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Abstra
t. This paper is a 
ontinuation of our previous work on the

TCLP type system for 
onstraint logi
 programming. Here we introdu
e

overloading in TCLP and des
ribe a new implementation of TCLP in the

Constraint Handling Rules language CHR. Overloading, that is assigning

several types to symbols, e.g. for integer and 
oating point arithmeti
,

makes it possible to avoid subtype relations like integer subtype of 
oat,

that are not faithful to the behavior of some predi
ates, e.g. uni�
a-

tion between an integer and its 
oat representation fails in ISO Prolog.

We des
ribe a new implementation of TCLP in Prolog and CHR where

overloading is resolved by ba
ktra
king with the Andorra prin
iple. Ex-

perimental results show that the new implementation of TCLP in CHR

outperforms the previous implementation in CAML w.r.t. both runtime

eÆ
ien
y, thanks to simpli�
ations by uni�
ation of type variables in

CHR, and w.r.t. the per
entile of exa
t types inferred by the TCLP type

inferen
e algorithm, thanks to overloading.

1 Introdu
tion

The notion of subtyping is a fundamental 
on
ept introdu
ed by Cardelli [2℄ and

by Mit
hell [12℄ in the 
ontext of fun
tional languages, as another form of poly-

morphism 
omplementing parametri
 polymorphism. The power of subtyping

rests on the subsumption rule, that expresses the substitutivity of any expres-

sion of type � wherever an expression of type �

0

is expe
ted, provided that � is

a subtype of �

0

:

(Sub)

U`t:� ���

0

U`t:�

0

Overloading, also 
alled ad ho
 polymorphism, allows assigning several types

to fun
tion or predi
ate symbols. Contrarily to subtyping, where all obje
ts of

some type � have all supertypes �

0

� � , the di�erent types assigned to overloaded

symbols are spe
i�
 to these symbols, that is why overloading is 
alled ad ho


polymorphism. Arithmeti
 operations naturally apply to both integer and real

numbers. For example, the addition + is naturally overloaded and 
an have types



int�int!int , int�
oat!
oat , 
oat�int!
oat , 
oat�
oat!
oat . In absen
e

of overloading, the same set of types 
an sometimes be obtained by subtyping

and 
onstrained types [15℄. For example + may be equivalently assigned type

8� � 
oat ���!�, with the subtype relation int � 
oat . Although elegant, this

approa
h does not generalize well, and overloading generally provides a greater


exibility than subtyping.

In this paper we add overloading to the TCLP type system for 
onstraint

logi
 programming [6℄. TCLP is a pres
riptive type system whi
h 
ombines sub-

typing with parametri
 polymorphism, and provides algorithms for type 
he
king

and type inferen
e for predi
ates. Parametri
 polymorphism, as introdu
ed for

Prolog in [13, 11℄ and in G�odel [10℄ and Mer
ury [17℄, allows typing homogeneous

lists with a polymorphi
 type list(�) whi
h 
an be instan
iated to types for rep-

resenting lists of integers, 
hara
ters, list of lists of integers, et
. Overloading

is 
onsidered in this setting in [5℄. TCLP adds to this approa
h subtyping as a

mean of typing metaprogramming predi
ates and automati
 
oer
ions between


onstraint domains. Metaprogramming predi
ates impose that all obje
ts 
an

be de
omposed as terms, hen
e a type term is introdu
ed as a supertype of all

types. In parti
ular, we have the subtype relations between type 
onstru
tors of

di�erent arities like list(�) � term .

Without subtyping, type inferen
e is equivalent to solving a system of equal-

ities between type expressions, whi
h 
an be done by uni�
ation. With sub-

typing, type inferen
e is equivalent to solving a system of inequalities between

type expressions. Several algorithms for solving subtyping inequalities have been

proposed in the literature. They 
an be 
lassi�ed along several axes:

{ the domain of types: �nite types [12, 9, 7℄, regular (re
ursive) types [1, 20,

15℄, or in�nite types [19℄,

{ the stru
ture of types: latti
es [1, 18, 15℄, quasi-latti
es [16℄ posets with suprema

[6℄, partial orders [7℄,

{ the subtyping relation: stru
tural extension of a subtyping relation on basi


types, subtyping relation between di�erent type 
onstru
tors with the same

arity [7℄, or between type 
onstru
tors of di�erent arities [15, 6℄.

In this paper we des
ribe a new implementation of TCLP in Prolog and

the Constraint Handling Rules language CHR [8℄. In se
tion 2, we review the

algorithms involved in TCLP and show how overloading 
an be treated by ba
k-

tra
king with the Andorra prin
iple. In se
tion 3 we des
ribe the implementation

in CHR of Pottier's algorithm for solving subtype inequality 
onstraints. In se
-

tion 5 we propose TCLP types for ISO prolog, CLP(R), CLP(Q), CLP(FD)

and CLP(B). In se
tion 7 we report our evaluation results on 20 Si
stus Prolog

libraries and on standard CLP programs. We show that the new implementa-

tion of TCLP in CHR outperforms the previous implementation in CAML w.r.t.

both runtime eÆ
ien
y, thanks to simpli�
ations by uni�
ation of type vari-

ables in CHR, and w.r.t. the per
entile of exa
t types inferred by the TCLP

type inferen
e algorithm, thanks to overloading. In parti
ular we show that the

Andorra prin
iple suÆ
es to deal eÆ
iently with overloaded symbols in TCLP,
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and that more sophisti
ated 
onstraint programming te
hniques, like e.g. 
on-

stru
tive disjun
tion, were not ne
essary to type 
he
k pra
ti
al programs with

overloading.

2 Adding overloading to the TCLP type system

2.1 TCLP Type 
he
king

The typing rules of TCLP basi
ally add the subtyping rule of Cardelli and

Mit
hell [2, 12℄ to the rules of My
roft and O'Keefe [13℄. By a simple trans-

formation [6℄ we get the rules depi
ted in table 1 for deriving type judgments of

the form U ` typed expression where U is a typing for variables.

(Var) fx : �; : : :g ` x : �

(Fun
)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`f

�

1

:::�

n

!�

(t

1

;:::;t

n

):��

� is a type substitution

(Atom)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Atom

� is a type substitution

(Head)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Head

� is a renaming substitution

(Query)

U`A

1

Atom ::: U`A

n

Atom

U`A

1

;:::;A

n

Query

(Clause)

U`Q Query U`A Head

U`A Q Clause

Table 1. The TCLP typing rules.

The distin
tion between rules Head and Atom expresses the usual de�nitional

generi
ity prin
iple [11℄ whi
h states that the type of a de�ning o

urren
e of a

predi
ate (i.e. at the left of \ " in a 
lause) must be equivalent up-to renaming

to the assigned type of the predi
ate. The rule Head used for deriving the type

of the head of the 
lause is thus not allowed to use substitutions other than vari-

able renamings in the de
lared type of the predi
ate. The de�nitional generi
ity


ondition is useful to the subje
t redu
tion properties of TCLP [6℄.

Without overloading, the TCLP typing rules are deterministi
, i.e. the syntax

of the expression at hand determines the rules to apply. Therefore type 
he
king

in TCLP basi
ally amounts to 
olle
ting all subtype inequalities along a deriva-

tion of the expression, and 
he
king their satis�ability in the stru
ture of types.
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We refer to [6℄ for more details on the type 
he
king algorithm and to se
tion 3

for the solving of subtyping 
onstraints.

2.2 Overloading by ba
ktra
king under the Andorra prin
iple

Overloaded symbols make the typing rules non deterministi
 as they may have

several types, i.e. di�erent possible types for their arguments or their result.

The Andorra prin
iple, introdu
ed for the parallelization of Prolog one de
ade

ago [4℄, is the well-known prin
iple that 
onsists in delaying the exe
ution of


hoi
e points until the time where all deterministi
 goals have been exe
uted.

We shall see that this simple 
ontrol strategy, at the heart of 
onstraint pro-

gramming, is suÆ
ient to eÆ
iently handle overloaded symbols in TCLP. The

idea is that the 
ontext of an expression 
ontaining overloaded symbols usually

provides suÆ
ient information to disambiguate the type of overloaded symbols.

Hen
e, by simply delaying 
hoi
e points, the type information 
oming from the


ontext suÆ
es to determine the type of overloaded symbols. If this is not suf-

�
ient, then the di�erent types 
an be enumerated by ba
ktra
king under the

Andorra prin
iple and some simple prin
iple of looking ahead. The algorithm

for enumerating the types of overloaded symbols pro
eeds as follows:

1. the types of overloaded symbol o

urren
es are 
he
ked w.r.t. the 
urrent

store and all unfeasible types are eliminated, if all types of a symbol o

ur-

ren
e are eliminated it is a failure,

2. if some symbol o

urren
e has only one type left, the 
orresponding subtyp-

ing 
onstraints are added to the store,

3. the �rst two steps are iterated until a �xpoint is rea
hed.

4. then a non resolved symbol is 
hosen, and ea
h possible type is tried by

iterating the whole pro
edure by ba
ktra
king.

The �rst two steps are parti
ularly eÆ
ient as they often let the 
ontext dis-

ambiguate the type of overloaded symbols. The result of this treatment of over-

loading in type 
he
king mode is a su

ess if one typing makes the subtyping


onstraints solvable, and a failure if all types fail. The result in type inferen
e

mode is an enumeration of inferred types.

2.3 TCLP type inferen
e

In a pres
riptive type system, type re
onstru
tion algorithms are useful to omit

type de
larations in programs, and still 
he
k the typability of the program

by the possibility or not to infer the omitted types [11℄. In TCLP, a predi
ate


an a

ept any argument of a type below the de
lared type of the predi
ate.

Therefore when inferen
ing the type of a predi
ate from the 
lauses de�ning the

predi
ate, it is always possible to infer the most general, yet not informative,

type. In parti
ular if there is a type term whi
h a supertype of any type, the

typing of any predi
ate with type term is always a valid typing.

For these reasons, type inferen
e in TCLP is heuristi
. First, a minimum type

is inferred for the predi
ate a

ording to the type of the arguments found in the
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de�ning 
lauses of the predi
ate. Then a heuristi
 type is inferred a

ording to

the bounds of the types of the arguments found in the de�ning 
lauses. That

heuristi
 type is �nally made polymorphi
 by trying to repla
e unbounded types

by type parameters. We refer to [6℄ for the details of the TCLP type inferen
e

algorithm.

When adding overloading, the TCLP type inferen
e algorithm be
omes non

deterministi
. Several inferred types 
an be enumerated a

ording to the di�erent

types for the overloaded symbols. In the experimental results reported below,

only the �rst inferred type is 
onsidered.

3 Solving subtype inequalities

The hard part of the TCLP implementation is in the solving of subtype inequal-

ities. Only re
ently algorithms have been found for solving subtype relations

between symbols of di�erent arities, like list(�℄ � term, and their de
idability

in type stru
tures more general than latti
es is still an open problem [7℄.

The solving of subtype inequalities is the following problem:

Input: a system of subtype relations

V

n

i=1

�

i

��

0

i

Output: does there exist a substitution � su
h that

V

n

i=1

�

i

���

0

i

�? A better

output is to exhibit a minimal or maximal solution. A minimal (resp. maximal)

is a solution � su
h that for any solution �

0

there exists a substitution �

00

su
h

that 8� 2 V ���

00

� ��

0

(resp. 8� 2 V ���

00

� ��

0

).

3.1 TCLP types

TCLP deals with a stru
ture of partially ordered terms, 
alled poterms, for rep-

resenting types with variables (parameters) and subtyping. For our purpose in

this paper, it is 
onvenient to make some 
hanges in the assumptions des
ribed

for TCLP in [6℄. Here it will be simpler to �rst 
onsider the solving of subtyp-

ing inequalities over in�nite (regular) types instead of �nite types. Proposition

3 below shows that in the 
ontext of TCLP type inferen
e the solving over �nite

types is equivalent to solving over in�nite types. Moreover we shall assume that

the set of types ordered by the subtyping relation is a latti
e. On the other hand,

we shall relax the \arity de
reasing" assumption made in [6℄.

Let K be a �nite set of type 
onstru
tors 
ontaining the symbols ? and >.

With ea
h symbol K 2 K, an aritym � 0 is asso
iated, the symbol with its arity

is noted K=m. Let U be a 
ountable set of type variables, also 
alled parameters,

denoted by �; �; :::. An in�nite type � is an in�nite term formed over K and U ,

i.e. a partial fun
tion from strings of integers to symbols, � : (N

+

)

�

! K [ U ,

su
h that i) dom(�) is non-empty and pre�x-
losed, ii) if �(w) = K=n 2 K then

fw0; :::; wng � dom(�) iii) if �(w) = � 2 U then wi 62 dom(�) for any i 2 N

+

.

The subterm of � at w 2 dom(�) is the type �=w = �w

0

:�(ww

0

). An in�nite type

is regular if it 
ontains a �nite number of subterms. A �nite type is a type with

a �nite domain. We denote T the set of regular types over K and U .
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The set of type variables in a type � is denoted by V (�). The set of ground

types G is the set of regular types 
ontaining no variable. A 
at type is a �nite

type of the formK(�

1

; : : : ; �

m

), whereK 2 K and the �

i

are distin
t parameters.

Now, an order �

K

is assumed on type 
onstru
tors su
h that (K;�

K

;?;>)

forms a latti
e. Moreover, we assume that with ea
h pair K=m �

K

K

0

=m

0

, a

partial inje
tive mapping between arguments �

K;K

0

: f1; : : : ;mg ! f1; : : : ;m

0

g

is asso
iated su
h that �

K;K

00

= �

K;K

0

Æ �

K

0

;K

00

whenever K �

K

K

0

�

K

K

00

.

These assumptions mean that the arguments of 
omparable 
onstru
tors are

mapped 
onsistently with �

K

. We also assume that if K

00

=n = glb(K;K

0

) then

dom(�

K

00

;K

) [ dom(�

K

00

;K

0

) = [1; n℄, that is greatest lower bounds do not in-

trodu
e new parameters. Similarly, if K

00

=n = lub(K;K

0

) then range(�

K;K

00

) [

range(�

K

0

;K

00

) = [1; n℄. The order on type 
onstru
tors is extended to a 
ovariant

subtyping order � on in�nite types. The order � is de�ned as the interse
tion of

the following preorders:

{ �

0

= T � T ,

{ for any k 2 N , let � �

k+1

�

0

holds if and only if

� either �; �

0

2 U and � = �

0

� or �(�) �

K

�

0

(�) and 8i 2 dom(�(�(�); �

0

(�))) �=i �

k

�

0

=�(�(�); �

0

(�))(i)

{ �=

T

k2N

+

�

k

.

One 
an 
he
k that � is an ordering relation and that on ground types, (G;�

;?;>) forms a latti
e [15℄.

Contravariant type 
onstru
tors, where the ordering relation for 
omparing

some of their arguments is reversed, are not 
onsidered in this paper. Therefore,

if int �

K


oat for some basi
 types int and 
oat then we have list(int) �

list(
oat) and list(
oat) 6� list(int). We also have list(
oat) 6� list(�) as the

subtyping order does not in
lude the instantiation preorder. Intuitively, a ground

type represents a set of expressions, and the subtyping order between ground

types 
orresponds to set in
lusion. Parametri
 types do not dire
tly support this

interpretation, their parameters denote unknown types, like logi
al variables.

3.2 Solving subtype inequalities

We 
onsider systems of subtype inequalities between variables and 
at types,

that is types of the form � � �, K(�

1

; :::�

n

) � � or � � K(�

1

; :::�

n

). Non


at types 
an be represented in this form by introdu
ing new variables and

inequalities between these variables and the type they represent.

Proposition 1. [1, 20℄ A system of subtype inequalities in a latti
e of regular

(or in�nite) types is satis�able i� it is de
omposable with the following rules:

Trans �; � � �; � � 
 �! �; � � �; � � 
; � � 


if � � 
 62 � and � 6= 
.

Clash �; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

) �! false

if K 6�

K

K

0

.

De
 �; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

) �!

�; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

); f�

i

� �

0

�(i)

g

i2dom(�)

if K �

K

K

0

, � = �

K;K

0

and f�

i

� �

0

�(i)

g

i2dom(�)

6� � [ f� � �g.
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Exhibiting minimal and maximal solutions ne
essitates some extra work. For

the sake of presentation, we assume that the initial system to be solved, �

0

over variables V

0

, is �rst 
ompleted by introdu
ing new variables 


S

and Æ

S

for

ea
h non empty subset S of V

0

, and by adding the inequalities 


S

� � and

� � Æ

S

for all variables � 2 S. We also assume that the system is 
ompleted by

adding the inequality � � � for ea
h variable �. Given a system � and a set of

variables S we de�ne the variable 
(S;�) = 


f�2V

0

j9�2S ���2�g

and similarly

Æ(S;�) = Æ

f�2V

0

j9�2S ���2�g

.

Proposition 2. [15℄ In a system of subtype inequalities simpli�ed with the ad-

ditional rules below, the identi�
ation of all parameters to their lower bound

lb(�) (resp. upper bound ub(�)) provides a minimum solution (resp. maximum

solution).

(Glb) �; � � K(�

1

; :::; �

m

); � � �; � � K

0

(�

0

1

; :::; �

0

n

) �!

�; � � K

00

(�

00

1

; :::; �

00

l

); � � �; � � K

0

(�

0

1

; :::; �

0

n

); �

0

if K

00

6= K or �

0

6� � [ f� � �g,

where K

00

= glb(K;K

0

), � = �

K

00

;K

; �

0

= �

K

00

;K

0

,

�

00

k

= 
(f�

�(k)

; �

0

�

0

(k)

g; � [ f� � �g) for all 1 � k � l,

�

0

= f�

00

k

� �

�(k)

g

k2dom(�)

[ f�

00

k

� �

0

�

0

(k)

g

k2dom(�

0

)

(Lub) �; K(�

1

; :::; �

m

) � �; � � �; K

0

(�

0

1

; :::; �

0

n

) � � �! : : :

�; K(�

1

; :::; �

m

) � �; � � �; K

00

(�

00

1

; :::; �

00

l

) � �; �

0

if K

00

6= K

0

or �

0

6� � [ f� � �g,

where K

00

= lub(K;K

0

), � = �

K;K

00

; �

0

= �

K

0

;K

00

,

�

00

k

= Æ(f�

�

�1

(k)

; �

0

�

0�1

(k)

g; � [ f� � �g) for all 1 � k � l,

�

0

= f�

i

� �

00

�(i)

g

i2dom(�)

[ f�

0

j

� �

00

�

0

(j)

g

j2dom(�

0

)

A system of subtype inequalities � is a
y
li
 if there exists a ranking fun
tion

on type variables r : U ! N su
h that if � � � 2 �, � 2 V (�) and � 2 V (�)

then r(�) < r(�). In [6℄ it is shown that the systems of subtype inequalities for

TCLP type 
he
king and type inferen
e are a
y
li
, moreover:

Proposition 3. [6℄ An a
y
li
 system of inequalities is satis�able over �nite

types if and only if it is satis�able over regular types.

The simpli�
ation rules given in this se
tion are at the heart of TCLP al-

gorithms for type 
he
king and type inferen
e. The next se
tion des
ribes their

implementation in the Constraint Handling Rules language CHR [8℄.

4 Implementation of TCLP in CHR

4.1 Representing the subtype latti
e

The subtype latti
e 
an be des
ribed with three predi
ates t
lp le(T1,T2)

t
lp glb(T1,T2,GLB) and t
lp lub(T1,T2,LUB), for de�ning subtyping rela-

tions between type 
onstru
tors, greatest lower bounds and lowest upper bounds

respe
tively. These predi
ates 
an use the 
onstraints :<,t
lp vGLB and t
lp vLUB
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de�ned in the following se
tions for expressing subtyping 
onstraints on argu-

ments. The user enters high level des
riptions of the order and the program

generates the dynami
 
lauses for t
lp le/2, t
lp glb/3 and t
lp lub/3,


orresponding to these de
larations. For example, the following type de
larations

with the (impli
it) subtype relations:

:- type int.

:- type list(A).

:- order int < term.

:- order list(A) < term.

generates the following 
lauses (the 
lauses for t
lp lub are symmetri
al) :

t
lp__le(list(_),term).

t
lp__le(list(T1),list(T2)) :- T1 :< T2.

t
lp__glb(int,term,int).

t
lp__glb(term,list(T),list(T)).

t
lp__glb(list(T1),list(T2),list(T3)) :- t
lp__vGLB(T1,T2,T3).

4.2 Representing type variables

The set of simpli�
ation rules given in se
tion 3 
ould be translated quite dire
tly

in CHR. However, for eÆ
ien
y reasons, it is preferable to introdu
e for ea
h

type variable � a data stru
ture t
lp parameter(A,UB,USet,LSet,LB) whi
h

en
apsulates its 
urrent upper and lower bounds ub(�), lb(�), and the list USet

(resp. LSet) of type variables in the right hand side (resp. left hand side) of an

inequality with � in the system. The t
lp update (loset, hiset, lobound)


onstraints are used to trigger 
hanges in t
lp parameter.

t
lp__update_hibound(X,Hibound) ,

t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX)

<=> t
lp__glb(HiboundX, Hibound, NewHibound),

t
lp__parameter(X, NewHibound, HisetX, LosetX, LoboundX).

t
lp__update_hiset(X, Hiset) ,

t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX)

<=> list_to_ord_set(HisetX, SHisetX),

ord_union(Hiset, SHisetX, NewHiset),

t
lp__parameter(X, HiboundX, NewHiset, LosetX, LoboundX).

t
lp__update_hiset_s([X|L℄,Hiset) :- t
lp__update_hiset(X, Hiset),

t
lp__update_hiset_s(L, Hiset).

4.3 Type inequalities

The 
onstraint X :< Y represents a subtyping 
onstraint between X and Y. The

predi
ates t
lp transup and t
lp transinf transform non 
at types into 
at

ones.

X :< Y <=> var(X),var(Y) | t
lp__var_ineq(X,Y).

X :< Y <=> nonvar(X),var(Y) | t
lp__transinf(X,XFlat) , t
lp__lo(XFlat,Y).

X :< Y <=> var(X), nonvar(Y) | t
lp__transup(Y,YFlat) , t
lp__hi(X,YFlat).

t
lp__var_ineq(X,X) <=> true.
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t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX),

t
lp__parameter(Y, HiboundY, HisetY, LosetY, LoboundY) \

t
lp__var_ineq(X,Y) <=> true |

list_to_ord_set(HisetX,SHisetX),

( ord_member(Y,SHisetX) -> true ;

( list_to_ord_set(LosetX, SLosetX),

ord_add_element(SLosetX,X,Loset),

list_to_ord_set(HisetY,SHisetY),

ord_add_element(SHisetY,Y,Hiset),

t
lp__update_hiset_s(Loset, Hiset),

t
lp__update_loset_s(Hiset, Loset),

t
lp__update_hibound_s(Loset, HiboundY),

t
lp__update_lobound_s(Hiset, LoboundX),

t
lp__le(LoboundX, HiboundY) ) ).

t
lp__parameter(X, HiboundX, HisetX, LosetX, LoboundX) \

t
lp__hi(X,Hibound) <=> t
lp__update_hibound_s([ X | LosetX ℄, Hibound),

t
lp__le(LoboundX,NewHiboundX).

There is also a rule to treat the 
ase where a type variable has two 
onstraints

t
lp parameter, whi
h happens when one uni�es two type variables. The rule

is similar to the one for treating an inequality between two variables.

4.4 Computing GLBs and LUBs

The 
omputation of the GLB (resp. LUB) of two 
at types is done with de
-

larations t
lp glb (resp. t
lp glb). Below we des
ribe the 
omputation of

greatest lower bounds of two type variables with the predi
ate t
lp vGLB. The

t
lp vLUB for least upper bounds is symmetri
al.

To 
ompute the GLB of X and Y, we distinguish four 
ases a

ording to

whether X and Y are original or introdu
ed type variables. Introdu
ed variables

are re
ognized by the fa
t that they are introdu
ed with a 
onstraint of the form

t
lp original up(X,Origs), where Origs is the set of original variables above

introdu
ed variable X.

t
lp__original_up(X,OrigX), t
lp__original_up(Y,OrigY) \ t
lp__vGLB(X,Y,GLB)

<=> list_to_ord_set(OrigX,SOrigX), list_to_ord_set(OrigY,SOrigY),

ord_union(SOrigX,SOrigY,OrigGLB),

t
lp__GLBVar(OrigGLB,GLB).

t
lp__original_up(X,OrigX) \ t
lp__vGLB(X,Y,GLB)

<=> list_to_ord_set(OrigX,SOrigX),

ord_add_element(SOrigX,Y,OrigGLB),

t
lp__original_up(X,OrigX) \ t
lp__vGLB(Y,X,GLB) <=> t
lp__vGLB(X,Y,GLB).

t
lp__vGLB(X,Y,GLB) <=> list_to_ord_set([X,Y℄,OrigGLB),

t
lp__GLBVar(OrigGLB,GLB).

t
lp__GLBVar(OrigGLB,GLB) :-


hr:findall_
onstraints(t
lp__original_up(_,_), AllOrigs),

( find_VAR(AllOrigs, OrigGLB, GLB) -> true;

( t
lp__original_down(GLB,[℄),

t
lp__original_up(GLB,OrigGLB),

9



t
lp__parameter(GLB,term,[℄,[℄,bottom),

t
lp__link_up(GLB,OrigGLB) ) ).

The predi
ate t
lp GLBVar(OrigGLB,GLB) is true when GLB is the type

variable introdu
ed for the set of original variables OrigGLB. The predi
ate

find VAR(AllOrigs, Origs, Var), where AllOrigs is the list of all 
onstraints

of the form t
lp original up and Origs is a set of original variables, looks up

Origs in AllOrigs and uni�es Var with the 
orresponding variable in the 
on-

straint t
lp original up. Otherwise it fails, whi
h means that no type variable

was introdu
ed for the set Origs. The predi
ate t
lp link up(Var,List) puts

the 
onstraint Var :< X for all Xs in List.

4.5 Overloading

The algorithm of se
tion 2.2 for solving overloaded symbols is implemented in

CHR. O

urren
es of overloaded symbols are given an unknown type of the

form �

1

� ::: � �

n

!�, 
alled an abstra
t type s
heme, on whi
h type 
he
king


onstraints are a

umulated. The following rule redu
e basi
ally implements the

�ltering step 1 of the algorithm, and may raise the failure rule or the instan
iate

rule (step 2). The labeling rule (step 4) is not detailed.

redu
e � abstra
t_type(Id, Abstra
tS
heme) \

multi_type(Id,Con
reteS
hemes), do_redu
e(N,Total)

<=> filter_s
hemes(Abstra
tS
heme, Con
reteS
hemes, NewCon
reteS
hemes),

multi_type(Id, NewCon
reteS
hemes),

( length(Con
reteS
hemes, Length), length(NewCon
reteS
hemes, Length)

-> N1 is N+1, do_redu
e(N1,Total)

; do_redu
e(N,Total) ).

failure � abstra
t_type(Id, _), multi_type(Id,[℄) <=> fail.

instan
iate � multi_type(Id,[ Con
reteS
heme ℄),

abstra
t_type(Id, Abstra
tS
heme)

<=> apply_s
heme(Con
reteS
heme, Abstra
tS
heme).

labeling � label(Id), multi_type(Id, Types),

abstra
t_type(Id, Abstra
tS
heme, F/N, Lo
ation)

<=> apply_one_s
heme(Abstra
tS
heme,Types),

redu
e_all(Remaining),

(Remaining=0 -> true; label_fun
tor).

5 TCLP types for ISO Prolog

5.1 Type stru
ture

Figure 5.1 depi
ts the TCLP type stru
ture we propose for ISO Prolog. This

type stru
ture is 
ompleted in a latti
e by adding a bottom type ? below all

types. This type ? is an empty type and is thus 
onsidered as an error type in

TCLP [6℄.
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directive

term

pred

clause

functor phrase goal float int

stream

stream_or_aliaspair(A,B)exception

byteatom

character

flag
close_option
write_option
read_option

stream_option
stream_property

io_mode

list(A)

Fig. 1. TCLP type stru
ture for ISO Prolog.

Metaprogramming predi
ates in ISO prolog basi
ally impose that every obje
t


an be de
omposed as a term. This is treated in TCLP by subtyping with a type

term at the top of the latti
e of types. Sin
e bytes are integers with a restri
ted

value, we have byte < int. However we do not have a subtype relation between

int 6< float. This 
hoi
e is motivated by the fa
t that, in ISO Prolog, there is

no impli
it 
oer
ion from integers to 
oats, in parti
ular a uni�
ation like 1=1.0

fails in ISO Prolog. Another subtype relation is introdu
ed for allowing 
oer
ions

from 
hara
ters to atoms. The subtyping relations between stream, atom and

stream or alias are motivated by the fa
t that a stream 
an be repla
ed by

an alias, i.e. an atom. The type pred is the type of predi
ates, that is heads of


lauses as well as o

urren
es in the body of a 
lause or in a dire
tive. For this

reason, predi
ates 
an be viewed both with the type 
lause (for 
lauses with an

empty body) and with type goal. This justi�es the relations pred < 
lause and

pred < goal.

Parametri
 types are introdu
ed for lists, with type list(�), and for pairs, with

type pair (�; �). We thus have subtype relations list(�) < term and pair (�; �) <

term, i.e. subtype relations between type 
onstru
tors of di�erent arities whi
h

is responsible for the diÆ
ulty of subtype 
onstraint solving in TCLP.

5.2 Metaprogramming and subtyping

The type term is used for term manipulation predi
ates, and 
an be used to

de
ompose any obje
t, thanks to the subtype relation between any type and

term. Term manipulation predi
ates thus have the following types in TCLP:

fun
tor : term � atom � int ! pred, arg : int � term � term ! pred, =..

: term � list(term) ! pred, 
opy term : � � � ! pred. Note that, as term

is the top element of the type latti
e, ea
h o

uren
e of term in the type of

a predi
ate 
an be equivalently repla
ed by a fresh type variable, e.g. arg :

int� �� � ! pred.

The type 
lause provides the possibility to type 
he
k dynami
 predi
ate

de
larations using the following type de
larations: 
lause : pred�goal ! pred,

asserta : 
lause ! pred, assertz : 
lause ! pred, retra
t : 
lause ! pred,
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abolish : fun
tor ! pred. One should 
ke
k however that the head 
ondition

(see se
tion2) is satis�ed in order to ensure the property of subje
t redu
tion

at run-time [6℄. The symbol : � for 
onstru
ting 
lauses is thus type 
he
ked in

TCLP with a spe
ial rule that 
he
ks that its �rst argument is a Head not just

an Atom, a

ording to table 1.

The dynami
 types of obje
ts 
an be tested with ISO Prolog predi
ates

var/1, atom/1, integer/1, float/1, atomi
/1, 
ompound/1, nonvar/1 and

number/1. These predi
ates are typed in TCLP with type term ! pred, as

they are appli
able to any ISO Prolog obje
t. This marks a fundamental dif-

feren
e between a pres
riptive type system like TCLP and a des
riptive type

system whi
h would instead type float : float! pred, as des
riptive types are

in fa
t an approximation of the su

ess set.

5.3 Arithmeti
 and overloading

Typing arithmeti
 expressions involves a large amount of overloading, be
ause

of the intera
tion between int and float. We thus have the following types for

arithmeti
 operations: +,-,* : int�int! int and +,-,*,/ : float�int! float,

int� float! float and float� float! float.

Note that the ordering of the rules is important as far as only the �rst inferred

type is 
onsidered as the result of the type inferen
e algorithm. Note also that

pairs in ISO Prolog are 
onstru
ted with the same symbol minus -/2. The type

- : �� � ! pair(�; �) is thus also added to the types of -/2.

The experimental results reported below show that, despite the 
ombinato-

rial nature of these overloaded type de
larations, the handling of overloading

in TCLP does not produ
e a 
ombinatorial explosion and remains eÆ
ient in

pra
ti
al programs.

5.4 Options

Many system predi
ates in ISO Prolog 
ome with a set of terms des
ribing

either properties or options, e.g. open/3 
omes with read, write and append.

We 
hoose to asso
iate a type to ea
h set of options, that gives pre
ise typings,

e.g. open : atom � io mode � stream ! pred. We use subtyping when a set of

options is 
ompletely in
luded in another set of options, e.g. stream option <

stream property, otherwise we use overloading.

Many options are atomi
 and are thus overloaded with type atom. In the

previous version of TCLP without overloading, a 
ommon subtype between op-

tions and the type atom was introdu
ed, but sin
e these types have di�erent

uses, overloading is preferred.

6 TCLP types for CLP(R,Q,FD,B)

In TCLP, the 
onstraint domain of CLP(R) 
an be typed with the same type


oat as Prolog. Similarly the 
onstraint domain of CLP(FD) 
an be typed with
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type int . The boolean domain of CLP(B) is a subset 
omposed of values 0 and 1

of the �nite domain FD 
omposed of values 0 and 1. A new domain type boolean

is thus introdu
ed as a subtype of int , boolean < int . In CLP(Q) the 
onstraint

domain of rational numbers with in�nite pre
ision is typed a spe
ial type rat .

The inferred TCLP types for 
lassi
al CLP(FD) examples are the expe
ted

ones, like queens : int�list(int)!pred et
. On the other hand, on many CLP(R)

examples, the �rst inferred type is int instead of 
oat , sin
e in these examples

the arithmeti
 expressions involve simple operations with integer 
onstants only.

7 Evaluation

Without overloading With overloading

File Type Che
king Type Inferen
e %exa
t Type Che
k Type Inf. %exa
t

CAML CHR CAML CHR CHR CHR

arrays.pl 2.2 s 2.1 s 11.9 s 3.9 s 23% 2.5 s 3.2 s 68%

asso
.pl 5.3 s 6.0 s 40.1 s 13.6 s 68% 5.2 s 13.5 s 91%

atts.pl 7.4 s 5.5 s 77.5 s 12.4 s 64% 6.4 s 15.8 s 91%

bdb.pl 23.6 s 20.2 s 41.1 s 17.4 s 64% 16.1 s 21.7 s 66%


harsio.pl 1.3 s 1.0 s 2.4 s 1.3 s 33% 0.8 s 3.8 s 74%


lpb.pl 24.3 s 22.7 s 1827.3 s 224.8 s n/a 18.4 s 204.9 s n/a


lpr.pl 304.45 s 445.1 s 3958.41 s 566 s n/a n/a n/a n/a

fastrw.pl 0.4 s 0.5 s 0.7 s 0.7 s 100% 0.4 s 0.6 s 100%

heaps.pl 3.5 s 4.2 s 43.3 s 17.4 s 71% 3.5 s 16.4 s 97%

jasper.pl 7.4 s 2.7 s 12.0 s 3.9 s 84% 2.3 s 3.0 s 84%

lists.pl 3.5 s 3.8 s 16.2 s 6.6 s 98% 3.5 s 7.6 s 98%

ordsets.pl 4.1 s 5.2 s 199.4 s 44.8 s 97% 4.1 s 49.2 s 97%

queues.pl 0.6 s 0.7 s 4.1 s 1.5 s 75% 0.6 s 1.3 s 96%

so
kets.pl 6.8 s 3.9 s 15.4 s 5.3 s 68% 3.0 s 4.3 s 92%

random.pl 0.9 s 1.0 s 4.1 s 1.0 s 55% 0.9 s 0.9 s 58%

terms.pl 2.5 s 2.6 s 308.7 s 4.3 s 77% 2.5 s 4.4 s 77%

trees.pl 1.4 s 1.6 s 12.6 s 3.2 s 31% 1.4 s 3.0 s 75%

ugraphs.pl 48.2 s 25.3 s 274.2 s 353.5 s 67% 21.1 s 350.2 s 67%


lpfd.pl 24.3 s 34.8 s 59.6 s 154.0 s n/a 33.1 s 140.1 s n/a

Table 2. Performan
e on Si
stus Prolog libraries.

We 
ompare the performan
es of two versions of TCLP. The �rst one, 
oded

in Obje
tive Caml, uses the subtyping 
onstraint solving library Walla
e [14℄ by

F.Pottier. The se
ond one, 
oded in Si
stus Prolog, uses the CHR implementa-

tion subtyping 
onstraints des
ribed in se
tion 4. For the latter implementation,

we also 
ompare the typings with and without overloading.

The ben
hmarks are 
omposed of 20 Si
stus Prolog libraries and of a Prolog

implementation of CLP(FD). The �rst 
olumn gives the CPU time for type
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he
king of both versions in CAML and CHR. The se
ond 
olumn gives the

CPU time for type inferen
e. The third 
olumn indi
ates the per
entile of inferred

types whi
h are identi
al to the (authors') intended types. The last three 
olumns

display these results for the CHR implementation using a di�erent type stru
ture

and type de
larations with overloading. This allows us to estimate the impa
t of

overloading both in terms of runtime eÆ
ien
y and in terms of the performan
e

of the heuristi
s used for inferring types.

The signi�
ant in
rease of the per
entile of exa
t types inferred with over-

loading 
an be explained by the more pre
ise typings provided by overloaded

type de
larations. In parti
ular for arithmeti
, in the version of TCLP without

overloading, the typing with 
oat was always inferred, whereas in the version

of TCLP with overloading, the typing with

R

is inferred when possible. The

remaining di�eren
es between the heuristi
ally inferred types and the intended

types in some examples are mainly due, on the one hand, to the permissive typ-

ing of equality =/2 : � � � ! pred whi
h, when instan
iated with type term,

does not provide 
ommuni
ation between the types of its arguments [6℄, and on

the other hand, to the fa
t that only the �rst inferred type is 
onsidered.

One 
an noti
e that the times for type 
he
king (resp. type inferen
e) are


lose whenever they are done with or without overloading. On the other hand,

although the type 
he
king times between CAML and CHR implementations

are 
lose, the CHR implementation runs signi�
antly faster for type inferen
e.

The gain of eÆ
ien
y on the CHR version of TCLP is explained by the 
a-

pability of the CHR subtyping solver to unify type variables, while the CAML

implementation does not perform su
h uni�
ations. When two type variables

T1 and T2 have to be uni�ed, the CAML implementation adds the inequal-

ities T2 � T1; T1 � T2 to the store. In CHR, uni�
ation is done by the

rule type ident � V::T1 V::T2 <=> T1=T2. Sin
e the 
omplexity of Tri-

fonov and Smith de
omposition (rules in proposition 1) is O(n

3

), simpli�
ation

by uni�
ation of type variables permits a signi�
ant speed-up on examples whi
h


ontain several o

urren
es of a same type variable.

The ben
hmark results show also that the pra
ti
al 
ost of overloading is

low. This 
an be explained by the eÆ
ien
y of the Andorra and looking ahead

prin
iples in this 
ase and, for a smaller part, by the removal of some subtype

relations from the type stru
ture used with overloading.

8 Con
lusion

The TCLP type system with overloading is a pra
ti
al system for typing Prolog

and 
onstraint logi
 programs.We have shown that the addition of overloading to

subtyping and parametri
 polymorphism is ne
essary to properly type arithmeti


predi
ates, and to deal with some overloaded symbols like minus whi
h denotes

both subtra
tion and pairs in Prolog.

Type 
he
king and type inferen
e in TCLP involve the solving of 
omplex

subtype inequality 
onstraints. We have des
ribed an implementation of Pottier's

algorithm in CHR whi
h surprisingly outperformed the original implementation
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in CAML, thanks to some simpli�
ations by uni�
ation of type variables whi
h

are natural to implement in CHR.

In the new implementation of TCLP in Prolog and CHR, overloading is

implemented by ba
ktra
king with the Andorra prin
iple. We have shown that

this simple strategy is very eÆ
ient on large programs su
h as the Si
stus Prolog

implementation of CLP(R) for example. We have proposed TCLP types for ISO

Prolog and 
onstraint logi
 programs, and used these types for typing the Si
stus

Prolog libraries and 
lassi
al 
onstraint logi
 programs.

As for future work, we plan to a
quire more pra
ti
al experien
e from the

users of TCLP [3℄ and extend TCLP to other languages. We plan also to use

the ba
ktra
king 
apabilities of the new Prolog-CHR implementation of type


onstraints to experiment the solving of subtype inequality 
onstraints in more

general stru
tures than latti
es (quasi-latti
es, partial orders) for whi
h the de-


idability of subtype 
onstraint satisfa
tion is an open problem [7, 15℄.
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