
TCLP: overloading, subtyping and parametri

polymorphism made pra
ti
al for
onstraint

logi
 programming

Emmanuel Coquery and Fran�
ois Fages

Projet Contraintes, INRIA-Ro
quen
ourt,

BP105, 78153 Le Chesnay Cedex, Fran
e,

emmanuel.
oquery�inria.fr, fran
ois.fages�inria.fr

Abstra
t. This paper is a
ontinuation of our previous work on the

TCLP type system for
onstraint logi
 programming. Here we introdu
e

overloading in TCLP and des
ribe a new implementation of TCLP in the

Constraint Handling Rules language CHR. Overloading, that is assigning

several types to symbols, e.g. for integer and
oating point arithmeti
,

makes it possible to avoid subtype relations like integer subtype of
oat,

that are not faithful to the behavior of some predi
ates, e.g. uni�
a-

tion between an integer and its
oat representation fails in ISO Prolog.

We des
ribe a new implementation of TCLP in Prolog and CHR where

overloading is resolved by ba
ktra
king with the Andorra prin
iple. Ex-

perimental results show that the new implementation of TCLP in CHR

outperforms the previous implementation in CAML w.r.t. both runtime

eÆ
ien
y, thanks to simpli�
ations by uni�
ation of type variables in

CHR, and w.r.t. the per
entile of exa
t types inferred by the TCLP type

inferen
e algorithm, thanks to overloading.

1 Introdu
tion

The notion of subtyping is a fundamental
on
ept introdu
ed by Cardelli [2℄ and

by Mit
hell [12℄ in the
ontext of fun
tional languages, as another form of poly-

morphism
omplementing parametri
 polymorphism. The power of subtyping

rests on the subsumption rule, that expresses the substitutivity of any expres-

sion of type � wherever an expression of type �

0

is expe
ted, provided that � is

a subtype of �

0

:

(Sub)

U`t:� ���

0

U`t:�

0

Overloading, also
alled ad ho
 polymorphism, allows assigning several types

to fun
tion or predi
ate symbols. Contrarily to subtyping, where all obje
ts of

some type � have all supertypes �

0

� � , the di�erent types assigned to overloaded

symbols are spe
i�
 to these symbols, that is why overloading is
alled ad ho

polymorphism. Arithmeti
 operations naturally apply to both integer and real

numbers. For example, the addition + is naturally overloaded and
an have types

int�int!int , int�
oat!
oat ,
oat�int!
oat ,
oat�
oat!
oat . In absen
e

of overloading, the same set of types
an sometimes be obtained by subtyping

and
onstrained types [15℄. For example + may be equivalently assigned type

8� �
oat ���!�, with the subtype relation int �
oat . Although elegant, this

approa
h does not generalize well, and overloading generally provides a greater

exibility than subtyping.

In this paper we add overloading to the TCLP type system for
onstraint

logi
 programming [6℄. TCLP is a pres
riptive type system whi
h
ombines sub-

typing with parametri
 polymorphism, and provides algorithms for type
he
king

and type inferen
e for predi
ates. Parametri
 polymorphism, as introdu
ed for

Prolog in [13, 11℄ and in G�odel [10℄ and Mer
ury [17℄, allows typing homogeneous

lists with a polymorphi
 type list(�) whi
h
an be instan
iated to types for rep-

resenting lists of integers,
hara
ters, list of lists of integers, et
. Overloading

is
onsidered in this setting in [5℄. TCLP adds to this approa
h subtyping as a

mean of typing metaprogramming predi
ates and automati

oer
ions between

onstraint domains. Metaprogramming predi
ates impose that all obje
ts
an

be de
omposed as terms, hen
e a type term is introdu
ed as a supertype of all

types. In parti
ular, we have the subtype relations between type
onstru
tors of

di�erent arities like list(�) � term .

Without subtyping, type inferen
e is equivalent to solving a system of equal-

ities between type expressions, whi
h
an be done by uni�
ation. With sub-

typing, type inferen
e is equivalent to solving a system of inequalities between

type expressions. Several algorithms for solving subtyping inequalities have been

proposed in the literature. They
an be
lassi�ed along several axes:

{ the domain of types: �nite types [12, 9, 7℄, regular (re
ursive) types [1, 20,

15℄, or in�nite types [19℄,

{ the stru
ture of types: latti
es [1, 18, 15℄, quasi-latti
es [16℄ posets with suprema

[6℄, partial orders [7℄,

{ the subtyping relation: stru
tural extension of a subtyping relation on basi

types, subtyping relation between di�erent type
onstru
tors with the same

arity [7℄, or between type
onstru
tors of di�erent arities [15, 6℄.

In this paper we des
ribe a new implementation of TCLP in Prolog and

the Constraint Handling Rules language CHR [8℄. In se
tion 2, we review the

algorithms involved in TCLP and show how overloading
an be treated by ba
k-

tra
king with the Andorra prin
iple. In se
tion 3 we des
ribe the implementation

in CHR of Pottier's algorithm for solving subtype inequality
onstraints. In se
-

tion 5 we propose TCLP types for ISO prolog, CLP(R), CLP(Q), CLP(FD)

and CLP(B). In se
tion 7 we report our evaluation results on 20 Si
stus Prolog

libraries and on standard CLP programs. We show that the new implementa-

tion of TCLP in CHR outperforms the previous implementation in CAML w.r.t.

both runtime eÆ
ien
y, thanks to simpli�
ations by uni�
ation of type vari-

ables in CHR, and w.r.t. the per
entile of exa
t types inferred by the TCLP

type inferen
e algorithm, thanks to overloading. In parti
ular we show that the

Andorra prin
iple suÆ
es to deal eÆ
iently with overloaded symbols in TCLP,

2

and that more sophisti
ated
onstraint programming te
hniques, like e.g.
on-

stru
tive disjun
tion, were not ne
essary to type
he
k pra
ti
al programs with

overloading.

2 Adding overloading to the TCLP type system

2.1 TCLP Type
he
king

The typing rules of TCLP basi
ally add the subtyping rule of Cardelli and

Mit
hell [2, 12℄ to the rules of My
roft and O'Keefe [13℄. By a simple trans-

formation [6℄ we get the rules depi
ted in table 1 for deriving type judgments of

the form U ` typed expression where U is a typing for variables.

(Var) fx : �; : : :g ` x : �

(Fun
)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`f

�

1

:::�

n

!�

(t

1

;:::;t

n

):��

� is a type substitution

(Atom)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Atom

� is a type substitution

(Head)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Head

� is a renaming substitution

(Query)

U`A

1

Atom ::: U`A

n

Atom

U`A

1

;:::;A

n

Query

(Clause)

U`Q Query U`A Head

U`A Q Clause

Table 1. The TCLP typing rules.

The distin
tion between rules Head and Atom expresses the usual de�nitional

generi
ity prin
iple [11℄ whi
h states that the type of a de�ning o

urren
e of a

predi
ate (i.e. at the left of \ " in a
lause) must be equivalent up-to renaming

to the assigned type of the predi
ate. The rule Head used for deriving the type

of the head of the
lause is thus not allowed to use substitutions other than vari-

able renamings in the de
lared type of the predi
ate. The de�nitional generi
ity

ondition is useful to the subje
t redu
tion properties of TCLP [6℄.

Without overloading, the TCLP typing rules are deterministi
, i.e. the syntax

of the expression at hand determines the rules to apply. Therefore type
he
king

in TCLP basi
ally amounts to
olle
ting all subtype inequalities along a deriva-

tion of the expression, and
he
king their satis�ability in the stru
ture of types.

3

We refer to [6℄ for more details on the type
he
king algorithm and to se
tion 3

for the solving of subtyping
onstraints.

2.2 Overloading by ba
ktra
king under the Andorra prin
iple

Overloaded symbols make the typing rules non deterministi
 as they may have

several types, i.e. di�erent possible types for their arguments or their result.

The Andorra prin
iple, introdu
ed for the parallelization of Prolog one de
ade

ago [4℄, is the well-known prin
iple that
onsists in delaying the exe
ution of

hoi
e points until the time where all deterministi
 goals have been exe
uted.

We shall see that this simple
ontrol strategy, at the heart of
onstraint pro-

gramming, is suÆ
ient to eÆ
iently handle overloaded symbols in TCLP. The

idea is that the
ontext of an expression
ontaining overloaded symbols usually

provides suÆ
ient information to disambiguate the type of overloaded symbols.

Hen
e, by simply delaying
hoi
e points, the type information
oming from the

ontext suÆ
es to determine the type of overloaded symbols. If this is not suf-

�
ient, then the di�erent types
an be enumerated by ba
ktra
king under the

Andorra prin
iple and some simple prin
iple of looking ahead. The algorithm

for enumerating the types of overloaded symbols pro
eeds as follows:

1. the types of overloaded symbol o

urren
es are
he
ked w.r.t. the
urrent

store and all unfeasible types are eliminated, if all types of a symbol o

ur-

ren
e are eliminated it is a failure,

2. if some symbol o

urren
e has only one type left, the
orresponding subtyp-

ing
onstraints are added to the store,

3. the �rst two steps are iterated until a �xpoint is rea
hed.

4. then a non resolved symbol is
hosen, and ea
h possible type is tried by

iterating the whole pro
edure by ba
ktra
king.

The �rst two steps are parti
ularly eÆ
ient as they often let the
ontext dis-

ambiguate the type of overloaded symbols. The result of this treatment of over-

loading in type
he
king mode is a su

ess if one typing makes the subtyping

onstraints solvable, and a failure if all types fail. The result in type inferen
e

mode is an enumeration of inferred types.

2.3 TCLP type inferen
e

In a pres
riptive type system, type re
onstru
tion algorithms are useful to omit

type de
larations in programs, and still
he
k the typability of the program

by the possibility or not to infer the omitted types [11℄. In TCLP, a predi
ate

an a

ept any argument of a type below the de
lared type of the predi
ate.

Therefore when inferen
ing the type of a predi
ate from the
lauses de�ning the

predi
ate, it is always possible to infer the most general, yet not informative,

type. In parti
ular if there is a type term whi
h a supertype of any type, the

typing of any predi
ate with type term is always a valid typing.

For these reasons, type inferen
e in TCLP is heuristi
. First, a minimum type

is inferred for the predi
ate a

ording to the type of the arguments found in the

4

de�ning
lauses of the predi
ate. Then a heuristi
 type is inferred a

ording to

the bounds of the types of the arguments found in the de�ning
lauses. That

heuristi
 type is �nally made polymorphi
 by trying to repla
e unbounded types

by type parameters. We refer to [6℄ for the details of the TCLP type inferen
e

algorithm.

When adding overloading, the TCLP type inferen
e algorithm be
omes non

deterministi
. Several inferred types
an be enumerated a

ording to the di�erent

types for the overloaded symbols. In the experimental results reported below,

only the �rst inferred type is
onsidered.

3 Solving subtype inequalities

The hard part of the TCLP implementation is in the solving of subtype inequal-

ities. Only re
ently algorithms have been found for solving subtype relations

between symbols of di�erent arities, like list(�℄ � term, and their de
idability

in type stru
tures more general than latti
es is still an open problem [7℄.

The solving of subtype inequalities is the following problem:

Input: a system of subtype relations

V

n

i=1

�

i

��

0

i

Output: does there exist a substitution � su
h that

V

n

i=1

�

i

���

0

i

�? A better

output is to exhibit a minimal or maximal solution. A minimal (resp. maximal)

is a solution � su
h that for any solution �

0

there exists a substitution �

00

su
h

that 8� 2 V ���

00

� ��

0

(resp. 8� 2 V ���

00

� ��

0

).

3.1 TCLP types

TCLP deals with a stru
ture of partially ordered terms,
alled poterms, for rep-

resenting types with variables (parameters) and subtyping. For our purpose in

this paper, it is
onvenient to make some
hanges in the assumptions des
ribed

for TCLP in [6℄. Here it will be simpler to �rst
onsider the solving of subtyp-

ing inequalities over in�nite (regular) types instead of �nite types. Proposition

3 below shows that in the
ontext of TCLP type inferen
e the solving over �nite

types is equivalent to solving over in�nite types. Moreover we shall assume that

the set of types ordered by the subtyping relation is a latti
e. On the other hand,

we shall relax the \arity de
reasing" assumption made in [6℄.

Let K be a �nite set of type
onstru
tors
ontaining the symbols ? and >.

With ea
h symbol K 2 K, an aritym � 0 is asso
iated, the symbol with its arity

is noted K=m. Let U be a
ountable set of type variables, also
alled parameters,

denoted by �; �; :::. An in�nite type � is an in�nite term formed over K and U ,

i.e. a partial fun
tion from strings of integers to symbols, � : (N

+

)

�

! K [U ,

su
h that i) dom(�) is non-empty and pre�x-
losed, ii) if �(w) = K=n 2 K then

fw0; :::; wng � dom(�) iii) if �(w) = � 2 U then wi 62 dom(�) for any i 2 N

+

.

The subterm of � at w 2 dom(�) is the type �=w = �w

0

:�(ww

0

). An in�nite type

is regular if it
ontains a �nite number of subterms. A �nite type is a type with

a �nite domain. We denote T the set of regular types over K and U .

5

The set of type variables in a type � is denoted by V (�). The set of ground

types G is the set of regular types
ontaining no variable. A
at type is a �nite

type of the formK(�

1

; : : : ; �

m

), whereK 2 K and the �

i

are distin
t parameters.

Now, an order �

K

is assumed on type
onstru
tors su
h that (K;�

K

;?;>)

forms a latti
e. Moreover, we assume that with ea
h pair K=m �

K

K

0

=m

0

, a

partial inje
tive mapping between arguments �

K;K

0

: f1; : : : ;mg ! f1; : : : ;m

0

g

is asso
iated su
h that �

K;K

00

= �

K;K

0

Æ �

K

0

;K

00

whenever K �

K

K

0

�

K

K

00

.

These assumptions mean that the arguments of
omparable
onstru
tors are

mapped
onsistently with �

K

. We also assume that if K

00

=n = glb(K;K

0

) then

dom(�

K

00

;K

) [dom(�

K

00

;K

0

) = [1; n℄, that is greatest lower bounds do not in-

trodu
e new parameters. Similarly, if K

00

=n = lub(K;K

0

) then range(�

K;K

00

) [

range(�

K

0

;K

00

) = [1; n℄. The order on type
onstru
tors is extended to a
ovariant

subtyping order � on in�nite types. The order � is de�ned as the interse
tion of

the following preorders:

{ �

0

= T � T ,

{ for any k 2 N , let � �

k+1

�

0

holds if and only if

� either �; �

0

2 U and � = �

0

� or �(�) �

K

�

0

(�) and 8i 2 dom(�(�(�); �

0

(�))) �=i �

k

�

0

=�(�(�); �

0

(�))(i)

{ �=

T

k2N

+

�

k

.

One
an
he
k that � is an ordering relation and that on ground types, (G;�

;?;>) forms a latti
e [15℄.

Contravariant type
onstru
tors, where the ordering relation for
omparing

some of their arguments is reversed, are not
onsidered in this paper. Therefore,

if int �

K

oat for some basi
 types int and
oat then we have list(int) �

list(
oat) and list(
oat) 6� list(int). We also have list(
oat) 6� list(�) as the

subtyping order does not in
lude the instantiation preorder. Intuitively, a ground

type represents a set of expressions, and the subtyping order between ground

types
orresponds to set in
lusion. Parametri
 types do not dire
tly support this

interpretation, their parameters denote unknown types, like logi
al variables.

3.2 Solving subtype inequalities

We
onsider systems of subtype inequalities between variables and
at types,

that is types of the form � � �, K(�

1

; :::�

n

) � � or � � K(�

1

; :::�

n

). Non

at types
an be represented in this form by introdu
ing new variables and

inequalities between these variables and the type they represent.

Proposition 1. [1, 20℄ A system of subtype inequalities in a latti
e of regular

(or in�nite) types is satis�able i� it is de
omposable with the following rules:

Trans �; � � �; � �
 �! �; � � �; � �
; � �

if � �
 62 � and � 6=
.

Clash �; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

) �! false

if K 6�

K

K

0

.

De
 �; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

) �!

�; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

); f�

i

� �

0

�(i)

g

i2dom(�)

if K �

K

K

0

, � = �

K;K

0

and f�

i

� �

0

�(i)

g

i2dom(�)

6� � [f� � �g.

6

Exhibiting minimal and maximal solutions ne
essitates some extra work. For

the sake of presentation, we assume that the initial system to be solved, �

0

over variables V

0

, is �rst
ompleted by introdu
ing new variables

S

and Æ

S

for

ea
h non empty subset S of V

0

, and by adding the inequalities

S

� � and

� � Æ

S

for all variables � 2 S. We also assume that the system is
ompleted by

adding the inequality � � � for ea
h variable �. Given a system � and a set of

variables S we de�ne the variable
(S;�) =

f�2V

0

j9�2S ���2�g

and similarly

Æ(S;�) = Æ

f�2V

0

j9�2S ���2�g

.

Proposition 2. [15℄ In a system of subtype inequalities simpli�ed with the ad-

ditional rules below, the identi�
ation of all parameters to their lower bound

lb(�) (resp. upper bound ub(�)) provides a minimum solution (resp. maximum

solution).

(Glb) �; � � K(�

1

; :::; �

m

); � � �; � � K

0

(�

0

1

; :::; �

0

n

) �!

�; � � K

00

(�

00

1

; :::; �

00

l

); � � �; � � K

0

(�

0

1

; :::; �

0

n

); �

0

if K

00

6= K or �

0

6� � [f� � �g,

where K

00

= glb(K;K

0

), � = �

K

00

;K

; �

0

= �

K

00

;K

0

,

�

00

k

=
(f�

�(k)

; �

0

�

0

(k)

g; � [f� � �g) for all 1 � k � l,

�

0

= f�

00

k

� �

�(k)

g

k2dom(�)

[f�

00

k

� �

0

�

0

(k)

g

k2dom(�

0

)

(Lub) �; K(�

1

; :::; �

m

) � �; � � �; K

0

(�

0

1

; :::; �

0

n

) � � �! : : :

�; K(�

1

; :::; �

m

) � �; � � �; K

00

(�

00

1

; :::; �

00

l

) � �; �

0

if K

00

6= K

0

or �

0

6� � [f� � �g,

where K

00

= lub(K;K

0

), � = �

K;K

00

; �

0

= �

K

0

;K

00

,

�

00

k

= Æ(f�

�

�1

(k)

; �

0

�

0�1

(k)

g; � [f� � �g) for all 1 � k � l,

�

0

= f�

i

� �

00

�(i)

g

i2dom(�)

[f�

0

j

� �

00

�

0

(j)

g

j2dom(�

0

)

A system of subtype inequalities � is a
y
li
 if there exists a ranking fun
tion

on type variables r : U ! N su
h that if � � � 2 �, � 2 V (�) and � 2 V (�)

then r(�) < r(�). In [6℄ it is shown that the systems of subtype inequalities for

TCLP type
he
king and type inferen
e are a
y
li
, moreover:

Proposition 3. [6℄ An a
y
li
 system of inequalities is satis�able over �nite

types if and only if it is satis�able over regular types.

The simpli�
ation rules given in this se
tion are at the heart of TCLP al-

gorithms for type
he
king and type inferen
e. The next se
tion des
ribes their

implementation in the Constraint Handling Rules language CHR [8℄.

4 Implementation of TCLP in CHR

4.1 Representing the subtype latti
e

The subtype latti
e
an be des
ribed with three predi
ates t
lp le(T1,T2)

t
lp glb(T1,T2,GLB) and t
lp lub(T1,T2,LUB), for de�ning subtyping rela-

tions between type
onstru
tors, greatest lower bounds and lowest upper bounds

respe
tively. These predi
ates
an use the
onstraints :<,t
lp vGLB and t
lp vLUB

7

de�ned in the following se
tions for expressing subtyping
onstraints on argu-

ments. The user enters high level des
riptions of the order and the program

generates the dynami

lauses for t
lp le/2, t
lp glb/3 and t
lp lub/3,

orresponding to these de
larations. For example, the following type de
larations

with the (impli
it) subtype relations:

:- type int.

:- type list(A).

:- order int < term.

:- order list(A) < term.

generates the following
lauses (the
lauses for t
lp lub are symmetri
al) :

t
lp__le(list(_),term).

t
lp__le(list(T1),list(T2)) :- T1 :< T2.

t
lp__glb(int,term,int).

t
lp__glb(term,list(T),list(T)).

t
lp__glb(list(T1),list(T2),list(T3)) :- t
lp__vGLB(T1,T2,T3).

4.2 Representing type variables

The set of simpli�
ation rules given in se
tion 3
ould be translated quite dire
tly

in CHR. However, for eÆ
ien
y reasons, it is preferable to introdu
e for ea
h

type variable � a data stru
ture t
lp parameter(A,UB,USet,LSet,LB) whi
h

en
apsulates its
urrent upper and lower bounds ub(�), lb(�), and the list USet

(resp. LSet) of type variables in the right hand side (resp. left hand side) of an

inequality with � in the system. The t
lp update (loset, hiset, lobound)

onstraints are used to trigger
hanges in t
lp parameter.

t
lp__update_hibound(X,Hibound) ,

t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX)

<=> t
lp__glb(HiboundX, Hibound, NewHibound),

t
lp__parameter(X, NewHibound, HisetX, LosetX, LoboundX).

t
lp__update_hiset(X, Hiset) ,

t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX)

<=> list_to_ord_set(HisetX, SHisetX),

ord_union(Hiset, SHisetX, NewHiset),

t
lp__parameter(X, HiboundX, NewHiset, LosetX, LoboundX).

t
lp__update_hiset_s([X|L℄,Hiset) :- t
lp__update_hiset(X, Hiset),

t
lp__update_hiset_s(L, Hiset).

4.3 Type inequalities

The
onstraint X :< Y represents a subtyping
onstraint between X and Y. The

predi
ates t
lp transup and t
lp transinf transform non
at types into
at

ones.

X :< Y <=> var(X),var(Y) | t
lp__var_ineq(X,Y).

X :< Y <=> nonvar(X),var(Y) | t
lp__transinf(X,XFlat) , t
lp__lo(XFlat,Y).

X :< Y <=> var(X), nonvar(Y) | t
lp__transup(Y,YFlat) , t
lp__hi(X,YFlat).

t
lp__var_ineq(X,X) <=> true.

8

t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX),

t
lp__parameter(Y, HiboundY, HisetY, LosetY, LoboundY) \

t
lp__var_ineq(X,Y) <=> true |

list_to_ord_set(HisetX,SHisetX),

(ord_member(Y,SHisetX) -> true ;

(list_to_ord_set(LosetX, SLosetX),

ord_add_element(SLosetX,X,Loset),

list_to_ord_set(HisetY,SHisetY),

ord_add_element(SHisetY,Y,Hiset),

t
lp__update_hiset_s(Loset, Hiset),

t
lp__update_loset_s(Hiset, Loset),

t
lp__update_hibound_s(Loset, HiboundY),

t
lp__update_lobound_s(Hiset, LoboundX),

t
lp__le(LoboundX, HiboundY))).

t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX) \

t
lp__hi(X,Hibound) <=> t
lp__update_hibound_s([X | LosetX ℄, Hibound),

t
lp__le(LoboundX,NewHiboundX).

There is also a rule to treat the
ase where a type variable has two
onstraints

t
lp parameter, whi
h happens when one uni�es two type variables. The rule

is similar to the one for treating an inequality between two variables.

4.4 Computing GLBs and LUBs

The
omputation of the GLB (resp. LUB) of two
at types is done with de
-

larations t
lp glb (resp. t
lp glb). Below we des
ribe the
omputation of

greatest lower bounds of two type variables with the predi
ate t
lp vGLB. The

t
lp vLUB for least upper bounds is symmetri
al.

To
ompute the GLB of X and Y, we distinguish four
ases a

ording to

whether X and Y are original or introdu
ed type variables. Introdu
ed variables

are re
ognized by the fa
t that they are introdu
ed with a
onstraint of the form

t
lp original up(X,Origs), where Origs is the set of original variables above

introdu
ed variable X.

t
lp__original_up(X,OrigX), t
lp__original_up(Y,OrigY) \ t
lp__vGLB(X,Y,GLB)

<=> list_to_ord_set(OrigX,SOrigX), list_to_ord_set(OrigY,SOrigY),

ord_union(SOrigX,SOrigY,OrigGLB),

t
lp__GLBVar(OrigGLB,GLB).

t
lp__original_up(X,OrigX) \ t
lp__vGLB(X,Y,GLB)

<=> list_to_ord_set(OrigX,SOrigX),

ord_add_element(SOrigX,Y,OrigGLB),

t
lp__original_up(X,OrigX) \ t
lp__vGLB(Y,X,GLB) <=> t
lp__vGLB(X,Y,GLB).

t
lp__vGLB(X,Y,GLB) <=> list_to_ord_set([X,Y℄,OrigGLB),

t
lp__GLBVar(OrigGLB,GLB).

t
lp__GLBVar(OrigGLB,GLB) :-

hr:findall_
onstraints(t
lp__original_up(_,_), AllOrigs),

(find_VAR(AllOrigs, OrigGLB, GLB) -> true;

(t
lp__original_down(GLB,[℄),

t
lp__original_up(GLB,OrigGLB),

9

t
lp__parameter(GLB,term,[℄,[℄,bottom),

t
lp__link_up(GLB,OrigGLB))).

The predi
ate t
lp GLBVar(OrigGLB,GLB) is true when GLB is the type

variable introdu
ed for the set of original variables OrigGLB. The predi
ate

find VAR(AllOrigs, Origs, Var), where AllOrigs is the list of all
onstraints

of the form t
lp original up and Origs is a set of original variables, looks up

Origs in AllOrigs and uni�es Var with the
orresponding variable in the
on-

straint t
lp original up. Otherwise it fails, whi
h means that no type variable

was introdu
ed for the set Origs. The predi
ate t
lp link up(Var,List) puts

the
onstraint Var :< X for all Xs in List.

4.5 Overloading

The algorithm of se
tion 2.2 for solving overloaded symbols is implemented in

CHR. O

urren
es of overloaded symbols are given an unknown type of the

form �

1

� ::: � �

n

!�,
alled an abstra
t type s
heme, on whi
h type
he
king

onstraints are a

umulated. The following rule redu
e basi
ally implements the

�ltering step 1 of the algorithm, and may raise the failure rule or the instan
iate

rule (step 2). The labeling rule (step 4) is not detailed.

redu
e � abstra
t_type(Id, Abstra
tS
heme) \

multi_type(Id,Con
reteS
hemes), do_redu
e(N,Total)

<=> filter_s
hemes(Abstra
tS
heme, Con
reteS
hemes, NewCon
reteS
hemes),

multi_type(Id, NewCon
reteS
hemes),

(length(Con
reteS
hemes, Length), length(NewCon
reteS
hemes, Length)

-> N1 is N+1, do_redu
e(N1,Total)

; do_redu
e(N,Total)).

failure � abstra
t_type(Id, _), multi_type(Id,[℄) <=> fail.

instan
iate � multi_type(Id,[Con
reteS
heme ℄),

abstra
t_type(Id, Abstra
tS
heme)

<=> apply_s
heme(Con
reteS
heme, Abstra
tS
heme).

labeling � label(Id), multi_type(Id, Types),

abstra
t_type(Id, Abstra
tS
heme, F/N, Lo
ation)

<=> apply_one_s
heme(Abstra
tS
heme,Types),

redu
e_all(Remaining),

(Remaining=0 -> true; label_fun
tor).

5 TCLP types for ISO Prolog

5.1 Type stru
ture

Figure 5.1 depi
ts the TCLP type stru
ture we propose for ISO Prolog. This

type stru
ture is
ompleted in a latti
e by adding a bottom type ? below all

types. This type ? is an empty type and is thus
onsidered as an error type in

TCLP [6℄.

10

directive

term

pred

clause

functor phrase goal float int

stream

stream_or_aliaspair(A,B)exception

byteatom

character

flag
close_option
write_option
read_option

stream_option
stream_property

io_mode

list(A)

Fig. 1. TCLP type stru
ture for ISO Prolog.

Metaprogramming predi
ates in ISO prolog basi
ally impose that every obje
t

an be de
omposed as a term. This is treated in TCLP by subtyping with a type

term at the top of the latti
e of types. Sin
e bytes are integers with a restri
ted

value, we have byte < int. However we do not have a subtype relation between

int 6< float. This
hoi
e is motivated by the fa
t that, in ISO Prolog, there is

no impli
it
oer
ion from integers to
oats, in parti
ular a uni�
ation like 1=1.0

fails in ISO Prolog. Another subtype relation is introdu
ed for allowing
oer
ions

from
hara
ters to atoms. The subtyping relations between stream, atom and

stream or alias are motivated by the fa
t that a stream
an be repla
ed by

an alias, i.e. an atom. The type pred is the type of predi
ates, that is heads of

lauses as well as o

urren
es in the body of a
lause or in a dire
tive. For this

reason, predi
ates
an be viewed both with the type
lause (for
lauses with an

empty body) and with type goal. This justi�es the relations pred <
lause and

pred < goal.

Parametri
 types are introdu
ed for lists, with type list(�), and for pairs, with

type pair (�; �). We thus have subtype relations list(�) < term and pair (�; �) <

term, i.e. subtype relations between type
onstru
tors of di�erent arities whi
h

is responsible for the diÆ
ulty of subtype
onstraint solving in TCLP.

5.2 Metaprogramming and subtyping

The type term is used for term manipulation predi
ates, and
an be used to

de
ompose any obje
t, thanks to the subtype relation between any type and

term. Term manipulation predi
ates thus have the following types in TCLP:

fun
tor : term � atom � int ! pred, arg : int � term � term ! pred, =..

: term � list(term) ! pred,
opy term : � � � ! pred. Note that, as term

is the top element of the type latti
e, ea
h o

uren
e of term in the type of

a predi
ate
an be equivalently repla
ed by a fresh type variable, e.g. arg :

int� �� � ! pred.

The type
lause provides the possibility to type
he
k dynami
 predi
ate

de
larations using the following type de
larations:
lause : pred�goal ! pred,

asserta :
lause ! pred, assertz :
lause ! pred, retra
t :
lause ! pred,

11

abolish : fun
tor ! pred. One should
ke
k however that the head
ondition

(see se
tion2) is satis�ed in order to ensure the property of subje
t redu
tion

at run-time [6℄. The symbol : � for
onstru
ting
lauses is thus type
he
ked in

TCLP with a spe
ial rule that
he
ks that its �rst argument is a Head not just

an Atom, a

ording to table 1.

The dynami
 types of obje
ts
an be tested with ISO Prolog predi
ates

var/1, atom/1, integer/1, float/1, atomi
/1,
ompound/1, nonvar/1 and

number/1. These predi
ates are typed in TCLP with type term ! pred, as

they are appli
able to any ISO Prolog obje
t. This marks a fundamental dif-

feren
e between a pres
riptive type system like TCLP and a des
riptive type

system whi
h would instead type float : float! pred, as des
riptive types are

in fa
t an approximation of the su

ess set.

5.3 Arithmeti
 and overloading

Typing arithmeti
 expressions involves a large amount of overloading, be
ause

of the intera
tion between int and float. We thus have the following types for

arithmeti
 operations: +,-,* : int�int! int and +,-,*,/ : float�int! float,

int� float! float and float� float! float.

Note that the ordering of the rules is important as far as only the �rst inferred

type is
onsidered as the result of the type inferen
e algorithm. Note also that

pairs in ISO Prolog are
onstru
ted with the same symbol minus -/2. The type

- : �� � ! pair(�; �) is thus also added to the types of -/2.

The experimental results reported below show that, despite the
ombinato-

rial nature of these overloaded type de
larations, the handling of overloading

in TCLP does not produ
e a
ombinatorial explosion and remains eÆ
ient in

pra
ti
al programs.

5.4 Options

Many system predi
ates in ISO Prolog
ome with a set of terms des
ribing

either properties or options, e.g. open/3
omes with read, write and append.

We
hoose to asso
iate a type to ea
h set of options, that gives pre
ise typings,

e.g. open : atom � io mode � stream ! pred. We use subtyping when a set of

options is
ompletely in
luded in another set of options, e.g. stream option <

stream property, otherwise we use overloading.

Many options are atomi
 and are thus overloaded with type atom. In the

previous version of TCLP without overloading, a
ommon subtype between op-

tions and the type atom was introdu
ed, but sin
e these types have di�erent

uses, overloading is preferred.

6 TCLP types for CLP(R,Q,FD,B)

In TCLP, the
onstraint domain of CLP(R)
an be typed with the same type

oat as Prolog. Similarly the
onstraint domain of CLP(FD)
an be typed with

12

type int . The boolean domain of CLP(B) is a subset
omposed of values 0 and 1

of the �nite domain FD
omposed of values 0 and 1. A new domain type boolean

is thus introdu
ed as a subtype of int , boolean < int . In CLP(Q) the
onstraint

domain of rational numbers with in�nite pre
ision is typed a spe
ial type rat .

The inferred TCLP types for
lassi
al CLP(FD) examples are the expe
ted

ones, like queens : int�list(int)!pred et
. On the other hand, on many CLP(R)

examples, the �rst inferred type is int instead of
oat , sin
e in these examples

the arithmeti
 expressions involve simple operations with integer
onstants only.

7 Evaluation

Without overloading With overloading

File Type Che
king Type Inferen
e %exa
t Type Che
k Type Inf. %exa
t

CAML CHR CAML CHR CHR CHR

arrays.pl 2.2 s 2.1 s 11.9 s 3.9 s 23% 2.5 s 3.2 s 68%

asso
.pl 5.3 s 6.0 s 40.1 s 13.6 s 68% 5.2 s 13.5 s 91%

atts.pl 7.4 s 5.5 s 77.5 s 12.4 s 64% 6.4 s 15.8 s 91%

bdb.pl 23.6 s 20.2 s 41.1 s 17.4 s 64% 16.1 s 21.7 s 66%

harsio.pl 1.3 s 1.0 s 2.4 s 1.3 s 33% 0.8 s 3.8 s 74%

lpb.pl 24.3 s 22.7 s 1827.3 s 224.8 s n/a 18.4 s 204.9 s n/a

lpr.pl 304.45 s 445.1 s 3958.41 s 566 s n/a n/a n/a n/a

fastrw.pl 0.4 s 0.5 s 0.7 s 0.7 s 100% 0.4 s 0.6 s 100%

heaps.pl 3.5 s 4.2 s 43.3 s 17.4 s 71% 3.5 s 16.4 s 97%

jasper.pl 7.4 s 2.7 s 12.0 s 3.9 s 84% 2.3 s 3.0 s 84%

lists.pl 3.5 s 3.8 s 16.2 s 6.6 s 98% 3.5 s 7.6 s 98%

ordsets.pl 4.1 s 5.2 s 199.4 s 44.8 s 97% 4.1 s 49.2 s 97%

queues.pl 0.6 s 0.7 s 4.1 s 1.5 s 75% 0.6 s 1.3 s 96%

so
kets.pl 6.8 s 3.9 s 15.4 s 5.3 s 68% 3.0 s 4.3 s 92%

random.pl 0.9 s 1.0 s 4.1 s 1.0 s 55% 0.9 s 0.9 s 58%

terms.pl 2.5 s 2.6 s 308.7 s 4.3 s 77% 2.5 s 4.4 s 77%

trees.pl 1.4 s 1.6 s 12.6 s 3.2 s 31% 1.4 s 3.0 s 75%

ugraphs.pl 48.2 s 25.3 s 274.2 s 353.5 s 67% 21.1 s 350.2 s 67%

lpfd.pl 24.3 s 34.8 s 59.6 s 154.0 s n/a 33.1 s 140.1 s n/a

Table 2. Performan
e on Si
stus Prolog libraries.

We
ompare the performan
es of two versions of TCLP. The �rst one,
oded

in Obje
tive Caml, uses the subtyping
onstraint solving library Walla
e [14℄ by

F.Pottier. The se
ond one,
oded in Si
stus Prolog, uses the CHR implementa-

tion subtyping
onstraints des
ribed in se
tion 4. For the latter implementation,

we also
ompare the typings with and without overloading.

The ben
hmarks are
omposed of 20 Si
stus Prolog libraries and of a Prolog

implementation of CLP(FD). The �rst
olumn gives the CPU time for type

13

he
king of both versions in CAML and CHR. The se
ond
olumn gives the

CPU time for type inferen
e. The third
olumn indi
ates the per
entile of inferred

types whi
h are identi
al to the (authors') intended types. The last three
olumns

display these results for the CHR implementation using a di�erent type stru
ture

and type de
larations with overloading. This allows us to estimate the impa
t of

overloading both in terms of runtime eÆ
ien
y and in terms of the performan
e

of the heuristi
s used for inferring types.

The signi�
ant in
rease of the per
entile of exa
t types inferred with over-

loading
an be explained by the more pre
ise typings provided by overloaded

type de
larations. In parti
ular for arithmeti
, in the version of TCLP without

overloading, the typing with
oat was always inferred, whereas in the version

of TCLP with overloading, the typing with

R

is inferred when possible. The

remaining di�eren
es between the heuristi
ally inferred types and the intended

types in some examples are mainly due, on the one hand, to the permissive typ-

ing of equality =/2 : � � � ! pred whi
h, when instan
iated with type term,

does not provide
ommuni
ation between the types of its arguments [6℄, and on

the other hand, to the fa
t that only the �rst inferred type is
onsidered.

One
an noti
e that the times for type
he
king (resp. type inferen
e) are

lose whenever they are done with or without overloading. On the other hand,

although the type
he
king times between CAML and CHR implementations

are
lose, the CHR implementation runs signi�
antly faster for type inferen
e.

The gain of eÆ
ien
y on the CHR version of TCLP is explained by the
a-

pability of the CHR subtyping solver to unify type variables, while the CAML

implementation does not perform su
h uni�
ations. When two type variables

T1 and T2 have to be uni�ed, the CAML implementation adds the inequal-

ities T2 � T1; T1 � T2 to the store. In CHR, uni�
ation is done by the

rule type ident � V::T1 V::T2 <=> T1=T2. Sin
e the
omplexity of Tri-

fonov and Smith de
omposition (rules in proposition 1) is O(n

3

), simpli�
ation

by uni�
ation of type variables permits a signi�
ant speed-up on examples whi
h

ontain several o

urren
es of a same type variable.

The ben
hmark results show also that the pra
ti
al
ost of overloading is

low. This
an be explained by the eÆ
ien
y of the Andorra and looking ahead

prin
iples in this
ase and, for a smaller part, by the removal of some subtype

relations from the type stru
ture used with overloading.

8 Con
lusion

The TCLP type system with overloading is a pra
ti
al system for typing Prolog

and
onstraint logi
 programs.We have shown that the addition of overloading to

subtyping and parametri
 polymorphism is ne
essary to properly type arithmeti

predi
ates, and to deal with some overloaded symbols like minus whi
h denotes

both subtra
tion and pairs in Prolog.

Type
he
king and type inferen
e in TCLP involve the solving of
omplex

subtype inequality
onstraints. We have des
ribed an implementation of Pottier's

algorithm in CHR whi
h surprisingly outperformed the original implementation

14

in CAML, thanks to some simpli�
ations by uni�
ation of type variables whi
h

are natural to implement in CHR.

In the new implementation of TCLP in Prolog and CHR, overloading is

implemented by ba
ktra
king with the Andorra prin
iple. We have shown that

this simple strategy is very eÆ
ient on large programs su
h as the Si
stus Prolog

implementation of CLP(R) for example. We have proposed TCLP types for ISO

Prolog and
onstraint logi
 programs, and used these types for typing the Si
stus

Prolog libraries and
lassi
al
onstraint logi
 programs.

As for future work, we plan to a
quire more pra
ti
al experien
e from the

users of TCLP [3℄ and extend TCLP to other languages. We plan also to use

the ba
ktra
king
apabilities of the new Prolog-CHR implementation of type

onstraints to experiment the solving of subtype inequality
onstraints in more

general stru
tures than latti
es (quasi-latti
es, partial orders) for whi
h the de-

idability of subtype
onstraint satisfa
tion is an open problem [7, 15℄.

Referen
es

1. R.M. Amadio and L. Cardelli. Subtyping re
ursive types. ACM Transa
tions on

Programming Languages and Systems, 15(4):575{631, 1993.

2. L. Cardelli. A semanti
s of multiple inheritan
e. Information and Computation,

76(2/3):138{164, 1988.

3. E. Coquery. T
lp: a generi
 type
he
ker for
onstraint logi
 programs, O
tober

2000. http://pauilla
.inria.fr/~
oquery/t
lp/.

4. V. Santos Costa, D.H.D. Warren, and R. Yang. The andorra-i prepro
essor: Sup-

porting full prolog on the basi
 andorra model. In Pro
eedings of the 8th Inter-

national Conferen
e on Logi
 Programming ICLP'91, pages 443{456. MIT Press,

1991.

5. B. Demoen, M. Gar
ia de la Banda, and P.J. Stu
key. Type
onstraint solving

for parametri
 and ad-ho
 polymorphism. In Pro
eedings of the 22nd Australian

Computer S
ien
e Conferen
e, pages 217{228, january 1999.

6. F. Fages and E. Coquery. Typing
onstraint logi
 programs. Theory and Pra
ti
e

of Logi
 Programming, 1, November 2001.

7. A. Frey. Satisfying subtype inequalities in polynomial spa
e. In Pro
eedings of

the 4th International Stati
 Analysis Symposium SAS'97, number 1302 in LNCS,

1997.

8. T. Fr�uhwirth. Theory and pra
ti
e of
onstraint handling rules. Journal of Logi

Programming, Spe
ial Issue on Constraint Logi
 Programming, 37(1-3):95{138, O
-

tober 1998.

9. Y.C. Fuh and P. Mishra. Type inferen
e with subtypes. In Pro
. ESOP'88, number

300 in LNCS, pages 94{114, 1988.

10. P. Hill and J. Lloyd. The G�odel programming language. MIT Press, 1994.

11. T.K. Lakshman and U.S. Reddy. Typed Prolog: A semanti
 re
onstru
tion of the

My
roft-O'Keefe type system. In V. Saraswat and K. Ueda, editors, Pro
eedings

of the 1991 International Symposium on Logi
 Programming, pages 202{217. MIT

Press, 1991.

12. J. Mit
hell. Coer
ion and type inferen
e. In Pro
eedings of the 11th Annual ACM

Symposium on Prin
iples of Programming Languages POPL'84, pages 175{185,

1984.

15

13. A. My
roft and R.A. O'Keefe. A polymorphi
 type system for prolog. Arti�
ial

Intelligen
e, 23:295{307, 1984.

14. F. Pottier. Walla
e: an eÆ
ient implementation of type inferen
e with subtyping,

February 2000. http://pauilla
.inria.fr/~fpottier/walla
e/.

15. F. Pottier. Simplifying subtyping
onstraints: a theory. To appear in Information

and Computation, 2002.

16. G. Smolka. Logi
 programming with polymorphi
ally order-sorted types. In

Algebrai
 and Logi
 Programming ALP'88, number 343 in LNCS, pages 53{70.

J. Grabowski, P. Les
anne, W. We
hler, 1988.

17. Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury,

an eÆ
ient purely de
larative logi
 programming language. Journal of Logi
 Pro-

gramming, 29(1{3):17{64, 1996.

18. J. Tiuryn. Subtype inequalities. In Pro
. 7th IEEE symposium on logi
 in
omputer

s
ien
e LICS'92, pages 308{315, 1992.

19. J. Tiuryn and M. Wand. Type re
onstru
tion with re
ursive types and atomi

subtyping. In Pro
eedings of the 22nd Australian Computer S
ien
e Conferen
e,

pages 217{228, january 1999.

20. V. Trifonov and S. Smith. Subtyping
onstrained types. In Pro
eedings of the 3rd

International Stati
 Analysis Symposium SAS'96, number 1145 in LNCS, pages

349{365, 1996.

16

