
A Type System for CHR

Emmanuel Coquery1,2 and François Fages1

1 INRIA Rocquencourt, Projet Contraintes,
BP 105, F-78153 Le Chesnay, France

2 LIRIS, Université Claude Bernard Lyon 1
Btiment Nautibus, 8, boulevard Niels Bohr 69622 Villeurbanne cedex France

Abstract. We propose a generic type system for the Constraint Han-

dling Rules (CHR), a rewriting rule language for implementing constraint
solvers. CHR being a high-level extension of a host language, such as Pro-
log or Java, this type system is parameterized by the type system of the
host language. We show the consistency of the type system for CHR
w.r.t. its operational semantics. We also study the case when the host
language is a constraint logic programming language, typed with the
prescriptive type system we developed in previous work. In particular,
we show the consistency of the resulting type system w.r.t. the extended
execution model CLP+CHR. This system is implemented through an
extension of our type checker TCLP for constraint logic languages. We
report on experimental results about the type-checking of twelve CHR
solvers and programs, including TCLP itself.

1 Introduction

The language of Constraint Handling Rules (CHR) of T. Frühwirth [1] is a suc-
cessful rule-based language for implementing constraint solvers in a wide variety
of domains. It is an extension of a host language, such as Prolog [2], Java [3]
or Haskell [4], allowing the introduction of new constraints in a declarative way.
CHR is used to handle user-defined constraints while the host language deals
with other computations using native constraints. CHR is a committed-choice
language of guarded rules that rewrite constraints into simpler ones until they
are in solved forms. One peculiarity of CHR is that it allows multiple heads in
rules.

Typed languages have numerous advantages from the point of view of pro-
gram development, such as the static detection of programming errors or pro-
gram composition errors, and the documentation of the code by types. CHR has
already been used for the typing of programming languages, either for solving
subtyping constraints [5, 6] or for handling overloading in functional languages [7]
and constraint logic languages [8, 6]. There has been however not much work on
the typing of CHR itself. In [4], Chin, Sulzmann and Wang propose a monomor-
phic type system for the embedding of CHR into Haskell.

In this article, we propose a generic type system for CHR inspired by the
TCLP type system for constraint logic programs [9]. CHR being an extension

of a host language, this system is parameterized by the type system of the
host language. We will make three assumptions on the type system of the host
language:

– Typing judgments of the form Γ ⊢ t : τ are considered, where τ is a type
associated to the expression t in a typing environment Γ . Moreover well-typed
constraints in a typing environment Γ are defined by a derivation system for
typing judgments.

– The constraint t1 = t2 is well-typed in the environment Γ if there exists a
type τ such as Γ ⊢ t1 : τ and Γ ⊢ t2 : τ .

– If a conjunct c of native constraints is well-typed in an environment Γ and
is equivalent to a conjunct d, then d is also well-typed in Γ .

Using these assumptions, we show the consistency of the type system for CHR
w.r.t. its operational semantics. This is expressed by a subject reduction theorem
which establishes that if a program is well-typed then all the derived goals from
a well-typed goal are well-typed.

We also study the instantiation of this type system with the TCLP type
system for constraint logic programs [9]. We show a subject reduction theorem
for the CLP+CHR execution model [1] in which it is possible to extend the
definition of constraints by clauses. This result is interesting because constraint
logic programming is a very natural framework for using CHR constraint solvers.
A type system for CLP+CHR allows us to type-check, on the one hand, CHR
constraint solvers together with the CLP programs that use them, and, on the
other hand, complex constraint solvers written with a combination of CHR rules
using CLP predicates, and CLP clauses posting CHR constraints.

The rest of the paper is organized as follows. Section 2 recalls the syntax and
operational semantics of CHR, including the CLP+CHR execution model. Sec-
tion 3 presents the type system and section 4 presents its instantiation with the
type system for CLP. Section 5 presents some experimental results on the typ-
ing of some CHR solvers, using the implementation of the system in TCLP [10].
Finally, we conclude in section 6.

2 Preliminaries on CHR

Here, we recall the syntax and semantics of CHR, as given in [1]. We distin-
guish the user-defined CHR constraints from the native constraints of the host
language, which represent auxiliary computations that take place during the ap-
plication of a CHR rule. We assume that native constraints are handled by a
predefined solver of the host language. We also assume that native constraints
include the equality constraint = /2 and the constraint true. Expressions3 of the
host language are noted s, t and constraints are noted c(t1, . . . , tn). We note X
the domain of native constraints, and CT its (possibly incomplete) first-order
logic theory.

3 When the host language is a CLP dialect, as in section 4, the expressions are simply
the CLP terms.

2.1 Syntax

Definition 1. A CHR rule is either:

– a simplification rule of the form:
H1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

– a propagation rule of the form:
H1, . . . , Hi ==> G1, . . . , Gj | B1, . . . , Bk

– or a simpagation rule of the form:
H1, . . . , Hl \ Hl+1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

with i > 0, j ≥ 0, k ≥ 0, l > 0 and H1, . . . , Hi is a nonempty sequence of CHR
constraints, the guard G1, . . . , Gj being a sequence of native constraints and the
body B1, . . . , Bk being a sequence of CHR and native constraints.

A CHR program is a finite sequence of CHR rules.

The constraint true is used to represent empty sequences. The empty guard
can be omitted, together with the | symbol. The notation name@R gives a name
to a CHR rule R.

Informally, a simplification rule replaces the constraints of the head by the
constraints of the body if its guard is implied by the constraint store. A propa-
gation rule adds the constraints of the body while keeping the constraints of the
head in the store. A simpagation rule is a mix of the two preceding kind of rules:
the constraints Hl+1, . . . , Hi are replaced by the body, while the constraints
H1, . . . , Hl are kept.

For the sake of simplicity, and because the distinction of propagation and
simpagation rules are not needed for typing purposes, we will consider that a
propagation or a simpagation rule of the form

H1, . . . , Hl \ Hl+1, . . . , Hi <=> G1, . . . , Gj | B1, . . . , Bk

is just an abbreviation for the simplification rule

H1, . . . , Hi <=> G1, . . . , Gj | H1, . . . , Hl, B1, . . . , Bk.

where H1, . . . , Hl are explicitely removed and put back into the store.

Example 1. The following CHR program, taken from [1], defines a solver for a
general ordering constraint =<.

reflexivity @ X=<Y <=> X=Y | true.

antisymetry @ X=<Y , Y=<X <=> X=Y.

transitivity @ X=<Y , Y=<Z ==> X=<Z.

identity @ X=<Y \ X=<Y <=> true.

The rule reflexivity eliminates the =< constraints when its two arguments are
equal. Rule antisymmetry simplifies a double inequality into an equality. The
rule transitivity adds constraints corresponding to the transitive closure of
=<. Finally, identity eliminates redundant =< constraints.

2.2 Operational Semantics

The operational semantics of CHR is expressed by a transition system, noted
7−→, over states which are triples 〈F, E, D〉, where F is a goal, that is a multiset
of native and CHR constraints, E is a CHR constraint store and D is a native
constraint store. A state is thus a conjunction of CHR and native constraints.

In the following definition, the equality is extended to constraints by mor-
phism, that is c(t1, . . . , tn) = c(t′1, . . . , t

′
n) if t1 = t′1 ∧ . . .∧ tn = t′n. The conjunc-

tion notation ∧ is used to express the matching of a constraint in a multiset,
The equality is also extended to conjunctions of constraints: H1 ∧ . . . ∧ Hn =
H ′

1 ∧ . . . ∧ H ′
n if H1 = H ′

1 ∧ . . . ∧ Hn = H ′
n.

Definition 2. Let P be a CHR program. The transition relation 7−→ is given by
the following rules, where the variables appearing in triples stand for conjunctions
of constraints and x̄ represents the set of variables appearing in the head H.

Solve

〈C ∧ F, E, D〉 7−→ 〈F, E, D′〉
if C is a native constraint and CT |= (C ∧ D) ⇔ D′.

Introduce

〈H ∧ F, E, D〉 7−→ 〈F, H ∧ E, D〉
if H is a CHR constraint.

Simplify

〈F, H ′ ∧ E, D〉 7−→ 〈B ∧ F, E, H = H ′ ∧ D〉
if (H <=> G | B) is in P renamed with fresh variables,
and CT |= D ⇒ ∃x̄(H = H ′ ∧ G).

Propagate

〈F, H ′ ∧ E, D〉 7−→ 〈B ∧ F, H ′ ∧ E, H = H ′ ∧ D〉
if (H ==> G | B) is in P renamed with fresh variables,
and CT |= D ⇒ ∃x̄(H = H ′ ∧ G).

The Solve transition corresponds to a transition of the native constraint
solver. The Introduce transition simply transfers a CHR constraint from the
goal to the CHR constraint store The Simplify transition correspond to the
application of CHR simplification. The Propagate transition is indicated for the
sake of clarity, although it is treated as an abbreviation for a simplification rule
in the rest of the paper. The condition for applying these rules is that the head
of the rule can be instantiated such that the guard and the matching condition
of the head are implied by the current native constraint store. The body of the
rule is then added to the current goal and, when applying a Simplify transition,
the constraints matching the head are removed from the constraint store.

Definition 3. An initial state consists in a goal F and two empty constraint
stores: 〈F, true, true〉. A final state is either of the form 〈F, E, false〉 (failure),
or of the form 〈true, E, D〉 where D is satisfiable (success).

The following example illustrates the execution of a CHR program.

Example 2. Let us consider the solver given in example 1 together with the ini-
tial state 〈X=<Y ∧ Y=<Z ∧ Z=<X, true, true〉. One possible execution is:

〈Z=<X, X=<Y∧ Y=<Z, true〉 (Introduce ×2)
〈X=<Z ∧ Z=<X, X=<Y ∧ Y=<Z, true〉 (Propagate transitivity)
〈true, X=<Z ∧ Z=<X ∧ X=<Y ∧ Y=<Z, true〉 (Introduce ×2)
〈X=Z, X=<Y ∧ Y=<Z, true〉 (Simplify antisymmetry)
〈true, X=<Y ∧ Y=<Z, X=Z〉 (Solve)
〈X=Y, true, X=Z〉 (Simplify antisymmetry)
〈true, true, X=Y ∧ X=Z〉 (Solve)

One can remark that in this operational semantics, once a propagation rule
can be applied, it can be applied infinitely often, which leads to a trivial case of
non termination. In the preceding example, one could have applied the
transitivity rule instead of the antisymmetry rule, thus reintroducing the
constraint X=<Z that was eliminated at the fourth step. In [11], Abdennadher
gives refined operational semantics that are more faithful to the actual imple-
mentation of CHR. In particular the previous behavior is avoided by restricting
the application of a rule only once on the same constraints. The subject reduction
theorems given in the following sections express that given a well-typed program,
a transition occurring from a well-typed state leads to a well-typed state. It is
worth noting that they thus hold also in these more realistic semantics.

2.3 CLP+CHR

When the host language is a constraint logic programming language of the class
CLP (X) [12], it is possible to tightly integrate CHR to the host language. To
this end, Frühwirth [1] proposed to extend CHR with the construct label with
used to define CHR constraints by CLP clauses. We recall here the syntax and
operational semantics of this extension. We note SF (resp. SP) the set of function
(resp. predicate) symbols, given with their arity, and V the set of variables. An
atom is either a native constraint, a CHR constraint or of the form p(t1, . . . , tn),
where p/n is a program predicate symbol.

Definition 4. A labeling declaration for a CHR constraint H is an expression
of the form:

label with H if G1, . . . , Gj

where G1 . . . , Gj is a conjunction of native constraints.
Clauses are of the form:

H :- B1, . . . , Bn

where H an atom corresponding either to a predicate or to a CHR constraint but
not to a native constraint, and B1, . . . , Bk is a sequence of atoms.

The declaration label with c(t1, . . . , tn) if G1, . . . , Gj expresses that if the guard
G1, . . . , Gj is implied by the constraint store, then c(t1, . . . , tn) is non determinis-
tically replaced by the body of one of the clauses for c/n. The following definition
gives formal semantics to label with declarations and to predicate calls.

Definition 5. The relation transition between CHR states is extended by the
two following rules:

Unfold

〈H ′ ∧ F, E, D〉 7−→ 〈B ∧ F, E, H = H ′ ∧ D〉
if (H :- B) is in P renamed with fresh variables,
and H is not a CHR constraint.

Label

〈F, H ′ ∧ E, D〉 7−→ 〈B ∧ F, E, H = H ′ ∧ D〉
if (H :- B) and (label with H ′′ if G) are in P renamed with fresh variables,
and CT |= D ⇒ ∃x̄(H ′ = H ′′ ∧ G)

The Unfold transition is close to the CSLD resolution rule [12]. The dif-
ference is that, under CSLD resolution, the constraints in the body of the re-
solving clause are added to the native constraint store and the resulting store,
i.e. H = H ′ ∧ D ∧ C, must be satisfiable, which is not demanded here. The
CLP clauses for CHR constraints can only be used in a Label transition, requir-
ing that the guards declared using label with are implied by the current native
constraint store.

3 Type System

3.1 Assumptions about the type system of the host language

Since CHR is an extension of a host language, the type system we propose is
parameterized by the type system, noted ⊢N , of the host language. We will make
the following assumptions on ⊢N .

We suppose that ⊢N is based on a type algebra, the set of types being noted
T . Types are noted using the letter τ . Typing environments, noted Γ , associate
types to program variables. Given an expression t and a typing environment Γ ,
⊢N is used to deduce typing judgments of the form Γ ⊢N t : τ . Similarly, ⊢N is
used to deduce well-typed constraints in a typing environment Γ , a conjunction
C1∧. . .∧Cn of native constraints being well-typed in Γ if for each i ∈ {1, . . . , n},
Ci is well-typed in Γ . We note Γ ⊢N C Atom, the fact that C is well-typed in
the typing environment Γ . We also assume that the equality constraint s = t
between s and t is well-typed in Γ if there exists a type τ such that Γ ⊢N s : τ
and Γ ⊢N t : τ .

We assume that the union of type environments over disjoint sets of variables
can be formed with an operation noted ⊎ such that if Γ ⊢N t : τ then Γ ⊎Γ ′ ⊢N

t : τ for any typing environment Γ ′ disjoint from Γ .
We also assume that if a conjunction of native constraints C is well-typed in a

typing environment Γ and CT |= C ⇔ D, then there exists a typing environment

Γ ′, such that the conjunction of constraints D is well-typed in Γ ⊎ Γ ′. This
condition, needed for theorem 1, expresses that Solve transitions performed
by the native constraint solver do not produce ill-typed constraint stores from
well-typed ones.

3.2 Type System for CHR

The type system we propose for CHR defines a notion of well-typedness for
CHR rules. To each CHR constraint symbol c/n is associated a set of types
types(c/n), each type being of the form τ1× . . .×τn. This set of types is assumed
to be fixed, for example using some declarations provided by the programmer.
This framework allows the use of parametric polymorphism [13]. A parametric
type scheme ∀α1 . . . αk. τ1 × . . . × τn is represented by the set of all its possible
instantiations. For example, declaring that types(append/3) = {list(τ)×list (τ)×
list(τ) | τ ∈ T } allows one to give the type ∀α. list(α) × list(α) × list(α) to the
constraint append/3.

(Native)
Γ ⊢N C Atom

Γ ⊢ C Atom
if C is a native constraint

(CHR Atom)
Γ ⊢N t1 : τ1 . . . Γ ⊢N tn : τn

Γ ⊢ c(t1, . . . , tn) Atom

if c/n a CHR constraint
and if τ1 × . . . × τn ∈ types(c/n)

(Goal)
Γ ⊢ B1 Atom . . . Γ ⊢ Bn Atom

Γ ⊢ B1, . . . , Bn Goal

(CHR Head)
Γ ⊢N t1 : τ1 . . . Γ ⊢N tn : τn

Γ ⊢ c(t1, . . . , tn) Head τ1×...×τn

if c/n a CHR constraint
and if τ1 × . . . × τn ∈ types(c/n)

(MultiHead)
Γ ⊢ H1 Headσ1

. . . Γ ⊢ Hi Headσi

Γ ⊢ H1, . . . , Hi MHeadσ1,...,σi

(Simpl CHR)

∀σ̄ ∈ S̄,∃Γσ̄

Γσ̄ ⊢ H1, . . . , Hn MHead σ̄

Γσ̄ ⊢ G1, . . . , Gr Goal

Γσ̄ ⊢ B1, . . . , Bq Goal

⊢ H1, . . . , Hn <=> G1, . . . , Gr | B1, . . . , Bq Rule

where σ̄ = (σ1, . . . , σn), S̄ = S1 × . . . × Sn

and for all i ∈ {1, . . . , n}, Hi = ci(t
i
1, . . . , t

i
mi

) and Si = types(ci/mi)

Table 1. Type system for CHR

The rules of the type system for CHR are given in table 1, where σ’s represent
types of CHR constraints and S’s represent sets of such types. A CHR constraint
H is well-typed in Γ if the judgment Γ ⊢ H Atom can be derived from the typing

rule. Terms or expressions appearing as arguments of the constraints are typed
using the type system ⊢N for the host language.

The typing rules resemble the rules of Chin, Sulzmann and Wang [4], but add
the possibility for a CHR constraint to have more than one type, and abstract
from the type system of the host language.

The rules (CHR Head) and (MultiHead), differ from (CHR Atom) and (Goal)
in that they add an annotation for keeping track of the type used for typing
each head. The rule (Simpl CHR) requires, for each combination σ1, . . . , σn of
the types of the different occurrences of the CHR constraints of the head of the
CHR rule, that the head, the guard and the body of the CHR rule are well-
typed in some typing environment Γσ1,...,σn

. As shown in section 4.3, in the case
of parametric polymorphism, this can be ensured by renaming the type scheme
of each occurrence of CHR constraints in the head with distinct variables, which
can be seen as applying the principle of definitional genericity [14] to the typing
of CHR constraints. In the context of logic programming, this principle estab-
lishes that the type of the head of a clause must be equivalent to, up to renaming
but not an instance of, the declared type of the predicate.

The following lemma expresses that the well-typedness of goals is preserved
by extension of the environment:

Lemma 1. Let G be a goal and Γ a typing environment such that Γ ⊢ G Goal.
Let Γ ′ be a typing environment such that Γ⊎Γ ′ is defined. Then Γ⊎Γ ′ ⊢ G Goal.

Proof. By induction on the derivation and by using the assumption that if Γ ⊢N

t : τ then Γ ⊎ Γ ′ ⊢N t : τ .

The consistency of the type system w.r.t. the operational semantics of CHR
is given by the following subject reduction theorem, which expresses that the
well-typedness of goals is preserved by transitions:

Theorem 1. Let P be a well-typed CHR program. Let 〈F, E, D〉 and 〈F ′, E′, D′〉
be two states such that 〈F, E, D〉 7−→ 〈F ′, E′, D′〉. If there exists a typing envi-
ronment Γ such that Γ ⊢ F, E, D Goal, then there exists a typing environment
Γ ′ such that Γ ′ ⊢ F ′, E′, D′ Goal . Moreover, if the transition rule contains a
guard G then Γ ′ ⊢ G Goal .

Proof. By case on the transition.

Solve By hypothesis, Γ ⊢ D Goal and Γ ⊢ C Atom. Since CT |= (C∧D) ⇔ D′,
and by assumption on ⊢N , there exists a typing environment Γ ′′ such that
Γ ⊎ Γ ′′ ⊢N D′ Goal . By posing Γ ′ = Γ ⊎ Γ ′′ and by lemma 1, we obtain
Γ ′ ⊢ F, E Goal , thus Γ ′ ⊢ F, E, D′ Goal .

Introduce This transition only moves a constraint from the goal to the CHR
constraint store, thus the resulting state is also well-typed in Γ .

Simplify Let H = c1(t
1
1, . . . , t

1
m1

) ∧ . . . ∧ cn(tn1 , . . . , tnmn
). Moreover, for some

E = H ′ ∧ E′′, with CT |= D ⇒ H ′ = H . This means H ′ = c1(s
1
1, . . . , s

1
m1

) ∧
. . . ∧ cn(sn

1 , . . . , sn
mn

). Since H ′ is well typed in Γ , for each i ∈ {1, . . . , n},

there exists σi ∈ types(ci/mi) such that σi = τ i
1 × . . . × τ i

mi
and, for each

j ∈ {1, . . . , mi}, Γ ⊢N si
j : τ i

j .
Since the rule (H <=> G | B) is well-typed, there exists a typing environ-
ment Γ ′′ = Γσ1,...,σn

such that Γ ′′ ⊢ H1, . . . , Hn MHeadσ1,...,σn
, Γ ′′ ⊢ G Goal

and Γ ′′ ⊢ B Goal .
By lemma 1, and by posing Γ ′ = Γ ⊎ Γ ′′, we obtain Γ ′ ⊢ F, E, D Goal and
Γ ′ ⊢ G, B Goal . It remains to prove that H = H ′ is well-typed in Γ ′. We
have for each i ∈ {1, . . . , n}, for each j ∈ {1, . . . , mi}, Γ ′ ⊢N si

j : τ i
j . Since

Γ ′′ ⊢ H MHeadσ1,...,σn
, then for each i ∈ {1, . . . , n}, Γ ′′ ⊢ Hi Headσi

. Thus
for each j ∈ {1, . . . , mi}, Γ ′′ ⊢N tij : τ i

j . Thus Γ ′ ⊢N tij = si
j Atom. Thus, we

obtain Γ ′ ⊢ B, F, E, H = H ′, D Goal and Γ ′ ⊢ H = H ′, G Goal .

The following example shows the necessity of considering all possible combi-
nations of types when typing a CHR rule with multiple heads.

Example 3. Let us assume that the constraint =< has the type scheme ∀α.α×α.
Let us consider the polymorphic type list(α) for lists and the types int and
string. We assume that the empty list [] has type ∀α. list(α), that the list
constructor has type ∀α. α× list(α) → list(α), and that list(int) and list(string)
are incompatible4. Then the transitivity rule is not well-typed:

X=<Y, Y=<Z ==> X=<Z

For example, one might consider the type list(int) × list(int) for the first
occurrence of =</2 and the type list(string)× list(string) for the second one, in
which case the head is not well-typed because Y can not have both types list(int)
and list(string).

The transitivity rule above can produce an ill-typed state from a well-typed
one. The state 〈true, ["a"] =< []∧[] =< [1], true〉 is well-typed. However the
rule would add X = ["a"]∧Z = [1]∧X =< Z to the current goal. This subgoal
is not well-typed because, when typing X =< Z, the type chosen for =</2 must
be compatible both with list(string) and list(int). In other words it is possible
to end up with an inequality constraint between two terms with incompatible
types, while the type of inequality explicitly state that they should have the same
type, which can lead to unexpected errors during the execution of the program.

4 Integration with CLP

In this section we are interested in the particular case where the host language is
a constraint logic language, typed using the prescriptive type system TCLP [9].
This system combines parametric polymorphism, subtyping and overloading to
obtain the flexibility that is needed for typing CLP programs that are originally
untyped. In particular, subtyping is used for typing the simultaneous use of

4 For example, this is the case if we consider the native constraint domain to be
the Herbrand universe typed with the Mycroft-O’Keefe type system [13] without
overloading.

different constraint domains: for instance, the relation boolean ≤ int allows one
to see booleans as integers, and thus to type check constraints combining boolean
variables with integer variables (such as in a sum of boolean variables). Subtyping
is also used for the typing of programs using meta-programming techniques: the
relation list(α) ≤ term allows one to see homogeneous lists as terms and to apply
decomposition predicates to them, such as functor/3, arg/3 or =../2.

In [9], the type system of TCLP is proved consistent w.r.t. the CSLD execu-
tion model [12], which is an abstract model of execution proceeding by constraint
accumulation. In particular, the transformations that can be made by the con-
straint solver are not considered. In the following, we assume that the solver for
native constraints only performs simplifications that preserve well-typedness,
according to the assumptions of section 3.1. This can be obtained either by us-
ing a typed execution model, as proposed in [9], or, in the case of the equality
constraint, by using modes to fix the dataflow [15].

First, we present the type algebra used in the system, then we recall the
typing rules for CLP, together with a typing rule for the labeling declaration
label with. The resulting system is proven consistent w.r.t. the CLP+CHR exe-
cution model.

4.1 Type Structure

We consider a partial order (K,≤K) of type constructors, given with their arity.
The set T of types is the set of finite or infinite types built on K.

Subtyping Relation The use of subtyping for meta-programming purposes
requires to consider relations like list(α) ≤ term. This form of non-structural
non-homogeneous subtyping links different constructors of different arities. Such
subtyping relations require to express the correspondence between the different
arguments of type constructors. For example, by writing k1(α, β) ≤ k2(β), we
specify that types built with k1 are subtypes of those built with k2, provided
that the second argument of k1 is a subtype of the argument of k2, the first
argument of k1 being forgotten in the subtyping relation. One way to express
the correspondence is to use a formalism of labels, as proposed by Pottier [16].
In this formalism, a label is associated to each argument of type constructors,
the correspondence being expressed by the fact that two arguments of type
constructors have the same label. The subtyping order ≤ is built from the order
≤K on type constructors and from the labels. A formal description of the type
structure is given in [5], where the structures of types and type constructors are
quasi-lattices, i.e. partial orders in which two elements have a least upper (resp.
greatest lower) bound if and only if they have an upper (resp. lower) bound.

Subtyping constraints Let W be a set of type variables, or parameters, noted
α, β, We note TW the set of types built on K ∪W .

Definition 6. A subtyping constraint is of the form τ1 ≤ τ2, where τ1, τ2 ∈ TW
are finite types. A substitution ρ : W → T satisfies the constraint τ1 ≤ τ2, noted

ρ |= τ1 ≤ τ2, if ρ(τ1) ≤ ρ(τ2). The subtyping constraint τ1 ≤ τ2 is satisfiable if
there exists a substitution ρ such that ρ |= τ1 ≤ τ2.

In [5], sufficient conditions on (K,≤K) are given for the decidability of the
satisfiability of subtyping constraints in quasi-lattices, this problem is shown
to be NP-complete, and a practical algorithm (used in section 5) is given for
computing explicit solutions.

4.2 Type system for CLP+CHR

In order to support the overloading of CLP function and predicate symbols,
we assume that a set types(f/n) of type schemes of the form ∀ᾱ.τ1 × . . . ×
τn → τ is associated to each function symbol f/n (resp. predicate symbol p/n),
where ᾱ is the set of parameters occurring in types τ1, . . . , τn, τ . These sets
of types are supposed to be fixed, for example using declarations provided by
the programmer. We also assume that the type of the constraint = /2 is the
type scheme ∀α.α × α. For the sake of simplicity, the quantification ∀ᾱ will be
omitted in type schemes, each occurrence of a type scheme being renamed with
fresh parameters.

A typing environment is a partial mapping Γ : V 7→ TW , also noted {X1 :
τ1, . . . , Xn : τn}. The operation ⊎ on typing environments is defined as disjoint
union, that is (Γ1 ⊎ Γ2)(X) = Γ1(X) if X ∈ dom(Γ1), (Γ1 ⊎ Γ2)(X) = Γ2(X) if
X ∈ dom(Γ2), and (Γ1 ⊎ Γ2)(X) is undefined otherwise.

(Var)
X : τ ∈ Γ

Γ ⊢ X : τ
(Sub)

Γ ⊢ t : τ τ ≤ τ ′

Γ ⊢ t : τ ′

(Func)
Γ ⊢ t1 : τ1ρ . . . Γ ⊢ tn : τnρ

Γ ⊢ f(t1, . . . , tn) : τρ

ρ is a type substitution
τ1 × . . . τn → τ ∈ types(f/n)

(Atom)
Γ ⊢ t1 : τ1ρ . . . Γ ⊢ tn : τnρ

Γ ⊢ p(t1, . . . , tn) Atom

ρ is a type substitution
τ1 × . . . τn ∈ types(p/n)

(Head)
Γ ⊢ t1 : τ1ρ . . . Γ ⊢ tn : τnρ

Γ ⊢ p(t1, . . . , tn) Headτ1×...×τn

ρ is a type renaming
τ1 × . . . τn ∈ types(p/n)

(Clause)

∀σ ∈ types(p/n)
Γσ ⊢ p(t1, . . . , tn) Headσ

Γσ ⊢ B1 Atom . . . Γσ ⊢ Bk Atom

⊢ p(t1, . . . , tn) :- B1, . . . , Bk Clause

(Label with)
Γ ⊢ H Atom Γ ⊢ G Goal

⊢ label with H if G Label with

Table 2. Type system for CLP and label with

Table 2 gives the typing rules for CLP, together with the typing rule for the
declaration label with. The typing rules for CLP resemble the rules of Mycroft
and O’Keefe [13] with the addition of subtyping and overloading. A predicate
call p(t1, . . . , tn) (resp. a native constraint) is well-typed in a typing environment
Γ if Γ ⊢ p(t1, . . . , tn) Atom can be derived from the rules. A clause H :- B
is well-typed if ⊢ H :- B Clause can be derived from the rules. A labeling
declaration label with H if G is well-typed if ⊢ label with H if G Label with can
be derived. The (Sub) rule gives the semantics of subtyping by expressing that
if a term t has type τ , then it has all types that are greater than τ .

The set of rules of tables 1 and 2 define the type system for CLP+CHR. A
CLP+CHR program is well-typed if all its CHR rules, all its clauses and all its
labeling declarations are well-typed.

The distinction between rules (Atom) and (Head) expresses the principle of
definitional genericity [14], which establishes that the type of the head of a clause
must be equivalent to, up to renaming but not an instance of, the declared type
of the predicate. The rule (Clause) imposes that a clause must be well-typed
for all possible types of the defined predicate, in a typing environment Γσ that
depends on the considered type σ. This can be seen as a condition similar to
definitional genericity for overloading. These two conditions are useful for the
following subject reduction theorem which expresses the consistency of the type
system with reference to the operational semantics of CLP+CHR.

Theorem 2. Let us consider a well-typed CHR+CLP program. Let 〈F, E, D〉
and 〈F ′, E′, D′〉 be two states and Γ be a typing environment such that Γ ⊢
F, E, D Goal. If 〈F, E, D〉 7−→ 〈F ′, E′, D′〉, then there exists a typing environ-
ment Γ ′ such that Γ ′ ⊢ F ′, E′, D′ Goal. Moreover, if the transition rules contain
a guard G then Γ ′ ⊢ G Goal.

The proof of theorem 2 is preceded by a lemma which expresses that in a deriva-
tion apart from (Head) or (Clause), the types can be arbitrarily instantiated.

Lemma 2. For any typing environment Γ , for any judgment R different from
Head or Clause and any type substitution ρ, if Γ ⊢ R then Γρ ⊢ Rρ.

Proof. By induction on the derivation.

Proof (of theorem 2). One can check that the assumptions of section 3.1 are cor-
rect for the the system of table 2. Moreover, an atom corresponding to a predicate
call and an atom corresponding to a native constraint are typed in the same way.
Therefore, by theorem 1, if the transition is one of Solve, Introduce or Sim-

plify, then there exists a typing environment Γ ′ such that Γ ′ ⊢ F ′, E′, D′ Goal
and Γ ′ ⊢ G Goal in case of need.

Let us consider the Unfold transition. We can assume, without loss of gen-
erality, that H ′ = p(s) and H = p(t). Since Γ ⊢ p(s) Atom, there exists a type
scheme τ ∈ types(p) and a substitution ρ such that Γ ⊢ s : τρ. Since the pro-
gram is well-typed, ⊢ H :- B Clause, thus there exists a typing environment
Γτ such that Γτ ⊢ B Goal and Γτ ⊢ p(t) Headτ , that is Γτ ⊢ t : τρr where ρr is

a renaming of τ . By posing ρ′ = ρ−1
r ρ, and by lemma 2, we obtain Γτρ′ ⊢ t : τρ

and Γτρ′ ⊢ B Goal . By posing Γ ′ = Γτρ′ ⊎ Γ , we obtain Γ ′ ⊢ t = s Atom. Thus
Γ ′ ⊢ B, F, E, s = t, D Goal .

Let us finally consider the case of a Label transition. Similarly to the case
of the Unfold transition, there exists a typing environment Γ ′, such that Γ ′ ⊢
B, F, E, t = s, D. Since H ′ is a CHR constraint, τ does not contain any param-
eter, that is ρ′′ is the identity substitution. We have H ′′ = p(u) for some term
u. Since ⊢ label with H ′′ if G Label with, there exists a typing environment Γlw

such that Γlw ⊢ G Goal and Γlw ⊢ H ′′ Atom, that is Γlw ⊢ u : τ . By pos-
ing Γ ′′ = Γ ′ ⊎ Γlw , we obtain Γ ′′ ⊢ s = u Atom, Γ ′′ ⊢ B, F, E, s = t, D and
Γ ′′ ⊢ G Goal , and thus Γ ′′ ⊢ s = u, G Goal .

4.3 Typing of polymorphic CHR constraints

In this section, we show how to type check CHR constraints in the presence of
parametric polymorphism. The set types(c/n) of the types of the constraint c/n
is restricted to a finite set of type schemes of the form ∀ᾱ. τ1× . . .×τn. This does
not mean that types(c/n) itself is finite, as a type scheme represent an infinite
set of types. More precisely, we assume a finite set typesp(c/n) of type schemes
and define types(c/n) = {τ1ρ× . . .× τnρ | ∀ᾱ. τ1 × . . .× τn ∈ typesp(c/n) and ρ :
ᾱ → T }.

(CHR Atomp)
Γ ⊢ t1 : τ1ρ . . . Γ ⊢ tn : τnρ

Γ ⊢ c(τ1, . . . τn) Atom

ρ is a type substitution
∀ᾱ. τ1 × . . . × τn ∈ typesp(c/n)

(CHR Headp)
Γ ⊢ t1 : τ1ρ . . . Γ ⊢ tn : τnρ

Γ ⊢ c(τ1, . . . τn) Headτ1×...×τn,ρ

ρ is a type renaming
∀ᾱ. τ1 × . . . × τn ∈ typesp(c/n)

(MultiHeadp)

∀i ∈ {1, . . . , n} Γ ⊢ Hi Headσi,ρi

∀ 1 ≤ i < j ≤ n codom(ρi) ∩ codom(ρj) = ∅

Γ ⊢ H1, . . . , Hn MHeadσ1,...,σn

Table 3. Typing rules for polymorphic CHR constraints

A type system that deals directly with parametric polymorphism can be ob-
tained by replacing rules (CHR Atom), (CHR Head) and (MultiHead) by their
counterparts given in table 3 and by replacing types(ci/mi) by typesp(ci/mi) in
rule (Simpl CHR). The resulting type system is noted ⊢p. The following propo-
sition expresses the equivalence of the two type systems:

Proposition 1. A CHR rule (resp. goal) is well-typed in ⊢ if and only if it is
well-typed in ⊢p.

Proof. First we show the proposition for atoms, which extends straightforwardly
to goals. Let us assume that Γ ⊢ c(t1, . . . , tn) Atom. Then there exists τ1× . . .×

τn ∈ types(c/n) such that for each i ∈ {1, . . . , n}, Γ ⊢ ti : τi. By definition, there
exists a type substitution ρ and a type scheme ∀ᾱ. τ ′

1 × . . . × τ ′
n ∈ typesp(c/n)

such that for each i ∈ {1, . . . , n}, τi = τ ′
iρ. Therefore, Γ ⊢p c(t1, . . . , tn) Atom.

On the other hand, if Γ ⊢p c(t1, . . . , tn) Atom, then there exists ∀ᾱ. τ ′
1 × . . . ×

τ ′
n ∈ typesp(c/n) and ρ such that for each i ∈ {1, . . . , n}, Γ ⊢ ti : τ ′

iρ. Since
τ1ρ × . . . τnρ ∈ types(c/n), we obtain Γ ⊢ c(t1, . . . , tn) Atom.

Now we show that if a rule is well-typed in ⊢p, then it is well-typed in ⊢.
Similarly to lemma 2, if Γ ⊢p t : τ (resp. Γ ⊢p A Atom), then Γρ ⊢p t : τρ (resp.
Γρ ⊢p A Atom). We pose, for each i ∈ {1, . . . , n}, Hi = ci(t

i
1, . . . , t

i
mi

). Let us
consider (σ1 × . . .× σn) ∈ types(c1/m1)× . . .× (cn/mn). For each i ∈ {1, . . . , n}
there exists ρ′i and σ′

i ∈ typesp(ci/ni) such that σi = σ′
iρ

′
i. By rules (Simpl CHR)

and (MultiHeadp), there exists a typing environment Γp and some type renam-
ings ρ1, . . . , ρn, with distinct codomains, such that, for each i ∈ {1, . . . , n},
Γ ⊢p Hi Headσ′

i
,ρi

. Since all ρi’s have distinct codomains, we can define ρp =
⋃n

i=1
ρ1

i ρ
′
i. Thus, for each i ∈ {1, . . . , n}, ΓpρpHi Headσ′

i
ρiρ

−1

i
ρ′

i

. Thus Γpρp ⊢

H1, . . . , Hn MHeadσ1,...,σn
. Moreover Γpρp ⊢p G1, . . . , Gr, B1, . . . , Bq Goal , thus

Γpρp ⊢ G1, . . . , Gr, B1, . . . , Bq Goal . As this holds for any (σ1 × . . . × σn) ∈
types(c1/m1) × . . . × (cn/mn), we deduce that the rule is well-typed in ⊢.

Finally, we show that if a rule is well-typed in ⊢, then it is well-typed in
⊢p. Let (σ1, . . . , σn) ∈ typesp(c1/m1) × . . . × typesp(cn/mn). Let ρ1, . . . ρn be
type renamings of σ1, . . . , σn with distinct codomains. For each i ∈ {1, . . . , n},
by definition of types(ci/mi), σiρi ∈ types(ci/mi). Thus there exists Γ such
that Γ ⊢ H1, . . . , Hn MHeadσ1ρ1,...,σnρn

and Γ ⊢ G1, . . . , Gr, B1, . . . , Bq Goal .
Thus we have Γ ⊢p G1, . . . , Gr, B1, . . . , Bq Goal . It remains to show that Γ ⊢p

H1, . . . , Hn MHeadσ1,...,σn
Since Γ ⊢ H1, . . . , Hn MHeadσ1ρ1,...,σnρn

, then for
each i ∈ {1, . . . , n}, Γ ⊢ HiMHeadσiρi

and thus, similarly to the case of atoms,
Γ ⊢p HiMHeadσi,ρi

. Thus we deduce Γ ⊢p H1, . . . , Hn MHeadσ1,...,σn
.

5 Experimental Results

The type system for CLP+CHR has been implemented as an extension of the
TCLP software [10], which is a type checker for constraint logic programming.
Furthermore, a type inference algorithm makes it possible to infer types for
variables and for program predicates automatically. In a lattice of types with top
element term however, the type term × . . . × term is always a possible type for
predicates. For this reason, a heuristic type inference algorithm is used, providing
a more informative type and often the expected type [9, 6]. This algorithm can
also be used to infer the type of CHR constraints that are not declared by the
user.

TCLP uses several solvers written in CHR. The main solver is the one for
subtyping constraints. We also use a CHR solver to handle overloading of func-
tion and predicate symbols during type checking. Some other small CHR solvers
are also used for handling typing environments and preliminary computations
on the structure of type constructors. Hence, the possibility to type check CHR
programs makes it possible that TCLP type checks its own source code.

The following example shows the typical kind of errors detected by TCLP:

Example 4. The following solver handles counters. The constraint cpt/2 asso-
ciates the name of the counter to its value, and has type atom × int .5 The
constraint val/2 also has type atom × int and constraints incr/1 and init/1
have type atom .

init(C) <=> cpt(C,0).

cpt(C,V) \ val(C,X) <=> X=V.

incr(C), cpt(V,C) <=> V1 is V+1, cpt(C,V1).

The type checker produces the following message:

! Error in "count.pl", line 3 :

Incompatible types for C : atom and int

It is in fact an argument inversion: in the head of the last rule, the arguments
of the constraint cpt were inverted.

The following example shows the result of type inference on a small solver:

Example 5. The following solver, taken from [17], computes the greatest common
divisor of two numbers.

gcd(0) <=> true.

gcd(N) \ gcd(M) <=>

N=<M | L is M mod N, gcd(L).

The type checker infers the following type:

:- typeof gcd(int) is chr_constraint.

that is gcd has type int .

Performance The speed of the type checker has been evaluated on ten CHR
solvers taken from [17], on the solver for subtyping constraints, on the solver for
overloading in TCLP, as well as on the complete TCLP source code. These tests
were run on a 2 Ghz Pentium IV with 512 Mo of RAM, using the Sicstus Prolog
implementation of TCLP for which the working memory space is limited to 256
Mo. The results are presented in table 4.

The first column indicates the CLP+CHR program. The second column indi-
cates the number of lines of codes in the program and the third one indicates the
number of CHR rules in the program. Next, in column “Type check”, the type
checking times are given with type inference for variables, but without type in-
ference for predicates or CHR constraints. Finally, the column “Type inference”
indicates the times for inferring types to predicates and constraints. The typing
times for CHR rules are given in columns “CHR”, while the typing times for the

5 The type atom corresponds to Prolog atoms, that is symbols of arity 0, and not to
the logical atoms.

Type check Type inference
Program # lines # rules CHR Total CHR Total

gcd 10 2 0.03 s 0.03 s 0.04 s 0.04 s
varleq 30 4 0.04 s 0.26 s 0.07 s 0.43 s
bool 173 78 1.32 s 2.13 s 4.63 s 5.96 s
listdom 73 13 0.78 s 1.45 s 1.77 s 2.75 s
interval 145 24 3.41 s 3.5 s 8.93 s (99.58 s) 9.03 s (99.69 s)
domain 266 84 4.30 s 6.42 s 5.35 s (183.92 s) 7.75 s (186.94 s)
fourier-gauss 328 30 1.98 s 5.88 s 6.01 s (19.04 s) 16.16 s (30.42 s)
arc 47 2 0.14 s 0.81 s 0.23 s 1.09 s
allenComp 495 490 17.48 s 17.51 s NA NA

subtyping 595 57 4.52 s 6.22 s 9.96 s (319.66 s) 15.28 s (322.64 s)
overloading 465 10 0.43 s 3.99 s 1.10 s 8.01 s
TCLP 4594 82 5.22 s 53.97 s 26.61 s (416.08 s) 96.09 s (518.39 s)

Table 4. Performance

whole CLP+CHR programs are given in the column “Total”. The times given
between parenthesis are obtained without breaking connected components as
explained in the following.

The type checking times without type inference for predicates and constraints
show that the type checker is usable in practice. For example, it takes less than
18 s to check the 490 rules of the allenComp solver, or less than 54 s to check
about 4600 lines of code constituting the source of TCLP.

In presence of subtyping, type inference needs 71 times more CPU time than
type checking. In the case of allenComp, type inference even fails by lack of
memory due to the restriction to 256 Mo. This is due to the fact that, when in-
ferring the type of a constraint, the type checker must consider at the same time
all the rules and clauses in a same connected component of the call graph, while
type checking can be done rule by rule. CHR solvers often use large connected
components however. One reason for this difficulty is that a few constraints
used as data structures, appear in the head of numerous rules, thus creating
large connected components. For example, the solver for subtyping constraints
has a connected component of 54 predicates and CHR constraints. Such con-
nected components thus require to deal with a very large number of subtyping
constraints and overloaded symbols at once. Moreover, algorithms for solving
subtyping constraints and overloading are potentially exponential [8, 5]. From
this point of view, the performance of type inference are quite satisfactory.

It is possible to reduce type inference type by breaking such connected com-
ponents. This can be done by providing the type of the constraints that are used
as data structures. This technique appears to be very efficient, reducing the time
for type inference in domain from 184 s to 5.3 s, just by giving the type of one
constraint. When no time is given between parenthesis, it means that the solver
was already well stratified and thus didn’t need the type for some CHR con-
straint to be given. Moreover, type inference can be used the first time a solver

is written, the inferred types being used afterwards as declarations during the
rest of the development of the solver.

6 Conclusion

We have presented a type system for the Constraint Handling Rules CHR lan-
guage [1], parameterized by the type system of the host language. In the partic-
ular case of constraint logic programming, its combination with the prescriptive
type system TCLP [9] for CLP languages has been presented. Under the as-
sumption that the well-typedness of native constraints is preserved by logical
equivalence, the type system has been proved consistent w.r.t. the operational
semantics of CHR and CLP+CHR respectively.

The type system for CLP+CHR is implemented as an extension of the TCLP
software [10]. The reported experimental results on ten CHR solvers plus TCLP
itself show that the system is already usable and useful.

As for future work, we plan to get some practical experience from the users
of the system, in particular for the development of complex modular [18] and/or
collaborative CHR solvers. It would also be interesting to study the instantiation
of the type system with the one of Java in the framework of the JACK toolkit
implementation of CHR [3] and as well as with the Haskell implementation [4].

References

1. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37 (1998) 95–138

2. Holzbaur, C., Frühwirth, T.: A Prolog Constraint Handling Rules compiler and
runtime system. Special Issue Journal of Applied Artificial Intelligence on Con-
straint Handling Rules 14 (2000)

3. Abdennadher, S., Krämer, E., Saft, M., Schmauss, M.: JACK: A Java Constraint
Kit. In: Electronic Notes in Theoretical Computer Science. Volume 64. Elsevier
(2000)

4. Chin, W.N., Sulzmann, M., Wang, M.: A type-safe embedding of constraint han-
dling rules into Haskell. Technical report, National University of Singapore (2003)
http://www.comp.nus.edu.sg/~sulzmann/chr/hchr/hchr-tr.ps.

5. Coquery, E., Fages, F.: Subtyping constraints in quasi-lattices. In Pandya, P.,
Radhakrishnan, J., eds.: Proceedings of the 23rd conference on foundations of soft-
ware technology and theoretical computer science, FSTTCS’2003. Lecture Notes
in Computer Science, Mumbai, India, Springer-Verlag (2003)

6. Coquery, E.: Typage et programmation en logique avec contraintes. PhD thesis,
Université Paris 6 - Pierre et Marie Curie (2004)

7. Stuckey, P.J., Sulzmann, M.: A theory of overloading. In Peyton-Jones, S., ed.:
Proceedings of the International Conference on Functional Programming, ACM
Press (2002) 167–178

8. Coquery, E., Fages, F.: Tclp: overloading, subtyping and parametric polymorphism
made practical for constraint logic programming. Technical Report RR-4926, IN-
RIA Rocquencourt (2002)

9. Fages, F., Coquery, E.: Typing constraint logic programs. Journal of Theory and
Practice of Logic Programming 1 (2001) 751–777

10. Coquery, E.: TCLP (2003) http://contraintes.inria.fr/~coquery/tclp/.
11. Abdennadher, S.: Operational semantics and confluence of constraint propagation

rules. In: Proceedings of CP’1997, 3rd International Conference on Principles and
Practice of Constraint Programming. Volume 1330 of Lecture Notes in Computer
Science., Linz, Springer-Verlag (1997) 252–266

12. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th
ACM Symposium on Principles of Programming Languages, Munich, Germany,
ACM (1987) 111–119

13. Mycroft, A., O’Keefe, R.: A polymorphic type system for Prolog. Artificial Intel-
ligence 23 (1984) 295–307

14. Lakshman, T., Reddy, U.: Typed Prolog: A semantic reconstruction of the Mycroft-
O’Keefe type system. In Saraswat, V., Ueda, K., eds.: Proceedings of the 1991
International Symposium on Logic Programming, MIT Press (1991) 202–217

15. Smaus, J.G., Fages, F., Deransart, P.: Using modes to ensure subject reduction for
typed logic programs with subtyping. In: Proceedings of FSTTCS ’2000. Number
1974 in Lecture Notes in Computer Science, Springer-Verlag (2000)

16. Pottier, F.: A versatile constraint-based type inference system. Nordic Journal of
Computing 7 (2000) 312–347

17. Frühwirth, T., Schrijvers, T.: (CHR web page)
http://www.cs.kuleuven.ac.be/~dtai/projects/CHR/.

18. Haemmerlé, R., Fages, F.: Closures are needed for closed module systems. Technical
Report RR-5575, INRIA (2005)

