TCLP: overloading, subtyping and parametric
polymorphism made practical for constraint
logic programming

Emmanuel Coquery and Francois Fages

Projet Contraintes, INRIA-Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France,

emmanuel .coquery@inria.fr, francois.fages@inria.fr

Abstract. This paper is a continuation of our previous work on the
TCLP type system for constraint logic programming. Here we introduce
overloading in TCLP and describe a new implementation of TCLP in the
Constraint Handling Rules language CHR. Overloading, that is assigning
several types to symbols, e.g. for integer and floating point arithmetic,
makes it possible to avoid subtype relations like integer subtype of float,
that are not faithful to the behavior of some predicates, e.g. unifica-
tion between an integer and its float representation fails in ISO Prolog.
We describe a new implementation of TCLP in Prolog and CHR where
overloading is resolved by backtracking with the Andorra principle. Ex-
perimental results show that the new implementation of TCLP in CHR
outperforms the previous implementation in CAML w.r.t. both runtime
efficiency, thanks to simplifications by unification of type variables in
CHR, and w.r.t. the percentile of exact types inferred by the TCLP type
inference algorithm, thanks to overloading.

1 Introduction

The notion of subtyping is a fundamental concept introduced by Cardelli [2] and
by Mitchell [12] in the context of functional languages, as another form of poly-
morphism complementing parametric polymorphism. The power of subtyping
rests on the subsumption rule, that expresses the substitutivity of any expres-
sion of type 7 wherever an expression of type 7’ is expected, provided that 7 is
a subtype of 7':

Ukt:r <7’

(Sub) Utt:r!

Overloading, also called ad hoc polymorphism, allows assigning several types
to function or predicate symbols. Contrarily to subtyping, where all objects of
some type 7 have all supertypes 7 > 7, the different types assigned to overloaded
symbols are specific to these symbols, that is why overloading is called ad hoc
polymorphism. Arithmetic operations naturally apply to both integer and real
numbers. For example, the addition + is naturally overloaded and can have types

int X int—int, int X float— float, float X int— float, float X float— float. In absence
of overloading, the same set of types can sometimes be obtained by subtyping
and constrained types [15]. For example + may be equivalently assigned type
Va < float ax a—a, with the subtype relation int < float. Although elegant, this
approach does not generalize well, and overloading generally provides a greater
flexibility than subtyping.

In this paper we add overloading to the TCLP type system for constraint
logic programming [6]. TCLP is a prescriptive type system which combines sub-
typing with parametric polymorphism, and provides algorithms for type checking
and type inference for predicates. Parametric polymorphism, as introduced for
Prolog in [13,11] and in Gddel [10] and Mercury [17], allows typing homogeneous
lists with a polymorphic type list(«) which can be instanciated to types for rep-
resenting lists of integers, characters, list of lists of integers, etc. Overloading
is considered in this setting in [5]. TCLP adds to this approach subtyping as a
mean of typing metaprogramming predicates and automatic coercions between
constraint domains. Metaprogramming predicates impose that all objects can
be decomposed as terms, hence a type term is introduced as a supertype of all
types. In particular, we have the subtype relations between type constructors of
different arities like list(a) < term.

Without subtyping, type inference is equivalent to solving a system of equal-
ities between type expressions, which can be done by unification. With sub-
typing, type inference is equivalent to solving a system of inequalities between
type expressions. Several algorithms for solving subtyping inequalities have been
proposed in the literature. They can be classified along several axes:

— the domain of types: finite types [12,9,7], regular (recursive) types [1, 20,
15], or infinite types [19],

— the structure of types: lattices [1, 18, 15], quasi-lattices [16] posets with suprema
[6], partial orders [7],

— the subtyping relation: structural extension of a subtyping relation on basic
types, subtyping relation between different type constructors with the same
arity [7], or between type constructors of different arities [15, 6].

In this paper we describe a new implementation of TCLP in Prolog and
the Constraint Handling Rules language CHR [8]. In section 2, we review the
algorithms involved in TCLP and show how overloading can be treated by back-
tracking with the Andorra principle. In section 3 we describe the implementation
in CHR of Pottier’s algorithm for solving subtype inequality constraints. In sec-
tion 5 we propose TCLP types for ISO prolog, CLP(R), CLP(Q), CLP(FD)
and CLP(B). In section 7 we report our evaluation results on 20 Sicstus Prolog
libraries and on standard CLP programs. We show that the new implementa-
tion of TCLP in CHR outperforms the previous implementation in CAML w.r.t.
both runtime efficiency, thanks to simplifications by unification of type vari-
ables in CHR, and w.r.t. the percentile of exact types inferred by the TCLP
type inference algorithm, thanks to overloading. In particular we show that the
Andorra principle suffices to deal efficiently with overloaded symbols in TCLP,

and that more sophisticated constraint programming techniques, like e.g. con-
structive disjunction, were not necessary to type check practical programs with
overloading.

2 Adding overloading to the TCLP type system

2.1 TCLP Type checking

The typing rules of TCLP basically add the subtyping rule of Cardelli and
Mitchell [2,12] to the rules of Mycroft and O’Keefe [13]. By a simple trans-
formation [6] we get the rules depicted in table 1 for deriving type judgments of
the form U F typed expression where U is a typing for variables.

(Var) {z:7,..}Fx:7T

Htq: < ... Ukt,: <
(Func) Uth JlU'_O}:ﬁT@ﬁT (t[f, t:;no)-ﬁrgn_rn@ O is a type substitution

Ukty:o1 01<m O ... Ukt 0,<71,0

(Atom) Urpre o (1 yoonst) Atom O is a type substitution
Lo (B
: < : <
(Head) Uth U1U|U_1p_T1@ @ U:tgggadan_m@ O is a renaming substitution
TL...Tn geenslp

UA; Atom ... URA, Atom
(Query) UFAy,..., Ay Query

o UFQ Query UFA Head
(Clause) UFA+Q Clause

Table 1. The TCLP typing rules.

The distinction between rules Head and Atom expresses the usual definitional
genericity principle [11] which states that the type of a defining occurrence of a
predicate (i.e. at the left of “<—” in a clause) must be equivalent up-to renaming
to the assigned type of the predicate. The rule Head used for deriving the type
of the head of the clause is thus not allowed to use substitutions other than vari-
able renamings in the declared type of the predicate. The definitional genericity
condition is useful to the subject reduction properties of TCLP [6].

Without overloading, the TCLP typing rules are deterministic, i.e. the syntax
of the expression at hand determines the rules to apply. Therefore type checking
in TCLP basically amounts to collecting all subtype inequalities along a deriva-
tion of the expression, and checking their satisfiability in the structure of types.

We refer to [6] for more details on the type checking algorithm and to section 3
for the solving of subtyping constraints.

2.2 Overloading by backtracking under the Andorra principle

Overloaded symbols make the typing rules non deterministic as they may have
several types, i.e. different possible types for their arguments or their result.
The Andorra principle, introduced for the parallelization of Prolog one decade
ago [4], is the well-known principle that consists in delaying the execution of
choice points until the time where all deterministic goals have been executed.
We shall see that this simple control strategy, at the heart of constraint pro-
gramming, is sufficient to efficiently handle overloaded symbols in TCLP. The
idea is that the context of an expression containing overloaded symbols usually
provides sufficient information to disambiguate the type of overloaded symbols.
Hence, by simply delaying choice points, the type information coming from the
context suffices to determine the type of overloaded symbols. If this is not suf-
ficient, then the different types can be enumerated by backtracking under the
Andorra principle and some simple principle of looking ahead. The algorithm
for enumerating the types of overloaded symbols proceeds as follows:

1. the types of overloaded symbol occurrences are checked w.r.t. the current
store and all unfeasible types are eliminated, if all types of a symbol occur-
rence are eliminated it is a failure,

2. if some symbol occurrence has only one type left, the corresponding subtyp-
ing constraints are added to the store,

3. the first two steps are iterated until a fixpoint is reached.

4. then a non resolved symbol is chosen, and each possible type is tried by
iterating the whole procedure by backtracking.

The first two steps are particularly efficient as they often let the context dis-
ambiguate the type of overloaded symbols. The result of this treatment of over-
loading in type checking mode is a success if one typing makes the subtyping
constraints solvable, and a failure if all types fail. The result in type inference
mode is an enumeration of inferred types.

2.3 TCLP type inference

In a prescriptive type system, type reconstruction algorithms are useful to omit
type declarations in programs, and still check the typability of the program
by the possibility or not to infer the omitted types [11]. In TCLP, a predicate
can accept any argument of a type below the declared type of the predicate.
Therefore when inferencing the type of a predicate from the clauses defining the
predicate, it is always possible to infer the most general, yet not informative,
type. In particular if there is a type term which a supertype of any type, the
typing of any predicate with type term is always a valid typing.

For these reasons, type inference in TCLP is heuristic. First, a minimum type
is inferred for the predicate according to the type of the arguments found in the

defining clauses of the predicate. Then a heuristic type is inferred according to
the bounds of the types of the arguments found in the defining clauses. That
heuristic type is finally made polymorphic by trying to replace unbounded types
by type parameters. We refer to [6] for the details of the TCLP type inference
algorithm.

When adding overloading, the TCLP type inference algorithm becomes non
deterministic. Several inferred types can be enumerated according to the different
types for the overloaded symbols. In the experimental results reported below,
only the first inferred type is considered.

3 Solving subtype inequalities

The hard part of the TCLP implementation is in the solving of subtype inequal-
ities. Only recently algorithms have been found for solving subtype relations
between symbols of different arities, like list(a] < term, and their decidability
in type structures more general than lattices is still an open problem [7].

The solving of subtype inequalities is the following problem:
Input: a system of subtype relations A}, 7;<7/
Output: does there exist a substitution © such that A} | ;0<7/0? A better
output is to exhibit a minimal or maximal solution. A minimal (resp. mazimal)
is a solution @ such that for any solution @' there exists a substitution @ such
that Va € V a@0" < a@' (resp. Va € V a@O" > aB').

3.1 TCLP types

TCLP deals with a structure of partially ordered terms, called poterms, for rep-
resenting types with variables (parameters) and subtyping. For our purpose in
this paper, it is convenient to make some changes in the assumptions described
for TCLP in [6]. Here it will be simpler to first consider the solving of subtyp-
ing inequalities over infinite (regular) types instead of finite types. Proposition
3 below shows that in the context of TCLP type inference the solving over finite
types is equivalent to solving over infinite types. Moreover we shall assume that
the set of types ordered by the subtyping relation is a lattice. On the other hand,
we shall relax the “arity decreasing” assumption made in [6].

Let IC be a finite set of type constructors containing the symbols L and T.
With each symbol K € K, an arity m > 0 is associated, the symbol with its arity
is noted K/m. Let U be a countable set of type variables, also called parameters,
denoted by a, f,.... An infinite type T is an infinite term formed over K and U,
i.e. a partial function from strings of integers to symbols, 7 : (NT)* — K UU,
such that i) dom(r) is non-empty and prefix-closed, ii) if 7(w) = K/n € K then
{w0,...,wn} C dom(r) iii) if 7(w) = @ € U then wi ¢ dom(r) for any i € N'+.
The subterm of 7 at w € dom(7) is the type 7/w = Aw'.7(ww'). An infinite type
is regular if it contains a finite number of subterms. A finite type is a type with
a finite domain. We denote T the set of regular types over K and U.

The set of type variables in a type 7 is denoted by V(7). The set of ground
types G is the set of regular types containing no variable. A flat type is a finite
type of the form K (o, ..., apn), where K € K and the «; are distinct parameters.

Now, an order <y is assumed on type constructors such that (I, <), L1, T)
forms a lattice. Moreover, we assume that with each pair K/m <xg K'/m/, a
partial injective mapping between arguments tx g : {1,...,m} — {1,...,m'}
is associated such that tx kv = tk,k © tk' kv whenever K <x K' <x K".
These assumptions mean that the arguments of comparable constructors are
mapped consistently with <x. We also assume that if K" /n = glb(K, K') then
dom(tgrv k) Udom(egr k) = [1,n], that is greatest lower bounds do not in-
troduce new parameters. Similarly, if K" /n = lub(K, K') then range(i1x k) U
range(tx k) = [1,n]. The order on type constructors is extended to a covariant
subtyping order < on infinite types. The order < is defined as the intersection of
the following preorders:

- <o= T x T,
— for any k € N, let 7 <p41 7 holds if and only if
e cither 7,7 € Y and 7 = 7'
e or 7(€) <x 7'(€) and Vi € dom(u(r(€), 7' (€))) /i <p. 7' [e(7(€), 7' (€))(2)
= <= Ngen+ <k
One can check that < is an ordering relation and that on ground types, (G, <
,L, T) forms a lattice [15].

Contravariant type constructors, where the ordering relation for comparing
some of their arguments is reversed, are not considered in this paper. Therefore,
if int <x float for some basic types int and float then we have list(int) <
list(float) and list(float) £ list(int). We also have list(float) £ list(a) as the
subtyping order does not include the instantiation preorder. Intuitively, a ground
type represents a set of expressions, and the subtyping order between ground
types corresponds to set inclusion. Parametric types do not directly support this
interpretation, their parameters denote unknown types, like logical variables.

3.2 Solving subtype inequalities

We consider systems of subtype inequalities between variables and flat types,
that is types of the form « < 8, K(ay,...a,) < a or a < K(ay,...a,). Non
flat types can be represented in this form by introducing new variables and
inequalities between these variables and the type they represent.

Proposition 1. [1,20] A system of subtype inequalities in a lattice of regular
(or infinite) types is satisfiable iff it is decomposable with the following rules:

TransE, agﬂa 5§’Y—>Ea OZSB, ﬂ§77 a§7
ifa<~y¢gX and a #17.

Clash ¥, K(ay1,...,an) <a, a <8, B < K'(a],...,al) — false
if K £x K.

Dec X, K(ai,...,am)<a, a<p,8<K'(af,...,a}) —
27 K(ala"'aam) S Q, o S ﬂaﬂ S Kl(alla"'aa,n)a {ai S ai(i)}iedomu)

if K SIC K’, L= LK,K' and {Oli S a:(i)}iedomu) ¢ Yu {a S ﬂ}

Exhibiting minimal and maximal solutions necessitates some extra work. For
the sake of presentation, we assume that the initial system to be solved, X
over variables Vj, is first completed by introducing new variables ys and §g for
each non empty subset S of 14, and by adding the inequalities v¢ < « and
a < dg for all variables @ € S. We also assume that the system is completed by
adding the inequality a < « for each variable a. Given a system X and a set of
variables S we define the variable (S, X) = viacvy|38es s<acx} and similarly

8(S, %) = bfaevy|38€S a<Bexy-

Proposition 2. [15] In a system of subtype inequalities simplified with the ad-
ditional rules below, the identification of all parameters to their lower bound
Ib(c) (resp. upper bound ub(c)) provides a minimum solution (resp. mazimum
solution).

!

(Glb) ¥, a < K(aq,...,am), a <8, < K'(af,...,qa)) —
Y, a<K"(of,..,qf), a<p, B<K'(a},...,a}), X
ifK"#Kor X ¢ ¥YU{a< S},
where K" = glb(K,K'), . =tk ki, V' = LK K75
ol =1({egey, @}, 5 U < B)) forall 1<k <1,

Ir={og < ab(k)}kedom(b) Ufay < a:’(k)}kedom(u)

(Lub) ¥, K(a1,...,am) <a, a < B, K'(af,..,al) < —...
27 K(O[l,...,am) Saa aSBa K”(alllﬂ'“ﬂa;l) SB: X’
if K"#K' or X' ¢ ¥U{a <8},
where K” = lub(K,K'), L=LK,K'", LI =LK' K",
af = 5({aL_1(k),a’,_1(k)},EU {a<p}) foralll1 <k<I,

L
X' =A{a; < ajfy bicdomey V) <) Yedomn
A system of subtype inequalities X' is acyclic if there exists a ranking function
on type variables 7 : i/ — A such that if 6 <7 € X, a € V(o) and 8 € V(1)
then r(a) < r(B). In [6] it is shown that the systems of subtype inequalities for
TCLP type checking and type inference are acyclic, moreover:

Proposition 3. [6] An acyclic system of inequalities is satisfiable over finite
types if and only if it is satisfiable over reqular types.

The simplification rules given in this section are at the heart of TCLP al-
gorithms for type checking and type inference. The next section describes their
implementation in the Constraint Handling Rules language CHR [8].

4 Implementation of TCLP in CHR

4.1 Representing the subtype lattice

The subtype lattice can be described with three predicates tclp__le(T1,T2)
tclp_glb(T1,T2,GLB) and tclp__1lub(T1,T2,LUB), for defining subtyping rela-
tions between type constructors, greatest lower bounds and lowest upper bounds
respectively. These predicates can use the constraints : <,tclp__vGLB and tclp_vLUB

defined in the following sections for expressing subtyping constraints on argu-
ments. The user enters high level descriptions of the order and the program
generates the dynamic clauses for tclp_le/2, tclp_glb/3 and tclp__lub/3,
corresponding to these declarations. For example, the following type declarations
with the (implicit) subtype relations:

1= type int.

:— type list(A).

:— order int < term.

:— order list(A) < term.

generates the following clauses (the clauses for tclp__lub are symmetrical) :

tclp__le(list(_),term).

tclp__le(1ist(T1),1ist(T2)) :- T1 :< T2.
tclp__glb(int,term,int).

tclp__glb(term,1list(T),list(T)).
tclp__glb(list(T1),1list(T2),1ist(T3)) :- tclp__vGLB(T1,T2,T3).

4.2 Representing type variables

The set of simplification rules given in section 3 could be translated quite directly
in CHR. However, for efficiency reasons, it is preferable to introduce for each
type variable o a data structure tclp__parameter (A,UB,USet,LSet,LB) which
encapsulates its current upper and lower bounds ub(«), lb(«), and the list USet
(resp. LSet) of type variables in the right hand side (resp. left hand side) of an
inequality with « in the system. The tclp_update (loset, hiset, lobound)
constraints are used to trigger changes in tclp__parameter.

tclp__update_hibound (X,Hibound) ,
tclp__parameter (X, HiboundX, HisetX, LosetX, LoboundX)
<=> tclp__glb(HiboundX, Hibound, NewHibound),
tclp__parameter (X, NewHibound, HisetX, LosetX, LoboundX).
tclp__update_hiset (X, Hiset) ,
tclp__parameter (X, HiboundX, HisetX, LosetX, LoboundX)
<=> list_to_ord_set(HisetX, SHisetX),
ord_union(Hiset, SHisetX, NewHiset),
tclp__parameter (X, HiboundX, NewHiset, LosetX, LoboundX).
tclp__update_hiset_s([X|L],Hiset) :- tclp__update_hiset(X, Hiset),
tclp__update_hiset_s(L, Hiset).

4.3 Type inequalities

The constraint X :< Y represents a subtyping constraint between X and Y. The
predicates tclp__transup and tclp__transinf transform non flat types into flat
ones.

X :< Y <=> var(X),var(Y) | tclp__var_ineq(X,Y).

X :< Y <=> nonvar(X),var(Y) | tclp__transinf(X,XFlat) , tclp__lo(XFlat,Y).
X :< Y <=> var(X), nonvar(Y) | tclp__transup(Y,YFlat) , tclp__hi(X,YFlat).
tclp__var_ineq(X,X) <=> true.

tclp__parameter (X, HiboundX, HisetX, LosetX, LoboundX),
tclp__parameter (Y, HiboundY, HisetY, LosetY, LoboundY) \
tclp__var_ineq(X,Y) <=> true |

list_to_ord_set (HisetX,SHisetX),

(ord_member (Y,SHisetX) -> true ;

(list_to_ord_set (LosetX, SLosetX),
ord_add_element (SLosetX,X,Loset),
list_to_ord_set (HisetY,SHisetY),
ord_add_element (SHisetY,Y,Hiset),
tclp__update_hiset_s(Loset, Hiset),
tclp__update_loset_s(Hiset, Loset),
tclp__update_hibound_s(Loset, HiboundY),
tclp__update_lobound_s(Hiset, LoboundX),
tclp__le(LoboundX, HiboundY))).

tclp__parameter (X, HiboundX, HisetX, LosetX, LoboundX) \
tclp__hi(X,Hibound) <=> tclp__update_hibound_s([X | LosetX], Hibound),
tclp__le(LoboundX,NewHiboundX) .

There is also a rule to treat the case where a type variable has two constraints
tclp__parameter, which happens when one unifies two type variables. The rule
is similar to the one for treating an inequality between two variables.

4.4 Computing GLBs and LUBs

The computation of the GLB (resp. LUB) of two flat types is done with dec-
larations tclp__glb (resp. tclp__glb). Below we describe the computation of
greatest lower bounds of two type variables with the predicate tclp__vGLB. The
tclp__vLUB for least upper bounds is symmetrical.

To compute the GLB of X and Y, we distinguish four cases according to
whether X and Y are original or introduced type variables. Introduced variables
are recognized by the fact that they are introduced with a constraint of the form
tclp_original up(X,0rigs), where Origs is the set of original variables above
introduced variable X.

tclp__original _up(X,0rigX), tclp__original_up(Y,Orig¥) \ tclp__vGLB(X,Y,GLB)
<=> list_to_ord_set(OrigX,S0rigX), list_to_ord_set(OrigY¥,SOrigY),
ord_union(SOrigX,SOrigY,0rigGLB),
tclp__GLBVar (OrigGLB,GLB) .
tclp__original_up(X,0rigX) \ tclp__vGLB(X,Y,GLB)
<=> list_to_ord_set (OrigX,S0OrigX),
ord_add_element (SOrigX,Y,0rigGLB),
tclp__original_up(X,0rigX) \ tclp__vGLB(Y,X,GLB) <=> tclp__vGLB(X,Y,GLB).
tclp__vGLB(X,Y,GLB) <=> list_to_ord_set([X,Y],0rigGLB),
tclp__GLBVar (OrigGLB,GLB) .
tclp__GLBVar(OrigGLB,GLB) :-
chr:findall_constraints(tclp__original_up(_,_), AllOrigs),
(find_VAR(Al1l0rigs, OrigGLB, GLB) -> true;
(tclp__original_down(GLB,[]),
tclp__original_up(GLB,OrigGLB),

tclp__parameter (GLB,term, [1, [1,bottom),
tclp__link_up(GLB,OrigGLB))).

The predicate tclp__GLBVar (OrigGLB,GLB) is true when GLB is the type
variable introduced for the set of original variables OrigGLB. The predicate
find VAR(A11l0rigs, Origs, Var), where A110rigs is the list of all constraints
of the form tclp_original up and Origs is a set of original variables, looks up
Origs in A110rigs and unifies Var with the corresponding variable in the con-
straint tclp__original up. Otherwise it fails, which means that no type variable
was introduced for the set Origs. The predicate tclp__link up(Var,List) puts
the constraint Var :< X for all Xs in List.

4.5 Overloading

The algorithm of section 2.2 for solving overloaded symbols is implemented in
CHR. Occurrences of overloaded symbols are given an unknown type of the
form ay X ... X a,—a, called an abstract type scheme, on which type checking
constraints are accumulated. The following rule reduce basically implements the
filtering step 1 of the algorithm, and may raise the failure rule or the instanciate
rule (step 2). The labeling rule (step 4) is not detailed.

reduce @ abstract_type(Id, AbstractScheme) \
multi_type(Id,ConcreteSchemes), do_reduce(N,Total)
<=> filter_schemes (AbstractScheme, ConcreteSchemes, NewConcreteSchemes),
multi_type(Id, NewConcreteSchemes),
(length(ConcreteSchemes, Length), length(NewConcreteSchemes, Length)
-> N1 is N+1, do_reduce(N1,Total)
; do_reduce(N,Total)).
failure @ abstract_type(Id, _), multi_type(Id,[]) <=> fail.
instanciate @ multi_type(Id,[ConcreteScheme]),
abstract_type(Id, AbstractScheme)
<=> apply_scheme (ConcreteScheme, AbstractScheme).
labeling @ label(Id), multi_type(Id, Types),
abstract_type(Id, AbstractScheme, F/N, Location)
<=> apply_one_scheme (AbstractScheme,Types),
reduce_all (Remaining),
(Remaining=0 -> true; label_functor).

5 TCLP types for ISO Prolog

5.1 Type structure

Figure 5.1 depicts the TCLP type structure we propose for ISO Prolog. This
type structure is completed in a lattice by adding a bottom type L below all
types. This type L is an empty type and is thus considered as an error type in
TCLP [6].

10

term

flag exception pair(A,B) functor phrase goa stream_or_dlias list(A) float int

close_option
write_option
read_option

stream_option directive clause stream atom byte
stream_property
io_mode \
pred character

Fig.1. TCLP type structure for ISO Prolog.

Metaprogramming predicates in ISO prolog basically impose that every object
can be decomposed as a term. This is treated in TCLP by subtyping with a type
term at the top of the lattice of types. Since bytes are integers with a restricted
value, we have byte < int. However we do not have a subtype relation between
int £ float. This choice is motivated by the fact that, in ISO Prolog, there is
no implicit coercion from integers to floats, in particular a unification like 1=1.0
fails in ISO Prolog. Another subtype relation is introduced for allowing coercions
from characters to atoms. The subtyping relations between stream, atom and
stream_or_alias are motivated by the fact that a stream can be replaced by
an alias, i.e. an atom. The type pred is the type of predicates, that is heads of
clauses as well as occurrences in the body of a clause or in a directive. For this
reason, predicates can be viewed both with the type clause (for clauses with an
empty body) and with type goal. This justifies the relations pred < clause and
pred < goal.

Parametric types are introduced for lists, with type list(a), and for pairs, with
type pair(a, 3). We thus have subtype relations list(«) < term and pair(a, 8) <
term, i.e. subtype relations between type constructors of different arities which
is responsible for the difficulty of subtype constraint solving in TCLP.

5.2 Metaprogramming and subtyping

The type term is used for term manipulation predicates, and can be used to
decompose any object, thanks to the subtype relation between any type and
term. Term manipulation predicates thus have the following types in TCLP:
functor : term X atom X int — pred, arg : int X term X term — pred, =..
: term x list(term) — pred, copy_term : @ X a — pred. Note that, as term
is the top element of the type lattice, each occurence of term in the type of
a predicate can be equivalently replaced by a fresh type variable, e.g. arg :
int X a X 8 — pred.

The type clause provides the possibility to type check dynamic predicate
declarations using the following type declarations: clause : pred X goal — pred,
asserta : clause — pred, assertz : clause — pred, retract : clause — pred,

11

abolish : functor — pred. One should ckeck however that the head condition
(see section2) is satisfied in order to ensure the property of subject reduction
at run-time [6]. The symbol : — for constructing clauses is thus type checked in
TCLP with a special rule that checks that its first argument is a Head not just
an Atom, according to table 1.

The dynamic types of objects can be tested with ISO Prolog predicates
var/1, atom/1, integer/1, float/1, atomic/1, compound/1, nonvar/1 and
number/1. These predicates are typed in TCLP with type term — pred, as
they are applicable to any ISO Prolog object. This marks a fundamental dif-
ference between a prescriptive type system like TCLP and a descriptive type
system which would instead type float : float — pred, as descriptive types are
in fact an approximation of the success set.

5.3 Arithmetic and overloading

Typing arithmetic expressions involves a large amount of overloading, because
of the interaction between int and float. We thus have the following types for
arithmetic operations: +,-,* : int xint — int and +,-,*,/ : float xint — float,
int X float — float and float x float — float.

Note that the ordering of the rules is important as far as only the first inferred
type is considered as the result of the type inference algorithm. Note also that
pairs in ISO Prolog are constructed with the same symbol minus -/2. The type
-:a X f — pair(a,) is thus also added to the types of -/2.

The experimental results reported below show that, despite the combinato-
rial nature of these overloaded type declarations, the handling of overloading
in TCLP does not produce a combinatorial explosion and remains efficient in
practical programs.

5.4 Options

Many system predicates in ISO Prolog come with a set of terms describing
either properties or options, e.g. open/3 comes with read, write and append.
We choose to associate a type to each set of options, that gives precise typings,
e.g. open : atom X io-mode X stream — pred. We use subtyping when a set of
options is completely included in another set of options, e.g. stream_option <
stream_property, otherwise we use overloading.

Many options are atomic and are thus overloaded with type atom. In the
previous version of TCLP without overloading, a common subtype between op-
tions and the type atom was introduced, but since these types have different
uses, overloading is preferred.

6 TCLP types for CLP(R,Q,FD,B)

In TCLP, the constraint domain of CLP(R) can be typed with the same type
float as Prolog. Similarly the constraint domain of CLP(F D) can be typed with

12

type int. The boolean domain of CLP (1) is a subset composed of values 0 and 1
of the finite domain F D composed of values 0 and 1. A new domain type boolean
is thus introduced as a subtype of int, boolean < int. In CLP(Q) the constraint
domain of rational numbers with infinite precision is typed a special type rat.
The inferred TCLP types for classical CLP(F D) examples are the expected
ones, like queens : int x list(int)— pred etc. On the other hand, on many CLP(R)
examples, the first inferred type is int instead of float, since in these examples
the arithmetic expressions involve simple operations with integer constants only.

7 Evaluation

Without overloading With overloading
File Type Checking| Type Inference |%exact| Type Check|Type Inf.|%exact
CAML CHR | CAML CHR CHR CHR
arrays.pl | 22s 21s | 11.9s 39s | 23% 2.5s 3.2s 68%
assoc.pl 53s 6.0s | 40.1s 13.6s| 68% 5.2s 13.5s | 91%
atts.pl 74s 55s | T75s 124s| 64% 6.4s 15.8s | 91%
bdb.pl 23.6s 20.2s| 41.1s 174s| 64% 16.1 s 21.7 s 66%
charsiopl | 1.3s 1.0s | 24s 13s | 33% 0.8s 3.8s 74%
clpb.pl 243s 22.7s|1827.3s 2248 s| n/a 18.4 s 204.9s | n/a
clpr.pl 304.45 s 445.1 s|3958.41 s 566 s | n/a n/a n/a n/a
fastrw.pl | 0.4s 05s | 0.7s 0.7s | 100% 04s 0.6s | 100%
heaps.pl 35s 42s | 433s 174s| 1% 3.5s 16.4s | 97%
jasperpl | 7.4s 27s | 120s 39s | 84% | 23s 30s | 84%
lists.pl 35s 38s | 162s 6.6s | 98% 3.5s 7.6 s 98%
ordsets.pl | 4.1s 52s | 1994s 44.8s| 97% 4.1s 492s | 97%
queues.pl | 0.6 s 0.7s 4.1s 1.5s | 75% 0.6 s 1.3 s 96%
sockets.pl | 6.8s 39s | 154s 53s | 68% 3.0s 43 s 92%
random.pl| 0.9s 1.0s 4158 1.0s | 55% 09s 0.9s 58%
terms.pl 25s 26s|308.7s 43s | ™% 2.5s 44 s 7%
trees.pl 14s 16s| 126s 3.2s | 31% 14s 3.0s 75%
ugraphs.pl| 48.2s 25.3s| 274.2s 353.5s| 67% 21.1s 350.2s | 67%
clpfd.pl 243s 348s| 59.6s 154.0s| n/a 33.1s 140.1s | n/a

Table 2. Performance on Sicstus Prolog libraries.

We compare the performances of two versions of TCLP. The first one, coded
in Objective Caml, uses the subtyping constraint solving library Wallace [14] by
F.Pottier. The second one, coded in Sicstus Prolog, uses the CHR implementa-
tion subtyping constraints described in section 4. For the latter implementation,
we also compare the typings with and without overloading.

The benchmarks are composed of 20 Sicstus Prolog libraries and of a Prolog
implementation of CLP(FD). The first column gives the CPU time for type

13

checking of both versions in CAML and CHR. The second column gives the
CPU time for type inference. The third column indicates the percentile of inferred
types which are identical to the (authors’) intended types. The last three columns
display these results for the CHR, implementation using a different type structure
and type declarations with overloading. This allows us to estimate the impact of
overloading both in terms of runtime efficiency and in terms of the performance
of the heuristics used for inferring types.

The significant increase of the percentile of exact types inferred with over-
loading can be explained by the more precise typings provided by overloaded
type declarations. In particular for arithmetic, in the version of TCLP without
overloading, the typing with float was always inferred, whereas in the version
of TCLP with overloading, the typing with [is inferred when possible. The
remaining differences between the heuristically inferred types and the intended
types in some examples are mainly due, on the one hand, to the permissive typ-
ing of equality =/2 : @ X a — pred which, when instanciated with type term,
does not provide communication between the types of its arguments [6], and on
the other hand, to the fact that only the first inferred type is considered.

One can notice that the times for type checking (resp. type inference) are
close whenever they are done with or without overloading. On the other hand,
although the type checking times between CAML and CHR implementations
are close, the CHR, implementation runs significantly faster for type inference.
The gain of efficiency on the CHR version of TCLP is explained by the ca-
pability of the CHR subtyping solver to unify type variables, while the CAML
implementation does not perform such unifications. When two type variables
T1 and T2 have to be unified, the CAML implementation adds the inequal-
ities T2 < T1, T1 < T2 to the store. In CHR, unification is done by the
rule type_ident @ V::T1 V::T2 <=> T1=T2. Since the complexity of Tri-
fonov and Smith decomposition (rules in proposition 1) is O(n?), simplification
by unification of type variables permits a significant speed-up on examples which
contain several occurrences of a same type variable.

The benchmark results show also that the practical cost of overloading is
low. This can be explained by the efficiency of the Andorra and looking ahead
principles in this case and, for a smaller part, by the removal of some subtype
relations from the type structure used with overloading.

8 Conclusion

The TCLP type system with overloading is a practical system for typing Prolog
and constraint logic programs. We have shown that the addition of overloading to
subtyping and parametric polymorphism is necessary to properly type arithmetic
predicates, and to deal with some overloaded symbols like minus which denotes
both subtraction and pairs in Prolog.

Type checking and type inference in TCLP involve the solving of complex
subtype inequality constraints. We have described an implementation of Pottier’s
algorithm in CHR which surprisingly outperformed the original implementation

14

in CAML, thanks to some simplifications by unification of type variables which
are natural to implement in CHR.

In the new implementation of TCLP in Prolog and CHR, overloading is
implemented by backtracking with the Andorra principle. We have shown that
this simple strategy is very efficient on large programs such as the Sicstus Prolog
implementation of CLP(R) for example. We have proposed TCLP types for ISO
Prolog and constraint logic programs, and used these types for typing the Sicstus
Prolog libraries and classical constraint logic programs.

As for future work, we plan to acquire more practical experience from the
users of TCLP [3] and extend TCLP to other languages. We plan also to use
the backtracking capabilities of the new Prolog-CHR implementation of type
constraints to experiment the solving of subtype inequality constraints in more
general structures than lattices (quasi-lattices, partial orders) for which the de-
cidability of subtype constraint satisfaction is an open problem [7,15].

References

1. R.M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on
Programming Languages and Systems, 15(4):575-631, 1993.

2. L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76(2/3):138-164, 1988.

3. E. Coquery. Tclp: a generic type checker for constraint logic programs, October
2000. http://pauillac.inria.fr/~coquery/tclp/.

4. V. Santos Costa, D.H.D. Warren, and R. Yang. The andorra-i preprocessor: Sup-
porting full prolog on the basic andorra model. In Proceedings of the 8th Inter-
national Conference on Logic Programming ICLP’91, pages 443-456. MIT Press,
1991.

5. B. Demoen, M. Garcia de la Banda, and P.J. Stuckey. Type constraint solving
for parametric and ad-hoc polymorphism. In Proceedings of the 22nd Australian
Computer Science Conference, pages 217-228, january 1999.

6. F. Fages and E. Coquery. Typing constraint logic programs. Theory and Practice
of Logic Programming, 1, November 2001.

7. A. Frey. Satisfying subtype inequalities in polynomial space. In Proceedings of
the 4th International Static Analysis Symposium SAS’97, number 1302 in LNCS,
1997.

8. T. Frihwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming, 37(1-3):95-138, Oc-
tober 1998.

9. Y.C. Fuh and P. Mishra. Type inference with subtypes. In Proc. ESOP’88, number
300 in LNCS, pages 94-114, 1988.

10. P. Hill and J. Lloyd. The Gdédel programming language. MIT Press, 1994.

11. T.K. Lakshman and U.S. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In V. Saraswat and K. Ueda, editors, Proceedings
of the 1991 International Symposium on Logic Programming, pages 202-217. MIT
Press, 1991.

12. J. Mitchell. Coercion and type inference. In Proceedings of the 11th Annual ACM
Symposium on Principles of Programming Languages POPL’8/, pages 175-185,
1984.

15

13

14.

15.

16.

17.

18.

19.

20.

A. Mycroft and R.A. O'Keefe. A polymorphic type system for prolog. Artificial
Intelligence, 23:295-307, 1984.

F. Pottier. Wallace: an efficient implementation of type inference with subtyping,
February 2000. http://pauillac.inria.fr/~fpottier/wallace/.

F. Pottier. Simplifying subtyping constraints: a theory. To appear in Information
and Computation, 2002.

G. Smolka. Logic programming with polymorphically order-sorted types. In
Algebraic and Logic Programming ALP’88, number 343 in LNCS, pages 53-70.
J. Grabowski, P. Lescanne, W. Wechler, 1988.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17-64, 1996.

J. Tiuryn. Subtype inequalities. In Proc. 7th IEEE symposium on logic in computer
science LICS’92, pages 308-315, 1992.

J. Tiuryn and M. Wand. Type reconstruction with recursive types and atomic
subtyping. In Proceedings of the 22nd Australian Computer Science Conference,
pages 217-228, january 1999.

V. Trifonov and S. Smith. Subtyping constrained types. In Proceedings of the 3rd
International Static Analysis Symposium SAS’96, number 1145 in LNCS, pages
349-365, 1996.

16

