
Subtyping onstraints in quasi-latties

Emmanuel Coquery and Fran�ois Fages

INRIA Roquenourt, Projet Contraintes,

BP 105, 78153 Le Chesnay Cedex, FRANCE

Abstrat. In this paper, we show the deidability and NP-ompleteness

of the satis�ability problem for non-strutural subtyping onstraints in

quasi-latties. This problem, introdued by Smolka in 1988, is important

for the typing of logi and funtional languages. We generalize Trifonov

and Smith's algorithm over latties, to the ase of quasi-latties with a

omplexity in O(m

v

M

v

n

3

), where m (resp. M) stands for the number of

minimal (resp. maximal) elements of the quasi-lattie, v is the number

of unbounded variables and n is the number of onstraints. Similarly, we

extend Pottier's algorithm for omputing expliit solutions to the ase of

quasi-latties. Finally we evoke some appliations of these results to type

inferene in onstraint logi programming and funtional programming

languages.

1 Introdution

The searh for more and more exible type systems for programming languages

goes with the searh for algorithms for solving subtyping onstraints in more

and more omplex type strutures. Type heking and type inferene algorithms

for a program basially onsist in solving systems of subtyping onstraints of

the form 9X

V

n

i=1

t

i

� t

0

i

where t

i

; t

0

i

are types and X is the set of variables

appearing in the system.

In its most general form ombining subtyping and parametri polymorphisms,

non-strutural subtyping allows subtyping relations between type onstrutors

of di�erent arities. For instane, in the type system for onstraint logi pro-

gramming TCLP [3℄, the subtyping relation list(�) � term allows us to see a

(homogeneous) list as a term. In a lattie of type onstrutors, Trifonov and

Smith [10℄ gave a simple deomposition algorithm, with a omplexity in O(n

3

),

for testing the satis�ability of non-strutural subtyping onstraints in the lat-

tie of in�nite or regular types. Pottier [7℄ extended this algorithm to ompute

solutions expliitly when they exist. However, the lattie struture of type on-

strutors imposes the existene of a minimal element ? and a maximal element

>, and thus does not treat the typing with the empty type ? as an error.

In this paper, we are interested in the resolution of non-strutural subtyping

onstraints in more general strutures than latties, espeially in the ase where

the type onstrutors form a omplete quasi-lattie, that is a partially ordered

set for whih any non-empty subset having a lower bound (resp. an upper bound)

has a greatest lower bound (resp. least upper bound). The deidability of non-

strutural subtyping onstraints satis�ability in quasi-latties is an open problem

mentioned in Smolka's thesis [9℄. In this paper, we bring a positive answer to

this problem by generalizing Trifonov and Smith's algorithm to quasi-latties of

non-atomi types, and we prove the NP-ompleteness of this problem.

The rest of the paper is organized as follows. In the next setion, we de�ne the

ordered set of in�nite types formed upon a quasi-lattie of type onstrutors of

di�erent arities, and we prove that this set is a quasi-lattie. In setion 3, we show

that in quasi-latties, the systems losed by Trifonov and Smith's deomposition

rules are satis�able, and we give an algorithm for testing the satis�ability of

subtyping onstraints with a time omplexity in O(m

v

M

v

n

3

), wherem (resp.M)

stands for the number of minimal (resp. maximal) elements of the quasi-lattie,

v is the number of unbounded variables and n is the number of onstraints. The

NP-ompleteness of onstraint satis�ability is shown in this setion by using the

result of Pratt and Tiuryn for n-rowns [8℄. In setion 4, we generalize Pottier's

algorithm for omputing expliit solutions in quasi-latties. Setion 5 presents

some appliations of these results to type heking and we onlude in the last

setion.

Note to the reviewers: the proofs whih do not appear in the main text are

given in the appendix.

2 In�nite types

2.1 Preliminaries

Let (E;�) be a partially ordered set, and S be a subset of E. We note #S = fx 2

EjS 6= ;; 8y 2 S x � yg the set of lower bounds of S and "S = fx 2 EjS 6=

;; 8y 2 S y � xg the set of upper bounds of S. We note uS (resp. tS) the

greatest lower bound (resp. least upper bound) of S whenever it exists. A lower

quasi-lattie (resp. upper quasi-lattie) is a partially ordered set where any �nite

subset having a lower (resp. upper) bound has a greatest lower bound (resp. a

least upper bound). A quasi-lattie is an upper and a lower quasi-lattie.

De�nition 1 (Complete quasi-lattie). A partially ordered set is a omplete

quasi-lattie (in the sense of sets) if for all non empty subset S � E, uS exists

whenever #S 6= ; and tS exists whenever "S 6= ;.

2.2 Labels

As mentionned in the introdution, we are interested in type languages allowing

subtyping relations between type onstrutors of di�erent arities, like list(�) �

term for instane. In general, suh subtyping relations speify subtyping relations

between spei� arguments of the type onstrutors. For instane, by writing

k

1

(�; �) � k

2

(�), we speify that types built with k

1

are subtypes of the ones

built with k

2

when the seond argument of k

1

and the argument of k

2

orrespond,

the �rst argument of k

1

being forgotten in the subtype relationship.

From a formal point of view, it is simpler (and more general) to express the

relationship between arguments by working with a struture of labeled terms. In

the formalism of Pottier [6℄, eah argument of a onstrutor is indiated by a label

instead of a position. Moreover, positive and negative labels are distinguished

in order to express the ovariane or the ontravariane of arguments w.r.t. the

subtyping relation.

So let L

+

and L

�

be two disjoint ountable sets of labels, we pose L =

L

+

℄ L

�

. Let (K;�

K

) be a omplete quasi-lattie of type onstrutors. Let a

be the arity funtion de�ned from K into the �nite parts of L. We denote by

a

+

(resp. a

�

) the funtion whih assoiates the positive (resp. negative) labels

to a onstrutor. We assume that there is at least one type onstrutor with an

empty arity, k

0

.

De�nition 2. (K;�

K

;L

+

;L

�

; a) is a signature if:

1. for all k

1

�

K

k

2

�

K

k

3

, a(k

1

) \ a(k

3

) � a(k

2

).

2. for all S � K, if uS exists, then a(uS) �

S

s2S

a(s).

3. for all S � K, if tS exists, then a(tS) �

S

s2S

a(s).

4. for all k

1

�

K

k

2

, there exists k s.t. k

1

�

K

k�

K

k

2

and a(k) = a(k

1

) \ a(k

2

).

Conditions 1, 2, 3 express the oherene of labels w.r.t. the order relation and

are similar to the ones found in [6℄ for latties. Condition 4 is spei� to quasi-

latties, its purpose is to forbid signatures like k

1

(�)�

K

k

2

(�) whih do not indue

a quasi-lattie struture for types. For example, if k

3

and k

4

are not omparable,

then k

2

(k

3

) and k

2

(k

4

) have ommon lower bounds, like k

1

(k

3

) and k

1

(k

4

), but

don't have a greatest ommon upper bound.

For a signature (K;�

K

;L

+

;L

�

; a), we note L

�

the set of �nite strings of

labels, � the empty string, \." the string onatenation and jwj the length of

w. We are interested in in�nite types formed upon K, where the positions of

subterms are de�ned by strings of labels.

De�nition 3. Let (K;�

K

;L

+

;L

�

; a) be a signature. An in�nite type is a partial

mapping from L

�

into K suh that:

1. Its domain is pre�x losed: 8w = w

1

:w

2

2 dom(t); w

1

2 dom(t).

2. � 2 dom(t).

3. For all position w 2 dom(t), for all l 2 L, w:l 2 dom(t) if and only if

l 2 a(t(w)).

We note T (S) the set of in�nite types built upon the signature S. In the follow-

ing, we assume a �xed signature S = (K;�

K

;L

+

;L

�

; a). and we note T = T (S).

We note t=w the type t

0

: v 7! (w:v). We note U=l, the set of subterms of types

in U � T ouring at position l 2 L, that is U=l = ft=l j t 2 U ^ l 2 a(t(�))g.

Example 1. We shall use the following example of quasi-lattie of type onstru-

tors given with their labels, fk

0

; k

1

; k

2

(l

1

; l

2

; l

3

); k

3

(l

2

; l

3

); k

4

(l

2

); k

5

(l

3

)g, where

L

+

= fl

1

; l

2

; l

3

g, L

�

= ;, and the subtyping relation is pitured out as follows:

�

�

S

S

k

0

k

1

k

4

(l

2

) k

5

(l

3

)

k

3

(l

2

; l

3

)

k

2

(l

1

; l

2

; l

3

)

De�nition 4. A type onstrutor k

0

2 K is a lower (resp. upper) bound of

another onstrutor k 2 K w.r.t. a set of labels L � L if k

0

�

K

k (resp. k�

K

k

0

)

and a(k) \ a(k

0

) � L.

We note #

L

k (resp. "

L

k) the set of lower (resp. upper) bounds of k w.r.t. L. In

example 1, we have #

fl

2

;l

3

g

k

2

= fk

3

; k

4

; k

5

g and "

fl

3

g

=fk

3

; k

5

g. Next, we de�ne

the subset of labels of k ouring in #

k

L:

De�nition 5. For a set of labels L � L, the subset of signi�ant labels of L

under (resp. over) k is the set

SL#

L

k = a(k) \

[

k

0

2#

L

k

a(k

0

)

(resp. SL"

L

k = a(k) \

S

k

0

2"

L

k

a(k

0

)).

In example 1, we have SL#

fl

1

;l

2

g

k

2

= fl

2

g and SL"

fl

1

;l

2

g

k

2

= ;. One an

easily hek using the onditions of the de�nition 2 of a signature the following:

Proposition 1. If #

L

k 6= ;, then #

L

k has a maximum t#

L

k and a(t#

L

k) =

SL#

L

k. If "

L

k 6= ;, then "

L

k has a minimum u"

L

k and a(u"

L

k) = SL"

L

k.

2.3 Subtype ordering

The subtyping relation� is de�ned over types by oindution, as the intersetion

of a sequene (�

n

) of preorders over types de�ned by:

{ �

0

= T � T

{ t �

n+1

t

0

if t(�)�

K

t

0

(�) and for all l 2 a(t(�)) \ a(t

0

(�)):

� either l 2 L

+

and t=l �

n

t

0

=l

� or l 2 L

�

and t

0

=l �

n

t=l

{ � =

T

n2N

�

n

Proposition 2. � is an order over T .

Proof. We show by indution that for all n 2 N, �

n

is a preorder and we dedue

the reexivity and the transitivity of �. To show the antisymetry, we �rst show

by indution that for all n 2 N, if t

1

�

n+1

t

2

and t

2

�

n+1

t

1

then for all position

w 2 dom(t

1

) of length jwj � n, we have w 2 dom(t

2

) and t

1

(w) = t

2

(w). Now

let us onsider t

1

� t

2

� t

1

: if t

1

6= t

2

, then there exists a w of minimal size

suh that t

1

(w) 6= t

2

(w). However t

1

�

jwj+1

t

2

�

jwj+1

t

1

, so t

1

(w) = t

2

(w), a

ontradition. ut

Similarly we show:

Proposition 3. Let t

1

; t

2

2 T . t

1

�t

2

if and only if t

1

(�)�

K

t

2

(�) and for all

l 2 a(t

1

(�)) \ a(t

2

(�)):

{ either l 2 L

+

and t

1

=l�t

2

=l

{ or l 2 L

�

and t

2

=l�t

1

=l

Now, our goal is to show that this ordered set of types forms a quasi-lattie.

First we de�ne the set of usable labels under a set of types S as the set of labels

l suh that S=l has a lower bound:

De�nition 6. The set of usable labels under a set of types S � T is the set

UL#S = fl 2 L

+

j #(S=l) 6= ;g [fl 2 L

�

j "(S=l) 6= ;g

The set of usable labels above S is the set

UL"S = fl 2 L

+

j "(S=l) 6= ;g [fl 2 L

�

j #(S=l) 6= ;g

For example with the types t = k

2

(k

0

; k

1

; k

4

(k

0

)) and t

0

= k

3

(k

1

; k

5

(k

1

)) formed

over the onstrutors of example 1, we haveUL#ft; t

0

g = fl

1

; l

2

g and UL"ft; t

0

g =

fl

1

; l

2

; l

3

g. Seond, we de�ne what will be the head onstrutor of greatest lower

bounds and least upper bounds in T .

De�nition 7. For a set of types S � T , the greatest lower bound onstrutor

of S is the onstrutor noted u

�

S = t#

(UL#S)

(ufs(�) j s 2 Sg), the least upper

bound onstrutor of S is the onstrutor noted t

�

S = u"

(UL"S)

(tfs(�) j s 2 Sg)

Now we de�ne sequenes of types that approximate the greatest lower bound

of a set of types up to a given depth, starting with an arbitrary type onstant

of arity ;, k

0

, as follows:

De�nition 8. The greatest lower (resp. least upper) bound of rank n of a non

empty set S � T of types, noted u

n

S (resp. t

n

S), is de�ned by:

{ u

0

S = t

0

S = k

0

{ (u

n+1

S)(�) = u

�

S and 8l 2 a(u

�

S):

� either l 2 L

+

and (u

n+1

S)=l = u

n

(S=l)

� or l 2 L

�

and (u

n+1

S)=l = t

n

(S=l)

{ (t

n+1

S)(�) = t

�

S and 8l 2 a(t

�

S):

� either l 2 L

+

and (t

n+1

S)=l = t

n

(S=l)

� or l 2 L

�

and (t

n+1

S)=l = u

n

(S=l)

This provides a onstrution of the following andidates for the greatest lower

bound and the least upper bound of a set of types:

De�nition 9. The partial mapping u

T

: }(T) ! (L

�

! K) (resp. t

T

) is

de�ned by:

(u

T

S)(w) = (u

n+1

S)(w) (resp: (t

T

S)(w) = (t

n+1

S)(w))

for all non empty set of types S � T , for all n 2 N, for all position w 2

dom(u

n+1

(S)) (resp. t

n+1

) suh that jwj = n.

Proposition 4. Let S 6= ; � T . If #S 6= ; (resp. "S 6= ;) then u

T

S (resp. t

T

S)

is well de�ned and is a type.

Proposition 5. Let S 6= ; � T suh that #S 6= ; (resp. "S 6= ;). Then for all

s 2 S;u

T

S�s (resp. s�t

T

S).

Proposition 6. Let S 6= ; � T suh that #S 6= ; (resp. "S 6= ;). For all

t 2 #S; t�u

T

S (resp. for all t 2 "S;t

T

S�t).

Theorem 1. (T ;�) is a omplete quasi-lattie, where u

T

denotes greatest lower

bounds and t

T

denotes least upper bounds.

Proof. Let S 6= ; � T . If S has a lower bound then, by proposition 4, u

T

S

exists. By proposition 5, for all s 2 S;u

T

S�s and by proposition 6, for all

t 2 #S; t�u

T

S. So u

T

S is the greatest lower bound of S. Similarly, we show

that if S has an upper bound, then t

T

S is de�ned and is the least upper bound

of S. So (T ;�) is a quasi-lattie. ut

Conerning the subset R � T of regular types (i.e. types having a �nite

number of subterms), we have the following:

Proposition 7. Let t

1

and t

2

two regular types. If t

1

u

T

t

2

is de�ned, then it is

a regular type. If t

1

t

T

t

2

is de�ned, then it is a regular type.

Theorem 2. (R;�) is a quasi-lattie.

Proof. By theorem 1, (T ;�) is a quasi-lattie. By proposition 7, if r

1

; r

2

2 R

and 9r; r�r

1

^ r�r

2

(resp. r

1

�r ^ r

2

�r) then r

1

u

T

r

2

2 R (resp. r

1

t

T

r

2

2 R).

So (R;�) is a quasi-lattie where u

T

denotes greatest lower bounds and t

T

denotes least upper bounds. ut

It is worth noting however that (R;�) may not be a omplete quasi-lattie.

For example, let K = fa; bg with a�

K

b and a(a) = a(b) = flg. Let (u

n

)

n�0

be

the sequene of types de�ned by u

n

(w) = b if jwj =

n(n+1)

2

, and u

n

(w) = a

otherwise. One an hek that (u

n

)

n�0

has no lower bound in R.

3 Testing the satis�ability of subtyping onstraints

Let V be a ountable set of variables, noted �; �; : : :. Types with variables are de-

�ned as the set, noted T

V

, of types built upon the signature (K[V ;�

K

;L

+

;L

�

; a).

A subtyping onstraint is a pair of �nite types noted t

1

� t

2

. For a system C of

subtyping onstraints, we note V (C) the set of variables ouring in C.

De�nition 10. A substitution � : V ! T satis�es the onstraint t

1

� t

2

, noted

� j= t

1

� t

2

, if �(t

1

)��(t

2

). The subtyping onstraint t

1

� t

2

is satis�able if

there exist a substitution � suh that � j= t

1

� t

2

.

For the sake of simpliity, we will suppose, without loss of generality, that

the onstraint systems we onsider ontain only small terms. A small term is

either a variant, a onstant, or a term of depth 1 where all leaves are variables.

For example, int , list(�) and � are small terms while list(int) is not. Clearly,

given a onstraint system, one an �nd an equivalent onstraint system where

all terms are small terms, by introduing variables for arguments of terms that

are not small terms, and by introduing equality (double inequality) onstraints

between these variables and the orresponding arguments.

3.1 Closed systems

We �rst de�ne pre-losed systems as onstraint systems where variables are

bounded. We reall in table 1 the partial funtion de used for breaking on-

straints in Trifonov and Smith's algorithm [10℄.

De�nition 11 (Pre-losed systems). A onstraint system is said to be

upper pre-losed if for all variable � 2 V (C), there exists t 62 V suh that

t � � 2 C. C is said to be lower pre-losed if for all � 2 V (C), there exists

t 62 V suh that � � t 2 C. A onstraint system is said to be pre-losed if it is

upper and lower pre-losed.

de(� � �) = f� � �g

de(� � t) = f� � tg

de(t � �) = ft � �g

de(t

1

� t

2

) =

[

l2a

+

(t

1

(�))\a

+

(t

2

(�))

ft

1

=l � t

2

=lg [

[

l2a

�

(t

1

(�))\a

�

(t

2

(�))

ft

2

=l � t

1

=lg

if t

1

(�)�

K

t

2

(�):

Table 1. Trifonov and Smith's deomposition funtion [7, 10℄

De�nition 12 (Closed system). A onstraint system C is losed if it is pre-

losed and if for all onstraint 2 C, de() 2 C and for all ft

1

� �; � � t

2

g �

C, de(t

1

� t

2

) is de�ned and inluded in C.

Some tehnial notions and lemmas will be neessary to prove that losed

systems are satis�able in quasi-latties (theorem 3). For a variable �, let *

C

� =

ft j t 62 V ; � � t 2 Cg and +

C

� = ft j t 62 V ; t � � 2 Cg be the sets of

types bounding � in C. For a set of variables A, we note *

C

A =

S

�2A

*

C

� and

+

C

A =

S

�2A

+

C

�. By abuse of notation, when C is lear from the ontext, we

will omit C in the notations. Given a onstraint system C, the following partial

funtion sol assoiates to two sets of variables in C, the head onstrutor of a

type whih an be bounded by these variables in C:

De�nition 13. Given a onstraint system C, sol : }(V (C)) � }(V (C)) ! K

is a partial funtion de�ned by sol(A;B) = t(#

a(tD)

(uU)) when it exists, where

U = ft(�) j t 2 *Bg and D = ft(�) j t 2 +Ag.

Lemma 1. In a losed system C, sol (A;B) is de�ned for all non empty sets

A;B suh that 8� 2 A, 8� 6= � 2 B, � � � 2 C.

Proof. Let t 2 +A and t

0

2 *B. Sine C is losed, de(t � t

0

) is de�ned, hene

t(�)�

K

t

0

(�). So 8k 2 D;8k

0

2 U; k�

K

k

0

. Sine C is losed, +A 6= ; and *B 6=

;. So tD and uU are de�ned and tD�

K

uU . Therefore #

a(tD)

(uU) 6= ; and

sol(A;B) is well de�ned.

Lemma 2. Let C be a losed onstraint system and A;B � V (C) verifying the

onditions of lemma 1. For all label l 2 a(sol (A;B)), if l 2 L

+

then (+A=l;*B=l)

satis�es the ondition of lemma 1, and if l 2 L

�

then (*B=l;+A=l) satis�es the

ondition of lemma 1.

Lemma 3. Let C be a losed onstraint system. Let A;B;E; F � V (C). If

+A � +E and *F � *B and A;B and E;F satisfy the onditions of lemma 1,

then sol(A;B)�

K

sol(E;F).

Theorem 3. In a quasi-lattie, any losed onstraint system is satis�able.

Proof. Let C be a losed onstraint system. Let us onsider the partial map-

ping � : }(V (C)) � }(V (C)) � L

�

! }(V (C)) � }(V (C)) de�ned for ouples

(A;B) satisfying the onditions of lemma 1 as follows: � (A;B; �) = (A;B), if

� (A;B;w) = (A

0

; B

0

) then, for all label l 2 a(sol(A

0

; B

0

)); l 2 L

+

; � (A;B;w:l) =

((+A

0

)=l; (*B

0

)=l) and if l 2 L

�

, � (A;B;w:l) = ((*B

0

)=l; (+A

0

)=l). Let us on-

sider : }(V (C)) � }(V (C)) ! T de�ned by (A;B)(w) = sol(� (A;B;w)).

By indution, using lemma 2, one an hek that (A;B) is a type. Now, let us

onsider the substitution �(�) = (f�g; f�g).

We show that � j= C. By indution, we show that 8n 2 N; 8t

1

� t

2

2

C; �(t

1

) �

n

�(t

2

) and for all A;B;E; F 2 V (C) satisfying the onditions of

lemma 3, (A;B) �

n

(E;F).

The ase n = 0 is trivially true. Now, we show the ase n+ 1.

Let us onsider the ase t

1

= (A;B) �

n+1

(E;F) = t

2

. By lemma 3,

k

1

= (A;B)(�)�

K

(E;F)(�) = k

2

. Let l 2 a(k

1

) \ a(k

2

), l 2 L

+

. Sine +A �

+E, (+A)=l � (+E)=l and thus +((+A)=l) � +((+E)=l). Similarly *((*F)=l) �

*((*B)=l). So, using the indution hypothesis, t

1

=l = ((+A)=l; (*B)=l) �

n

((+E)=l; (*F)=l) = t

2

=l. Similarly, if l 2 L

�

, t

2

=l = ((*F)=l; (+E)=l) �

n

((*B)=l; (+A)=l) = t

1

=l. Thus we dedue t

1

�

n+1

t

2

.

Let us onsider �(�) � �(�). Sine � � � 2 C and sine C is losed, +� �

+� and *� � *�. So we an apply the preeeding result obtaining �(�) =

(f�g; f�g) �

n+1

(f�g; f�g) = �(�).

Let us onsider � � t, with t 62 V . Sine t 2 *�, �(�)(�) = sol(f�g; f�g)�

K

uft

0

(�) j t

0

2 *�g�

K

t(�). Let l 2 a(�(�)(�)) \ a(t(�)), l 2 L

+

. Sine we

use small terms, t=l is a variable �, thus �(t)=l = (f�g; f�g) and �(�)=l =

((+�)=l; (*�)=l). Sine � 2 (*�)=l, *� � *((*�)=l). Sine C is losed, for all

�

0

2 (+�)=l; �

0

� � 2 C. Sine C is losed, we have +((+�)=l) � +�. Thus we

obtain �(�)=l = ((+�)=l; (*�)=l) �

n

(f�g; f�g) = �(t)=l. Similarly, if l 2 L

�

,

�(t)=l = (f�g; f�g) �

n

((*�)=l; (+�)=l) = �(�)=l. So �(�) �

n+1

�(t)

Similarly, we show the ase t � �.

The last ase is t

1

� t

2

with t

1

; t

2

62 V (C). Sine C is losed t

1

(�)�

K

t

2

(�). Let

l 2 a(t

1

(�))\a(t

2

(�)), l 2 L

+

. Sine C is losed, posing � = t

1

=l and � = t

2

=l, we

have � � � 2 C and, using the indution hypothesis, �(t

1

)=l = �(�) �

n

�(�) =

�(t

2

)=l. Similarly, if l 2 L

�

, we obtain �(t

2

)=l �

n

�(t

1

)=l. Thus �(t

1

) �

n+1

�(t

2

).

So for all n 2 N, for all t

1

� t

2

2 C, �(t

1

) �

n

�(t

2

), i.e. �(t

1

)��(t

2

). Thus

� j= C. ut

Given a pre-losed system C, one an ompute its losure, as in Trifonov and

Smith's algorithm [10℄ in O(n

3

). The algorithm proeeds as follows: let the se-

quene C;C1; C2; : : : be de�ned by:

C

n+1

= C

n

[

[

2C

de() [

[

ft��;��t

0

g�C

de(t � t

0

)

For any C

n

, it is lear that C

n+1

is equivalent to C

n

whenever it is de�ned.

Otherwise C

n

has no solution beause we try to apply de on some onstraint

t

1

� t

2

while t

1

(�)6�

K

t

2

(�), whih means that t

1

� t

2

is not satis�able. Thus,

if an element of the sequene is not de�ned, C is not satis�able. Otherwise the

sequene reahes a �x point whih is losed, hene satis�able by theorem 3, and

equivalent to C, so C is satis�able.

3.2 Pre-losure algorithm

The algorithm above requires a pre-losed system as an entry. This ondition is

automatially �lled in latties sine there exists a maximal type > and a minimal

type ?. In this ase, it is suÆient to add onstraints ? � � and � � > to obtain

a pre-losed system with the same solutions [7, 10℄. In quasi-latties, the theorem

4 below provides suÆient onditions over K for deiding the satis�ability of a

non pre-losed onstraint system. Let K be the set of maximal elements of K

and K the set of its minimal elements.

Theorem 4. If K verify the following onditions:

1. 8k 2 K [K; a(k) = ;

2. For all k 2 K, there exists k

1

2 K and k

2

2 K suh that k

1

�

K

k�

K

k

2

.

For any onstraint system C let the set of pre-losures p(C) be:

p(C) =

8

<

:

C [

[

�2V (C)

ft

�

� �; � � t

0

�

g j t

�

(�) 2 K; t

0

�

(�) 2 K

9

=

;

:

All elements in p(C) are losed and the union of their sets of solutions is equal

to the set of solutions of C.

Proof. Sine 8k 2 K [K; a(k) = ;, for all C

0

2 p(C);V (C

0

) = V (C). So, by

onstrution, the elements of p(C) are pre-losed. For all C

0

2 p(C), we have

C � C

0

, thus � j= C

0

) � j= C. Now we show that if � j= C then there exists

C

0

2 p(C) suh that � j= C

0

. By ondition 2) for all � 2 V (C), one an �nd

k

�

2 K and k

0

�

2 K suh that � j= t � �; � � t

0

with t(�) = k

�

and t

0

(�) = k

0

�

.

Thus there exists C

0

2 p(C) suh that � j= C

0

. Thus the union of the sets of

solutions of the elements of p(C) is equal to the set of solutions of C. ut

If K and K are �nite sets, it is possible to enumerate the elements of p(C).

Sine these elements are pre-losed, one an test their satis�ability using the

losure algorithm of the previous setion. This gives an algorithm for testing

the satis�ability of non-losed onstraint systems in quasi-latties with a �nite

number of extrema eah with an empty arity. The time omplexity of the satis-

�ability test is in O(n

3

m

v

M

v

) where n is the size of the onstraint system, m is

the size of K and M the size of K, and v is the number of unbounded variables.

Theorem 5. The satis�ability problem for subtyping onstraints in quasi-latties

with a �nite number of extrema eah with an empty arity is NP-omplete.

Proof. The satis�ability of pre-losed system is polynomial. By theorem 4 the set

of pre-losures of a system an be guessed by enumerating the possible bounds

for unbounded variable among a �nite set, hene the satis�ability problem is in

NP. To prove the NP-ompleteness, we use the result of Pratt and Tiuryn [8℄

that the satis�ability of subtyping onstraints in n-rowns is NP-omplete for

n � 2. An n-rown is a poset with 2n elements k

0

; : : : ; k

2n�1

, all with an empty

arity and partially ordered suh that the only omparisons are k

2i

�

K

k

2i�1

and

k

0

�

K

k

2n�1

. Clearly, n-rowns with n � 3 are quasi-latties with a �nite number

of extrema eah with an empty arity. The satis�ability problem in quasi-latties

is thus NP-omplete. ut

The �rst ondition imposed on K in theorem 4 expresses that the extrema

in the quasi-lattie of onstrutors have an empty arity. Without this ondition,

it is worth noting that the introdution of a new onstraint t

�

� � (or � � t

0

�

)

may also introdue some new unbounded variables appearing in t, that must be

bounded by introduing new onstraints, whih leads to introdue an in�nity

of variables. Thus, the above algorithm annot be used in that ase. Our result

thus lefts open the deidability of the satis�ability of non-strutural subtyping

onstraints in quasi-latties where some extrema have a non-empty arity.

4 Computation of expliit solutions

In [6℄, Pottier desribes an algorithm for simplifying subtyping onstraint sys-

tems in latties, allowing the omputation of bounds for variables ouring in

onstraints, and the omputation of solutions by identifying the variables with

their bounds. We extend here this algorithm to the ase of quasi-latties.

Let us assume, as in setion 3, that onstraints are formed upon small terms

and that the onstraint system to be simpli�ed is pre-losed. In order to solve

a onstraint system C in a quasi-lattie T (K), we omplete K in a lattie K

?;>

by adding ? and > elements with an empty arity and for all k 2 K;? �

K

?;>

k �

K

?;> >. Then C is solved in T (K

?;>

) using Pottier's algorithm, obtaining

a onstraint system C

0

equivalent to C and simpli�ed. Finally, a set of rules is

applied over C

0

, in order to obtain bounds for the variables of C in the quasi-

lattie.

Now, we desribe the form of the onstraint system C

0

resulting from the

appliation of the algorithm over a subtyping onstraint system C in the lattie

K

?;>

. Pottier's algorithmmay introdue some variables representing the greatest

lower or least upper bounds of a set of original variables in C. For a set A of

variables in C, we note

A

the variable representing the greatest lower bound

of A and �

A

the variable representing its least upper bound. We have realled

in table 2 the properties satis�ed by C

0

[7℄. It is lear that C

0

is losed thus

satis�able in T (K

?;>

).

1. For all � 2 V (C

0

), there exists exatly one type t 62 V (noted +

C

0

�) suh that

t � � 2 C

0

and exatly one type t

0

62 V (noted *

C

0

�) suh that � � t

0

2 C

0

.

2. For all f� � �; � � Æg � C

0

, � � Æ 2 C

0

.

3. For all � 2 V (C

0

), for all label l 2 a((*

C

0

�)(�)), either l 2 L

+

and 9A; t=l =

A

,

or l 2 L

�

and 9A; t=l = �

A

. For all label l 2 a((+

C

0

�)(�)), either l 2 L

+

and

9A; t=l = �

A

, or l 2 L

�

and 9A; t=l =

A

.

4. If � � � 2 C

0

, or if � �

A

and � �

B

with B � A then k

�

= (*

C

0

�)(�) �

K

?;>

k

�

= (*

C

0

�)(�) and for all label l 2 a(k

�

) \ a(k

�

), if l 2 L

+

, (*

C

0

�)=l =

E

,

(*

C

0

�)=l =

F

, then F � E. If l 2 L

�

, (*

C

0

�)=l = �

E

, (*

C

0

�)=l = �

F

, then

F � E.

5. If � � � 2 C

0

, or if � � �

A

and � � �

B

with A � B then k

�

= (+

C

0

�)(�) �

K

?;>

k

�

= (+

C

0

�)(�) and for all label l 2 a(k

�

) \ a(k

�

), if l 2 L

+

, (+

C

0

�)=l = �

E

,

(+

C

0

�)=l = �

F

, then E � F . If l 2 L

�

, (+

C

0

�)=l =

E

, (+

C

0

�)=l =

F

, then

E � F .

6. For all variable

A

;*

C

0

A

6= > and for all variable �

A

;+

C

0

�

A

6= ?.

7. For all � 2 V (C), de(+

C

0

� � *

C

0

�) is de�ned and inluded in C

0

.

8. 8t; t

0

, t � t

0

62 C

0

Table 2. Properties veri�ed by the result of Pottier's algorithm [7℄.

In table 3 we present a set of rules for omputing a solution to a onstraint

system D in a quasi-lattie.

Proposition 8. The appliation of the rules of table 3 preserve the solution

whih o-domain is inluded in T (K) [f?;>g.

Proof. Let us onsider the ase (Down ?), the other ases being similar. Let

us assume that �(�) j= D;� � t;

A

� ? with dom(�) � T (K) [f?;>g and

let us show that � j= D;

A

� ?; � � t

0

. Clearly, �(

A

) = ?. Sine for all

label l

0

2 t

0

(�); t=l

0

= t

0

=l

0

, it is suÆient to show that �(�)(�)�

K

t

0

(�). t=l =

A

, so �(t)=l = ?. Sine there is no type in T (K) smaller than ?, and by

proposition 3, l 62 a(�(�)(�)). Thus �(�)(�) �

K

?;>
t(#

a(t(�))nflg

t(�)) if it exists

and �(�)(�) �

K

?;> ? otherwise. Thus �(�)(�) �

K

?;> t

0

(�). ut

Proposition 9. The rules of table 3 terminate and are onuent.

Proof. By proposition 1, if D;� � t! D;� � t

0

then a(t

0

(�)) � a(t(�)), thus one

an apply rules (Down ?) and (Down >) only a �nite number of times for eah

variable. As well, one an apply rules (Up ?) and (Up >) only a �nite number of

times for eah variable. Sine no rules inreases the arity of the variables bounds,

(Down ?) D;

A

� ?; � � t! D;

A

� ?; � � t

0

If t=l =

A

.

t

0

(�) = t(#

a(t(�))nflg

t(�))

if it is de�ned, t

0

(�) = ? otherwise.

For all label l

0

2 t

0

(�), t

0

=l

0

= t=l

0

.

(Down >) D;> � �

A

; � � t! D;> � �

A

; � � t

0

If t=l = �

A

.

t

0

(�) = t(#

a(t(�))nflg

t(�))

if it is de�ned, t

0

(�) = ? otherwise.

For all label l

0

2 t

0

(�), t

0

=l

0

= t=l

0

.

(Up >) D;> � �

A

; t � �! D;> � �

A

; t

0

� �

If t=l = �

A

.

t

0

(�) = u("

a(t(�))nflg

t(�))

if it is de�ned, t

0

(�) = ? otherwise.

For all label l

0

2 t

0

(�), t

0

=l

0

= t=l

0

.

(Up ?) D;

A

� ?; t � �! D;

A

� ?; t

0

� �

If t=l =

A

.

t

0

(�) = u("

a(t(�))nflg

t(�))

if it is de�ned, t

0

(�) = ? otherwise.

For all label l

0

2 t

0

(�), t

0

=l

0

= t=l

0

.

Table 3. Rules for omputing bounds in a quasi-lattie

the rewriting system terminates in O(n) steps where n is the size of the onstraint

system. The onvergene an be heked by remarking that t(#

L

0

(t(#

L

k))) =

t(#

L\L

0

k) = t(#

L

(t(#

L

0

k))). ut

Proposition 10. Let C

0

be the result of Pottier's algorithm applied to C and

let C

0

!

�

C

00

6!. Then C

00

veri�es the properties of table 2.

Proof.

1

One an hek that properties 1), 2), 3), 6), 7) and 8) are onserved

during the appliation of the rules of table 3. If the appliation of a rule breaks

the property 4) or 5), it is possible to reestablish it by applying this rule on some

other variables. Sine !

�

is onvergent, we obtain that C

00

veri�es properties 4)

and 5). ut

Theorem 6. Let C

0

be the result of Pottier's algorithm applied to a pre-losed

onstraint system C, and let C

0

!

�

C

00

6!. If L

�

= ; then the upper bounds

*

C

00

� (resp. lower bounds +

C

00

�) in C

00

de�ne a maximal (resp. minimal) solu-

tion of C in T (K).

Proof. Let be the following equation system: f� = t j � � t 2 C

00

g. This system

admit a unique solution � beause eah variable appears only one on the left

hand side of =. Let us show that � is a solution of C

00

. In order to do this,

we �rst show by indution that for all n 2 N, for all onstraint t � t

0

2 C

00

,

�(t) �

n

�(t

0

), and if A � B, �(

B

) �

n

�(

A

). The ase n = 0 is trivially

1

a more detailed version of this proof is available in the appendix

veri�ed. Let � � � 2 C

00

. By proposition 10, C

00

veri�es the properties of

table 2. Thus �(�)(�) = (*

C

00

�)(�)�

K

(*

C

00

�)(�) = �(�)(�). Let us onsider l 2

a(�(�)(�))\a(�(�)(�)). By properties 3) and 4) of table 2, �(�)=l =

A

for some

A and �(�)=l =

B

for some B with B � A. By indution �(

A

) �

n

�(

B

). Thus

�(�) �

n+1

�(�). Similarly, if A � B, �(

B

) �

n+1

�(

A

). Let � � t 2 C

00

. We

have �(�) = �(t) so �(�) �

n+1

�(t). Let t � � 2 C

00

. Using property 7) of table

2, we have �(t)(�)�

K

�(�)(�). Moreover, for all label l 2 a(rho(t)(�))\a(�(�)(�)),

t=l � *

C

00

� 2 C, thus �(t)=l �

n

�(�)=l. So �(t) �

n+1

�(�). So for all onstraint

t � t

0

2 C

00

, �(t)��(t

0

), thus � j= C

00

. Moreover, sine L

�

= ;, there are

only variables of the form

A

ouring on the right hand side of the system

de�ning �, thus, by using property 6) of table 2, the fat that C is pre-losed

with bounds in K and that rule (Down ?) an not be applied to C

00

, we obtain

that for all � 2 V (C), �(�) 2 T (K). Then we hek by indution that for all

substitution �

0

j= C

00

, for all variable � 2 V (C

00

), for all n 2 N, �

0

(�) �

n

�(�),

i.e. �

0

(�)��(�). � is thus a maximal solution of C in T (K). ut

Corollary 1. A pre-losed onstraint system C is satis�able in in�nite types in

and only if it is satis�able in regular types.

Proof. The substitution used in the proof theorem 6 above is a regular type.

Note that in the ase where some type onstrutors have ontravariant labels

(in L

�

), there may not be one maximal solution. For example, let us take K =

fint ;oat ;!g with int � oat , L

+

= frg, L

�

= fag, a(int) = a(oat) = ;,

a(!) = fa; rg. Let C = f� ! � � �; � � � ! �; int � �; � � oatg. C is pre-

losed and has two inomparable solutions, namely �(�) = int ! int ; �(�) = int

and �

0

(�) = oat ! oat ; �

0

(�) = oat .

By ombining Pottier's simpli�ation algorithm with the rules of table 3, we

thus obtain a simpli�ation algorithm for pre-losed systems in quasi-latties.

Moreover, in the ase where all type onstrutors are ovariant (L

�

= ;), it

gives maximal and minimal solutions. The ombination of the above algorithm

with the pre-losure algorithm of setion 3.2, gives a set of maximal and minimal

solutions for non-pre-losed systems in quasi-latties with a �nite number of

extrema eah with an empty arity.

5 Appliations

A �rst appliation of the previous algorithm for solving subtyping onstraints

in quasi-latties is our type system TCLP [3, 1℄ for onstraint logi programs.

This algorithm allows us to remove the emtpy type ? from the type struture. It

also allows us to use type strutures that are more omplex than the ones used

until now, espeially type strutures without the type term used for metapro-

gramming. The onstraint solving algorithm of the previous setion has been

implemented in CHR by a simple modi�ation of our previous onstraint solver

of TCLP in latties [2℄. The implementation in CHR shows very good pratial

performanes [5℄.

A seond appliation an be found in the framework of type inferene with

subtyping for languages a la ML. In [6℄, Pottier uses subtyping onstraints for

type inferene in a variant of ML with rows. However, in a lattie, the bottom

element ? denotes the empty type, hene a funtion typed by ? ! � annot

be applied to any argument. The algorithm for solving subtyping onstraints

desribed in this paper allows one to use the quasi-lattie obtained by removing

the ? element from the lattie as a type struture. A type error an then be

produed instead of a typing with the empty type.

6 Conlusion

We have studied general forms of non-strutural subtyping relations in the quasi-

lattie of in�nite (regular) types formed over a quasi-lattie of type onstrutors.

We have shown the deidability of the satis�ability problem for subtyping on-

straints in quasi-latties , by generalizing Trifonov and Smith's algorithm for

testing the satis�ability of subtyping onstraints in latties to the ase of quasi-

latties, with a time omplexity in O(m

v

M

v

n

3

) wherem (resp.M) is the number

of minimal (resp. maximal) elements of the quasi-lattie and v the number of

unbounded variables. It is worth noting that the omplexity of this algorithm is

in O(n

3

) for onstraint systems where all variables are bounded. In the general

ase we have shown the NP-ompleteness of this problem.

We have also extended Pottier's algorithm for omputing solutions to the

ase of quasi-latties, and have shown that the omputed solutions are minimal

(resp. maximal) solutions when all type onstrutors are ovariant. Finally we

have mentionned some appliations of these algorithms to type inferene prob-

lems in onstraint logi programming and in funtional programming languages.

As for future work, one an mention several problems left open in this paper.

We have already mentionned the ase where the extrema of the quasi-lattie of

onstrutors have a non empty arity. The deidability of onstraint satis�ability

in �nite types is also an open problem. In the homogeneous ase (i.e. type on-

strutors in a subtype relation have the same arity), Frey has shown that this

problem is Pspae omplete in arbitrary posets [4℄.

Referenes

1. E. Coquery. Tlp: a generi type heker for onstraint logi programs.

http://pauilla.inria.fr/~oquery/tlp/.

2. E. Coquery and F. Fages. From typing onstraints to typed onstraint systems in

CHR. In Third workshop on Rule-based Constraint Reasoning and Programming,

CP'01, Cyprus, Deember 2001.

3. F. Fages and E. Coquery. Typing onstraint logi programs. Theory and Pratie

of Logi Programming, 1, November 2001.

4. A. Frey. Satisfying subtype inequalities in polynomial spae. In Proeedings of the

1997 International Stati Analysis Symposium, number 1302 in LNCS, 1997.

5. Th. Fr�uhwirth. Theory and pratie of onstraint handling rules. Journal of

Logi Programming, Speial Issue on Constraint Logi Programming, 37(1-3):95{

138, Otober 1998.

6. F. Pottier. A versatile onstraint-based type inferene system. Nordi Journal of

Computing, 7(4):312{347, November 2000.

7. F. Pottier. Simplifying subtyping onstraints: a theory. Information & Computa-

tion, 170(2):153{183, November 2001.

8. V. Pratt and J. Tiuryn. Satis�ability of inequalities in a poset. Fundamenta

Informatiae, 28(1-2):165{182, 1996.

9. G. Smolka. Logi Programming over Polymorphially Order-Sorted Types. PhD

thesis, Universitat Kaiserslautern, 1989.

10. V. Trifonov and S. Smith. Subtyping onstrained types. In Pro. 3rd Int'l Sympo-

sium on Stati Analysis, number 1145 in LNCS, pages 349{365. Springer, 1996.

A Proofs of setion 2

Lemma 4. Let S 6= ; � T . If t 2 #S, then t(�) 2 #

UL#S

ufs(�) j s 2 Sg. Simi-

lary, if t 2 "(S), then t(�) 2 "

UL"S

tfs(�) j s 2 Sg.

Proof. One an hek that t(�)�

K

ufs(�) j s 2 Sg and that a(t(�)) \ a(ufs(�) j

s 2 Sg) � UL#S. ut

Corollary 2. Let S 6= ; � T . If #S 6= ; (resp. "S 6= ;) then u

�

S (resp. t

�

S) is

de�ned.

Proof. Sine #S 6= ;, there exists t 2 #S and, by lemma 4, t(�) 2 #

UL#S

ufs(�) j s 2 Sg.

Thus #

UL#S

ufs(�) j s 2 Sg 6= ; and by de�nition, it has an upper bound. Thus

it has a least upper bound u

�

S. ut

Corollary 3. Let S 6= ; � T . If #S 6= ; (resp. "S 6= ;) then for all n 2 N, u

n

S

(resp. t

n

S) is de�ned.

Proof. We show it by indution over n: the ase n = 0 is trivial. For the ase

n + 1, let us onsider u

n+1

S (the ase t

n+1

S is similar). By orollary 2, u

�

S

is de�ned. Let l 2 a(u

�

S), by proposition 1 l 2 SL#

UL#S

k � UL#S. Thus S=l

has a lower bound (or an upper bound, depending of the sign of l). Thus, by

indution, (u

n+1

S)=l is de�ned. ut

Lemma 5. Let S 6= ; � T . 8t 2 T , if t 2 #S (resp. t 2 "S) then t(�)�

K

u

�

S

(resp. t

�

S�

K

t(�)) .

Proof. Let t 2 #S. By lemma 4, k 2 #

UL#S

ufs(�) j s 2 Sg. Thus, by de�nition of

u

�

S, k�

K

u

�

(S). The proof is similar for t

�

S. ut

Corollary 4. Let S 6= ; � T . 8t 2 #S (resp. t 2 "S), 8n 2 N t �

n

u

n

S

(resp. u

n

S �

n

t).

Proof. By indution over n. The ase n = 0 is trivial. Let us onsider t �

n+1

u

n+1

S. Sine t 2 #S with t(�) = k then, by lemma 5, k�

K

u

�

S. Let l 2 a(t(�)) \

a(u

�

S). If l 2 L

+

, then , sine t 2 #S, by proposition 3, t=l 2 #(S=l). By

indution, we obtain t=l �

n

u

n

(S=l) = (u

n+1

S)=l. The ase l 2 L

�

, is similar.

Thus t �

n+1

u

n+1

S. Similary, if t 2 "S, then t �

n+1

t

n+1

S. ut

Lemma 6. Let S 6= ; � T . If #S 6= ; (resp. "S 6= ;) then 8s 2 S;u

�

S�

K

s(�)

(resp. s(�)�

K

t

�

S).

Proof. Sine 9t 2 #S, u

�

S is de�ned. We note K

S

= fs(�) j s 2 Sg. u

�

S =

t(#

UL#S

uK

S

). Moreover 8s 2 S;uK

S

�

K

s(�). But, by de�nition, u

�

S�

K

uK

S

.

Thus 8s 2 S;u

�

S�

K

s(�). The proof is similar for t

�

S. ut

Corollary 5. Let S 6= ; � T . If #S 6= ; (resp. "S 6= ;) then for all n 2 N,

8s 2 S;u

n

S �

n

s (resp. t

n

S �

n

s).

Proof. By indution over n. The ase n = 0 is trivial. Let s 2 S. Let us onsider

u

n+1

S �

n+1

s. We have (u

n+1

S)(�) = u

�

S, and, by lemma 6, u

�

S�

K

s(�). Let

l 2 a(u

�

S) \ a(s(�)). By proposition 1, l 2 SL#

UL#S

k � UL#(S). If l 2 L

+

,

(u

n+1

S)=l = u

n

(S=l). We have s=l 2 S=l. Thus, by indution, (u

n+1

S)=l =

u

n

(S=l) �

n

s=l. The ase l 2 L

�

is symetrial. Similary, t

n+1

S �

n+1

s. ut

The following lemma tells that if m � n then u

m

S is an approximation of

u

n

S until depth m.

Lemma 7. Let S 6= ; � T suh that #S 6= ; (resp. "S 6= ;). Let m;n 2 N,

m � n, 8w 2 L

�

, if jwj < m then w 2 dom(u

m

S) , w 2 dom(u

n

S)

and (u

m

S)(w) = (u

n

S)(w) (resp. w 2 dom(t

m

S) , w 2 dom(t

n

S) and

(t

m

S)(w) = (t

n

S)(w)).

Proof. By indution over m: the ase n = 0 is trivial beause there is no w suh

that jwj < 0. Let us onsider the ase m + 1 � n + 1. If w = �, by de�nition

� 2 dom(u

m+1

S), � 2 dom(u

n+1

S) and (u

m+1

S)(�) = u

�

S = (u

n+1

S)(�). If

w = l:w

0

, sine (u

m+1

S)(�) = u

�

S = (u

n+1

S)(�) with a(u

�

S) = L, we have

l 2 L. If l 2 L

+

, then (u

m+1

S)=l = u

m

(S=l) and (u

n+1

S)=l = u

n

(S=l).

By indution, w

0

2 dom(u

m

(S=l)) , w

0

2 dom(u

n

(S=l)). Sine l 2 L, we

thus have w = l:w

0

2 dom(u

m+1

S)) , w 2 dom(u

n+1

S)). By indution, we

have (u

m

(S=l))(w

0

) = (u

n

(S=l))(w

0

), thus (u

m+1

S)(l:w

0

) = ((u

m+1

S)=l)(w

0

) =

(u

m

(S=l))(w

0

) = (u

n

(S=l))(w

0

) = ((u

n+1

S)=l)(w

0

) = (u

n+1

S)(l:w

0

). The ase

l 2 L

�

is symetrial. The proof is similar for t

m+1

ut

Proof (of proposition 4). Sine #S 6= ;, by orollary 3, for all n 2 N, u

n

S is

de�ned. Now we show that u

T

S is a type:

{ Let w:l 2 dom(u

T

S). We have w:l 2 dom(u

jw:lj+1

S). Thus w 2 dom(u

jw:lj+1

S).

By lemma 7 we obtain w 2 dom(u

jwj+1

S), thus w 2 dom(u

T

S).

{ � 2 dom(u

1

S), thus � 2 dom(u

T

S)

{ Let w 2 dom(u

T

S) suh that (u

T

S)(w) = k = (u

jwj+1

S)(w). We have

w:l 2 dom(u

T

S) , w:l 2 dom(u

jw:lj+1

S). By lemma 7, (u

jw:lj+1

S)(w) =

(u

jwj+1

S)(w) = k. Thus w:l 2 dom(u

jw:lj+1

S), l 2 a(k).

ut

Proposition 11. Let S � T with S 6= ; suh that #S 6= ;. 8l 2 a((u

T

S)(�)) :

{ Either l 2 L

+

and (u

T

S)=l = u

T

(S=l)

{ Or l 2 L

�

and (u

T

S)=l = t

T

(S=l)

Similary, if "S 6= ; then 8l 2 a((t

T

S)(�)) :

{ Either l 2 L

+

and (u

T

S)=l = t

T

(S=l)

{ Or l 2 L

�

and (u

T

S)=l = u

T

(S=l)

Proof. ((u

T

S)=l)(w) = (u

T

S)(l:w) = (u

jl:wj+1

S)(l:w). If l 2 L

+

then (u

jl:wj+1

S)=l =

u

jwj+1

(S=l). In this ase (u

jl:wj+1

S)(l:w) = ((u

jl:wj+1

S)=l)(w) = (u

jwj+1

(S=l))(w) =

(u

T

(S=l))(w). The ase l 2 L

�

is symetrial. We show in the same way the

proposition for t

T

S. ut

Lemma 8. Let S 6= ; � T suh that #S 6= ; (resp. "S 6= ;). 8n 2 N, u

n

S �

n

u

T

S and u

n

(S) �

n

u

T

S (resp. t

n

S �

n

t

T

S and t

n

S �

n

t

T

S).

Proof. By indution over n : the ase n = 0 is trivial. Let us onsider the ase

u

T

S �

n+1

u

n+1

S. By lemma 7, (u

T

S)(�) = (u

1

S)(�) = (u

n+1

S)(�). We have

(u

T

S)(�)�

K

(u

n+1

S)(�) and (u

T

S)(�)�

K

(u

n+1

S)(�). Let l 2 a((u

T

S)(�)). If

l 2 L

+

, then, by proposition 11, (u

T

S)=l = u

T

(S=l). We also have (u

n+1

S)=l =

u

n

(S=l). By indution u

T

(S=l) �

n

u

n

(S=l) and u

T

(S=l) �

n

u

n

(S=l). Thus

(u

n+1

S)=l �

n

(u

T

S)=l and (u

n+1

S)=l �

n

(u

T

S)=l. The ase l 2 L

�

is symet-

rial. Thus u

T

S �

n+1

u

n+1

S et u

T

S �

n+1

u

n+1

S. Similary t

T

S �

n+1

t

n+1

S

and t

T

S �

n+1

t

n+1

S. ut

Proof (of proposition 5). Let s 2 S. Let n 2 N. By orollary 5, u

n

S �

n

s. By

lemma 8, u

T

S �

n

u

n

S, thus u

T

S �

n

s. Thus u

T

S�s. Similary s�t

T

S. ut

Proof (of proposition6). Let t 2 #S. Let n 2 N. By orollary 4, t �

n

u

n

S and

by lemma 8, u

n

S �

n

u

T

S, thus t �

n

u

T

S. Thus t�u

T

S. Similary, if t 2 "S,

then t

T

S�t. ut

Proof (of proposition 7). Let S be the set of subterms of t

1

and t

2

. Let S

u

=

fuu

T

v j u 2 S ^ v 2 Sg and S

t

= fut

T

v j u 2 S ^ v 2 Sg.

We show that for all t 2 S

u

[S

t

, for all w 2 dom(t), t=w 2 S

u

[S

t

, by

indution over w: if w = � then t=� = t 2 S

u

[S

t

. If w = l:w

0

: Let us assume

that t = uu

T

v, with u 2 S and v 2 S (the proof is similar for t = ut

T

v). Let

us also assume that l 2 L

+

(the proof is similar for 2 L

�

). By proposition 11,

t=l = (u

T

fu; vg)=l = u

T

(fu; vg=l).

{ If u=l is de�ned but not v=l then t=l = u=l 2 S � S

u

[S

t

{ If v=l is de�ned but not u=l then t=l = v=l 2 S � S

u

[S

t

{ If u=l and v=l are both de�ned, then u=l 2 S and v=l 2 S and t=l =

u=lu

T

v=l 2 S

u

[S

t

.

Thus t=l 2 S

u

[S

t

. By indution, (t=l)=w

0

2 S

u

[S

t

, thus t=w 2 S

u

[S

t

.

Sine t

1

and t

2

are regular types, S is �nite and thus S

u

[S

t

is �nite. However

t

1

u

T

t

2

2 S

u

, all its subterms are in S

u

[S

t

, thus there is only a �nite number

of suh terms, thus t

1

u

T

t

2

is a regular type. Similary t

1

t

T

t

2

a regular type. ut

B Proofs of setion 3

Proof (of lemma 2). Sine all terms ouring in C are small terms, (+A)=l �

V (C) and (*B)=l � V (C). Moreover, sine C is losed and 8� 2 A;8� 2

B;� � � 2 C, for all t 2 +A; t

0

2 *B, de(t � t

0

) is de�ned and inluded in

C. Let l 2 a(sol (A;B)) and l 2 L

+

. Let � 2 (+A)=l and � 6= � 2 (*B)=l.

There exists t 2 +A suh that t=l = � and t

0

2 *B suh that t

0

=l = �. Sine

de(t � t

0

) � C and l 2 a(t(�)) \ a(t

0

(�)), � � � 2 C. Similary, if l 2 L

�

,

8� 2 (*B)=l;8� 2 (+A)=l; � � � 2 C. ut

Lemma 9. Let k

1

; k

2

; k

3

; k

4

2 K suh that k

1

�

K

k

2

;, k

1

�

K

k

3

, k

2

�

K

k

4

and

k

3

�

K

k

4

. Then t(#

a(k

1

)

k

2

)�

K

t(#

a(k

3

)

k

4

).

Proof. We note k = t(#

a(k

3

)

k

4

) and k

0

= t(#

a(k

1

)

k

2

), L

i

= a(k

i

), L = a(k)

and L

0

= a(k

0

). By proposition 1, we have L

0

= SL#

L

1

k

2

� L

2

\ L

1

. Sine

k

1

�

K

k

3

�

K

k

4

, L

1

\L

4

� L

3

. Thus L

0

\L

4

� L

2

\L

1

\L

4

� L

2

\L

3

\L

4

� L

3

\L

4

.

Moreover k

0

�

K

k

2

�

K

k

4

, thus k

0

2 #

L

3

k

4

, d'o k

0

�

K

k. ut

Proof (of lemma 3). Let U

B

= ft(�) j t 2 *Bg, D

A

= ft(�) j t 2 +Ag, U

F

=

ft(�) j t 2 *Fg, D

E

= ft(�) j t 2 +Eg. We have D

A

� D

E

and U

F

� U

B

. Thus

tD

A

�

K

tD

E

and uU

B

�

K

uU

F

. Moreover tD

A

�

K

uU

B

and tD

E

�

K

uU

F

. Thus,

by lemma 9,

sol(A;B) = t(#

a(tD

A

)

uU

B

)�

K

t(#

a(tD

E

)

uU

F

) = sol(E;F). ut

C Proofs of setion 4

Proof (of proposition 10 (more detailed)). Properties 1), 2), 3), 6) and 8) are not

modi�ed by the appliation of the rules of table 3. Let us onsider the appliation

of the rule (Down ?): C

0

!

�

D

1

= D;� � t ! D

2

= D;� � t

0

. By proposition

8, D;� � t

0

is satis�able. Thus there exists � suh that t

i

= �(+

D

1

�)�t

�

=

�(�)��(t) and t

i

�t

�

��(t

0

). Thus we have t

i

(�)�

K

t

�

(�)�

K

t

0

(�),

thus (+

D

2

�)(�)�

K

(*

D

2

�)(�). Sine for all l

0

2 a(t

0

(�)); t

0

=l

0

= t=l, property 7) is

preserved (the proof for the other rules is similar). Let us show that C

00

veri�es

property 4). Let us onsider the following appliation of the rule (Down ?):

C

0

!

�

D

1

= D; � � t! D

2

= D; � � t

0

. This transition an break property 4).

Let us take � � � 2 D

1

(other ases are similar) and let us show that is it possible

to make a transition (Down ?) to reestablish property 4) w.r.t. � and �. The

only way property 4) an be broken by (Down ?) is that k

�

= (*

D

2

�)(�)6�

K

t

0

(�).

Let l be the label use when applying the rule (Down ?). We pose t

0

(�) = k

0

�

and

t(�) = k

�

. If l 62 a(k

�

), then k

�

2 #

(a(k

�

)nflg)

k

�

and k

�

�

K

k

0

�

. Otherwise,we have

t=l 6= �, beause t 6= ?. Thus property 4) is veri�ed for (*

D

2

�)=l and (*

D

1

�)=l,

thus *

D

2

((*

D

2

�)=l) = ? and we an apply rule (Down ?) upon D

2

and �, thus

obtaining D

3

. Thus we have l 62 a((*

D

3

�)(�)), and thus (*

D

3

�)(�)�

K

k

0

�

. Thus

we an always apply rule (Down ?) to reestablish property 4). Similary, this

an be done for the other rules and for property 5). Sine by proposition 9, the

rewriting system is onvergent et terminates, C

00

veri�es the properties 4) et

5). ut

