diff and ki stoch, to
simplify the process of semantic switching to value alteration between 0 and the real
value of rate constant. A reaction r is stochastic if and only if kr diff is set to 0 and
kr stoch is set to the r’s rate constant value, while it is continuous if and only if kr stoch
is set to zero and kr diff is set to the value of its natural rate constant.

The last macro decides the next reaction time of the set of stochastic reactions, which
is also the next time point for checking and adjusting the partition until consistent
with the strategy imposed. The else part is the same as that in the static partitioning,
which implements Gillespie’s Direct Method as described previously in Section 3.1.
The then part serves to avoid, when all reactions become continuous, the problem of
infinite waiting time before the next reaction. Note that the value is also the upper
bound of semantic switching delay, which is set here to be the average firing period
of the fastest possible stochastic reaction under current strategy. This is to make sure
that the average particle count error resulted from delayed switching to stochastic
semantics will not exceed the species’ stoichiometric number in the reaction.

Note that this encoding allows to trace which reactions of the SBML model were
chosen to be stochastic (resp. continuous) at which point in time, simply by observing
the value of ki stoch (resp. ki diff ), which is non-null when the reaction is stochastically
(resp. continuously) evaluated.

4.4. Performance Evaluation
The effectiveness of dynamic over static partitioning by our proposed framework is
evaluated in Examples 4.2 and 4.3 below. Additionally, implementations of different
partitioning strategies and a comparison among them is presented in Example 4.3.

Example 4.2. We study Goutsias model [Henzinger et al. 2010] to demonstrate the
effectiveness of dynamic partitioning. The model describes the transcription regulation
of a repressor protein M in bacteriophage λ. It involves 6 different species and 10
reactions listed as follows:
RNA

c1−→ RNA+M
M

c2−→ ∅
DNA.D

c3−→ RNA+DNA.D
RNA

c4−→ ∅
DNA+D

c5−−⇀↽−−
c6

DNA.D

DNA.D +D
c7−−⇀↽−−
c8

DNA.2D

M +M
c9−−⇀↽−−
c10

D

Assume the particle counts and parameters are initialized as follows:
#RNAt=0 = #DNA.Dt=0 = #DNA.2Dt=0 = 0
#Mt=0 = #Dt=0 = 10
#DNAt=0 = 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
0.043 7× 10−4 71.5 3.9× 10−6 0.02 0.48 4× 10−4 9× 10−12 0.08 0.5
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For static partition used in this example, reactions M + M
c9−−⇀↽−−
c10

D are interpreted

under differential semantics while all other reactions are stochastic. The partition is
based on the fact that molecules M and D have the greatest initial counts, and both
have initial propensities no less than 5 while all other reactions’ initial propensities
are much smaller than 1. As for dynamic partition used, the propensity threshold and
the particle count threshold are set to 5 (with n1 = 20) and 20 (with n2 = 10), re-
spectively; a reaction is interpreted as continuous only if its propensity value exceeds
the propensity threshold and its related species’ particle counts all exceed the particle
count threshold. This criterion aims to take both population and propensity into ac-
count for the following reasons: firstly, in this model, discreteness from extremely low
particle counts is the main cause of violation to the continuous semantics’ assumption.
Secondly, the rate constants of the system span orders of magnitudes, even among re-
actions with shared reactants. So it can be highly probable that the large difference in
reaction rates can introduce inefficiency during simulation.

With both static and dynamic strategies partitioning reactions into continuous and
stochastic based on the same considerations, i.e. particle counts and propensities, the
only major difference between the two strategies is the allowed time point for infor-
mation gathering and making corresponding semantic alterations. For static strategy,
reactions are partitioned once and for all based on initial particle counts and propen-
sities. Dynamic strategy, on the other hand, updates the partition according to current
system state whenever an event is triggered. Figure 1 shows the average results from
1000 simulations. Note that even as static partition strategy has taken initial condi-
tions into account, the difference between static partition strategy and the expected
result (obtained by averaging over 1000 fully stochastic simulations) is already much
larger than that of dynamic partition strategy after 5 time units.
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Fig. 1: Comparison of static and dynamic partition strategy with stochastic simulation result.
Each curve represent the average of 1000 simulation runs of corresponding strategy, with simu-
lation horizon = 5 time units.

Apart from the accuracy improvement shown in Figure 1, a substantial reduction
on the firing of events and thus CPU time is achieved by the dynamic partition, as
is shown in the last two rows of Table II. Notice that the reduction on event count is
more substantial than the reduction on run time because of the extra checking needed
in the dynamic partition to decide potential switchings at each event firing.

Figure 2 explains these results by showing the behavior of the dynamic partioning
strategy in this example. On the long time horizon, the dynamic strategy interprets
reactions {1, 9, 10}, i.e., the production and reversible dimerization of protein M , as
continuous and the other ones as stochastic. However, on the first 7 units of time,
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method #fired events CPU time (sec)
purely stochastic 141 036.91 96.07
static partition 9931.68 9.67

dynamic partition 126.42 1.61
ratio over stochastic 0.000 896 0.0168

ratio over static partition 0.0127 0.166

Table II: Average number of events fired and average runtime from 100 simulations with sim-
ulation horizon set to 100 time units, comparing over three simulation methods. The last two
rows are the ratios of dynamic partition strategy’s statistics to that of purely stochastic and
static partition strategy’s, respectively.

the dynamic strategy applies a completely different choice, with stochastic interpreta-
tion for those reactions and reaction 3, the RNA production, continuous. Then, for a
transient time of around 20 units, reactions {1, 3, 9, 10} are mainly continuous with a
decreasing frequency for reaction 3.
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Fig. 2: The frequency of each reaction being interpreted as continuous under dynamic partition
strategy, over time horizon of 100 units, and calculated over 1000 simulations. Reactions not
listed are never interpreted as deterministic during the simulation horizon.

Example 4.3. Let us consider again the model of intracellular growth of bacterio-
phage T7 of Example 3.2 with the static partitioning strategy of [Alfonsi et al. 2005],
noted {1, 2, 3, 4} since the first four reactions are always stochastic and the last two
ones always continuous, and with a different static partition {1, 3} in which only the
first and third reactions are stochastic, the others being continuous. For dynamic par-
tition, the propensity threshold and the particle count threshold are set to be 10 (with
n1 = 10) and 5 (with n2 = 5), respectively.

Figure 3 depicts the relative frequencies of the numbers of tem molecules after 50,
100, 150, 200 days, obtained with that static partition, with the dynamic partitioning
strategy, and with SSA. Each bar represents the relative frequency of tem molecule
count falling in that region after certain amount of time. As can be clearly seen in the
graph, bars of static partition deviate from those of purely stochastic simulation, while
bars of dynamic partition are closer to the purely stochastic ones.
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Fig. 3: Comparison of post-infection distributions of tem particle counts obtained at time= 50,
100, 150, 200 days, by stochastic, static hybrid and dynamic hybrid simulations (based on 1000
simulation runs of each strategy.)

These observations can be made quantitative using statistical distances. Let us use
the two sample Kolmogorov-Smirnov test as distance measure (KS distance) to com-
pare the relative frequencies. Table III shows the KS distance between the distribu-
tions obtained by SSA and the static partitioning {1, 2, 3, 4} of [Alfonsi et al. 2005], the
static partitioning {1, 3} and the dynamic partitioning respectively.

Post-infection Time (days) 50 100 150 200
KS distance SSA - static hybrid {1, 2, 3, 4} 0.0525 0.7145 0.8035 0.836

KS distance SSA - static hybrid {1, 3} 0.3815 0.9225 0.624 0.6055
KS distance SSA - dynamic hybrid 0.0515 0.116 0.1485 0.161

Table III: Post-infection distributions of tem molecules from simulations using different hybrid
strategies compared to the reference fully stochastic model. Each row contains the outcome of
applying two-sample Kolmogorov-Smirnov test on the distributions obtained from 1000 simula-
tions using specified hybrid strategy and the reference fully stochastic model. The smaller the
value, the more similar the two distributions involved. Distributions at four sampling points are
used for comparison through the evolution of time, as listed in four corresponding columns.

By taking the particle count distribution of purely stochastic simulation as the ref-
erence, this example shows that the dynamic strategy always beats the static partition
strategies and improves the accuracy of the simulation to a small distance from SSA
along all time points.

5. HYBRID BOOLEAN MODELS
In this section we demonstrate how Boolean models can also be composed with contin-
uous and even hybrid continuous-stochastic models in SBML.
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5.1. Preprocessor for Composing Continuous and Boolean Models
In this section, we consider the composition of continuous reaction models with
Boolean transition systems. One typical use of this form of composition is for model-
ing the interactions between gene expression and metabolism on different time scales.
Gene networks can be modeled by simple Boolean regulatory networks representing
the on/off states of the genes and the possible transitions from one state to another,
while metabolic networks are naturally modeled by chemical reactions with continu-
ous semantics. Hybrid models of gene expression and metabolism can thus be naturally
built as hybrid continuous-Boolean models, and analyzed and simulated as such.

A continuous-Boolean composition necessitates specifying:

— the link between the discrete/continuous variables and the Boolean variables, e.g. by
fixing particle count or concentration threshold values,

— the relationship between the discrete logical time of the Boolean model and the con-
tinuous real time of the continuous reaction model, e.g. by adding delays on Boolean
transitions,

— the integrity constraints between both dynamics.

There is currently no general method for these tasks. Our high-level interface takes as
input

(1) a reaction model that accommodates both stochastic and continuous semantics,
(2) a Boolean transition system,
(3) an interface specifying for each Boolean transition, the triggers and actions on the

reaction model variables,

and produces as output a system of reactions and events which synchronize the execu-
tion of both input models.

5.2. Hybrid Composition of Continuous-Boolean Cell Cycle Models
In [Singhania et al. 2011], Singhania et al. have proposed a simple hybrid model of
the mammalian cell cycle regulation. This cell cycle model of low dimension has been
evaluated in terms of flow cytometry measurements of cyclin proteins in asynchronous
populations of human cell lines. The few kinetic constants in the model are easier to
estimate from the experimental data than the numerous kinetic constants of a single
large ODE model.

In this model, cyclin abundances are tracked by piecewise linear continuous equa-
tions for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcrip-
tion factors whose activities are represented by discrete variables (0 or 1) and likewise
for the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degra-
dation. The discrete variables change according to a predetermined sequence, with the
times between transitions determined by the amount of cyclin presented as well as
exponentially distributed random variables.

This model can be reconstructed using our interface as the hybrid composition of a
purely continuous reaction model of cyclin activation and degradation, with a Boolean
model of cell cycle phase transitions. We provide here the real examples and thus the
ASCII syntax for the BIOCHAM constructs described in Section 2.1. Beside the syntax
introduced before, the present command specifies the initial concentration, and the
macro command defines a function that makes the reaction rates dependent on the
value of boolean variables, as specified in the original article.

The inputs are:

(1) the continuous reaction model of cyclin activation, which provides an always pro-
gressing continuous behavior:
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% Initial Conditions
present(CycA, 1).
present(CycB, 1).
present(CycE, 1).

% Reaction Rules
k_sa for _ => CycA.
MA(k_da) for CycA => _.

k_sb for _ => CycB.
MA(k_db) for CycB => _.

k_se for _ => CycE.
MA(k_de) for CycE => _.

macro(k_sa, 5+6*B_tfe+20*B_tfb).
macro(k_sb, 2.5+6*B_tfb).
macro(k_se, 0.02+2*B_tfe).
macro(k_da, 0.2+1.2*B_cdc20a+1.2*B_cdh1).
macro(k_db, 0.2+1.2*B_cdc20b+0.3*B_cdh1).
macro(k_de, 0.02+0.5*B_scf).

(2) the Boolean transition system of the cell cycle progression, which is given
in [Singhania et al. 2011] as the following limit cycle of state transitions.
The add_boolean_state command defines a numbered state, and associates the
boolean variables true in that state; the add_boolean_transition command de-
fines a named transition between two states. Here is an excerpt of the file:

% States and corresponding active boolean species
add_boolean_state(1, [B_cdh1]).
add_boolean_state(2, [B_tfe, B_cdh1]).
add_boolean_state(3, [B_tfe]).

. . .

set_initial_boolean_state(1).

% Transitions between states
add_boolean_transition(T12, 1, 2).
add_boolean_transition(T23, 2, 3).

. . .
(3) the synchronization between both models, specified as a set of triggers and actions

(similar to the ones in events described in Section 2.2) associated to the Boolean
transitions via the add_boolean_transition command. In this hybrid model, the
time for the Boolean transitions are given by random variables. This is represented
by a parameter tau and a macro next_event as can be seen in the following
excerpt:

parameter(tau, 0).
macro(next_event, Time - lambda * log(ran)).
event(Time = 0, [ran, tau], [rand, next_event]).

parameter(theta_e, 80).
parameter(theta_a, 12.5).
parameter(theta_1_b, 21.25).
parameter(theta_2_b, 3).
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add_interface(T12, Time > tau, [ran, lambda, tau], [rand, 0,
next_event]).

add_interface(T23, Time > tau and [CycE] * masst >= theta_e,
[ran, lambda, tau], [rand, 0.01, next_event]).

. . .

The result of the composition is an SBML model formed of the continuous reaction
model augmented with a list of events. The events implement the Boolean transition
cycle from state 1 to 9 and back to 1, and their synchronization with the continuous
reaction model. In this form, the hybrid model can be simulated using any simulator
of SBML models. The simulation over a time horizon of 100 hours takes 150 ms. The
simulation result is shown in the upper plot in Figure 4.
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Fig. 4: Evolution of the cyclin’s particle counts in Singhania et al. model of the cell cycle. Simu-
lation horizon = 100 hours. (Upper) original continuous-Boolean model (with stochastic delays),
with average runtime = 0.15 seconds; (Lower) hybrid stochastic-continuous-Boolean model, with
average runtime = 8.42 seconds.

5.3. Hybrid Simulation of Stochastic-Continuous-Boolean Cell Cycle Model
A continuous-Boolean model can be easily generalized to a more realistic stochastic-
continuous-Boolean one by extending the purely continuous reaction model to a
stochastic-continuous one, using event-based methods as shown in Section 3.2 and
Section 3.3.

In the lower plot in Figure 4, we demonstrate the simulation result of a stochastic-
continuous-Boolean cell cycle model. This model extends the purely-continuous reac-
tion model of cyclin activation proposed by Singhania et al., making it more realistic
by allowing stochastic semantics for reactions. In the model simulated here, cyclin
synthesis reactions are stochastic and cyclin degradation reactions are continuous.
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6. CONCLUSION
The combination of events with kinetic reactions, as already present in the SBML
standard format, provides enough expressive power for combining discrete and con-
tinuous dynamics. Although introduced in SBML for handling a limited number of
events in biochemical models, such as the division of the mass variable by two at each
cell division in cell cycle models, we have shown that SBML events can be used in a
non-standard way on a large scale to define stochastic, boolean and hybrid simulators.

We have presented a high-level interface for composing hybrid models, compiling
them into SBML reactions plus events, and running hybrid simulations. We have first
shown how Gillespie’s direct method for stochastic simulation can be implemented
with SBML events. This makes it possible to compose a stochastic model with a con-
tinuous reaction model to create a hybrid continuous-stochastic reaction model in stan-
dard SBML format, and perform hybrid simulations with any simulation tool support-
ing SBML Level 3 core.

The benefits of this approach and the gain of performance over purely stochastic
simulations, have been illustrated on the model of bacteriophage T7 of [Alfonsi et al.
2005]. Furthermore, we have shown how dynamic strategies based on particle count
and reaction propensities can be easily implemented in this framework, to dynami-
cally partition the continuous and stochastic reactions. The gain in accuracy of the
dynamic partitioning strategy over static partition strategies, has been shown on the
bacteriophage T7 example, and on another example of transcription regulation in bac-
teriophage λ.

Then, we have shown that hybrid Boolean-continuous models can be composed by
specifying the input models, the conditions on the continuous variables, and the time
delays of the Boolean transitions. This has been illustrated by a reconstruction of
the hybrid mammalian cell cycle model of [Singhania et al. 2011], and by a hybrid
stochastic-continuous-Boolean version of it obtained by just specifying in our interface
that the synthesis reactions are stochastic.
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