
TCLP: overloading, subtyping and parametri

polymorphism made pratial for onstraint

logi programming

Emmanuel Coquery and Fran�ois Fages

Projet Contraintes, INRIA-Roquenourt,

BP105, 78153 Le Chesnay Cedex, Frane,

emmanuel.oquery�inria.fr, franois.fages�inria.fr

Abstrat. This paper is a ontinuation of our previous work on the

TCLP type system for onstraint logi programming. Here we introdue

overloading in TCLP and desribe a new implementation of TCLP in the

Constraint Handling Rules language CHR. Overloading, that is assigning

several types to symbols, e.g. for integer and oating point arithmeti,

makes it possible to avoid subtype relations like integer subtype of oat,

that are not faithful to the behavior of some prediates, e.g. uni�a-

tion between an integer and its oat representation fails in ISO Prolog.

We desribe a new implementation of TCLP in Prolog and CHR where

overloading is resolved by baktraking with the Andorra priniple. Ex-

perimental results show that the new implementation of TCLP in CHR

outperforms the previous implementation in CAML w.r.t. both runtime

eÆieny, thanks to simpli�ations by uni�ation of type variables in

CHR, and w.r.t. the perentile of exat types inferred by the TCLP type

inferene algorithm, thanks to overloading.

1 Introdution

The notion of subtyping is a fundamental onept introdued by Cardelli [2℄ and

by Mithell [12℄ in the ontext of funtional languages, as another form of poly-

morphism omplementing parametri polymorphism. The power of subtyping

rests on the subsumption rule, that expresses the substitutivity of any expres-

sion of type � wherever an expression of type �

0

is expeted, provided that � is

a subtype of �

0

:

(Sub)

U`t:� ���

0

U`t:�

0

Overloading, also alled ad ho polymorphism, allows assigning several types

to funtion or prediate symbols. Contrarily to subtyping, where all objets of

some type � have all supertypes �

0

� � , the di�erent types assigned to overloaded

symbols are spei� to these symbols, that is why overloading is alled ad ho

polymorphism. Arithmeti operations naturally apply to both integer and real

numbers. For example, the addition + is naturally overloaded and an have types

int�int!int , int�oat!oat , oat�int!oat , oat�oat!oat . In absene

of overloading, the same set of types an sometimes be obtained by subtyping

and onstrained types [15℄. For example + may be equivalently assigned type

8� � oat ���!�, with the subtype relation int � oat . Although elegant, this

approah does not generalize well, and overloading generally provides a greater

exibility than subtyping.

In this paper we add overloading to the TCLP type system for onstraint

logi programming [6℄. TCLP is a presriptive type system whih ombines sub-

typing with parametri polymorphism, and provides algorithms for type heking

and type inferene for prediates. Parametri polymorphism, as introdued for

Prolog in [13, 11℄ and in G�odel [10℄ and Merury [17℄, allows typing homogeneous

lists with a polymorphi type list(�) whih an be instaniated to types for rep-

resenting lists of integers, haraters, list of lists of integers, et. Overloading

is onsidered in this setting in [5℄. TCLP adds to this approah subtyping as a

mean of typing metaprogramming prediates and automati oerions between

onstraint domains. Metaprogramming prediates impose that all objets an

be deomposed as terms, hene a type term is introdued as a supertype of all

types. In partiular, we have the subtype relations between type onstrutors of

di�erent arities like list(�) � term .

Without subtyping, type inferene is equivalent to solving a system of equal-

ities between type expressions, whih an be done by uni�ation. With sub-

typing, type inferene is equivalent to solving a system of inequalities between

type expressions. Several algorithms for solving subtyping inequalities have been

proposed in the literature. They an be lassi�ed along several axes:

{ the domain of types: �nite types [12, 9, 7℄, regular (reursive) types [1, 20,

15℄, or in�nite types [19℄,

{ the struture of types: latties [1, 18, 15℄, quasi-latties [16℄ posets with suprema

[6℄, partial orders [7℄,

{ the subtyping relation: strutural extension of a subtyping relation on basi

types, subtyping relation between di�erent type onstrutors with the same

arity [7℄, or between type onstrutors of di�erent arities [15, 6℄.

In this paper we desribe a new implementation of TCLP in Prolog and

the Constraint Handling Rules language CHR [8℄. In setion 2, we review the

algorithms involved in TCLP and show how overloading an be treated by bak-

traking with the Andorra priniple. In setion 3 we desribe the implementation

in CHR of Pottier's algorithm for solving subtype inequality onstraints. In se-

tion 5 we propose TCLP types for ISO prolog, CLP(R), CLP(Q), CLP(FD)

and CLP(B). In setion 7 we report our evaluation results on 20 Sistus Prolog

libraries and on standard CLP programs. We show that the new implementa-

tion of TCLP in CHR outperforms the previous implementation in CAML w.r.t.

both runtime eÆieny, thanks to simpli�ations by uni�ation of type vari-

ables in CHR, and w.r.t. the perentile of exat types inferred by the TCLP

type inferene algorithm, thanks to overloading. In partiular we show that the

Andorra priniple suÆes to deal eÆiently with overloaded symbols in TCLP,

2

and that more sophistiated onstraint programming tehniques, like e.g. on-

strutive disjuntion, were not neessary to type hek pratial programs with

overloading.

2 Adding overloading to the TCLP type system

2.1 TCLP Type heking

The typing rules of TCLP basially add the subtyping rule of Cardelli and

Mithell [2, 12℄ to the rules of Myroft and O'Keefe [13℄. By a simple trans-

formation [6℄ we get the rules depited in table 1 for deriving type judgments of

the form U ` typed expression where U is a typing for variables.

(Var) fx : �; : : :g ` x : �

(Fun)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`f

�

1

:::�

n

!�

(t

1

;:::;t

n

):��

� is a type substitution

(Atom)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Atom

� is a type substitution

(Head)

U`t

1

:�

1

�

1

��

1

� ::: U`t

n

:�

n

�

n

��

n

�

U`p

�

1

:::�

n

(t

1

;:::;t

n

)Head

� is a renaming substitution

(Query)

U`A

1

Atom ::: U`A

n

Atom

U`A

1

;:::;A

n

Query

(Clause)

U`Q Query U`A Head

U`A Q Clause

Table 1. The TCLP typing rules.

The distintion between rules Head and Atom expresses the usual de�nitional

generiity priniple [11℄ whih states that the type of a de�ning ourrene of a

prediate (i.e. at the left of \ " in a lause) must be equivalent up-to renaming

to the assigned type of the prediate. The rule Head used for deriving the type

of the head of the lause is thus not allowed to use substitutions other than vari-

able renamings in the delared type of the prediate. The de�nitional generiity

ondition is useful to the subjet redution properties of TCLP [6℄.

Without overloading, the TCLP typing rules are deterministi, i.e. the syntax

of the expression at hand determines the rules to apply. Therefore type heking

in TCLP basially amounts to olleting all subtype inequalities along a deriva-

tion of the expression, and heking their satis�ability in the struture of types.

3

We refer to [6℄ for more details on the type heking algorithm and to setion 3

for the solving of subtyping onstraints.

2.2 Overloading by baktraking under the Andorra priniple

Overloaded symbols make the typing rules non deterministi as they may have

several types, i.e. di�erent possible types for their arguments or their result.

The Andorra priniple, introdued for the parallelization of Prolog one deade

ago [4℄, is the well-known priniple that onsists in delaying the exeution of

hoie points until the time where all deterministi goals have been exeuted.

We shall see that this simple ontrol strategy, at the heart of onstraint pro-

gramming, is suÆient to eÆiently handle overloaded symbols in TCLP. The

idea is that the ontext of an expression ontaining overloaded symbols usually

provides suÆient information to disambiguate the type of overloaded symbols.

Hene, by simply delaying hoie points, the type information oming from the

ontext suÆes to determine the type of overloaded symbols. If this is not suf-

�ient, then the di�erent types an be enumerated by baktraking under the

Andorra priniple and some simple priniple of looking ahead. The algorithm

for enumerating the types of overloaded symbols proeeds as follows:

1. the types of overloaded symbol ourrenes are heked w.r.t. the urrent

store and all unfeasible types are eliminated, if all types of a symbol our-

rene are eliminated it is a failure,

2. if some symbol ourrene has only one type left, the orresponding subtyp-

ing onstraints are added to the store,

3. the �rst two steps are iterated until a �xpoint is reahed.

4. then a non resolved symbol is hosen, and eah possible type is tried by

iterating the whole proedure by baktraking.

The �rst two steps are partiularly eÆient as they often let the ontext dis-

ambiguate the type of overloaded symbols. The result of this treatment of over-

loading in type heking mode is a suess if one typing makes the subtyping

onstraints solvable, and a failure if all types fail. The result in type inferene

mode is an enumeration of inferred types.

2.3 TCLP type inferene

In a presriptive type system, type reonstrution algorithms are useful to omit

type delarations in programs, and still hek the typability of the program

by the possibility or not to infer the omitted types [11℄. In TCLP, a prediate

an aept any argument of a type below the delared type of the prediate.

Therefore when inferening the type of a prediate from the lauses de�ning the

prediate, it is always possible to infer the most general, yet not informative,

type. In partiular if there is a type term whih a supertype of any type, the

typing of any prediate with type term is always a valid typing.

For these reasons, type inferene in TCLP is heuristi. First, a minimum type

is inferred for the prediate aording to the type of the arguments found in the

4

de�ning lauses of the prediate. Then a heuristi type is inferred aording to

the bounds of the types of the arguments found in the de�ning lauses. That

heuristi type is �nally made polymorphi by trying to replae unbounded types

by type parameters. We refer to [6℄ for the details of the TCLP type inferene

algorithm.

When adding overloading, the TCLP type inferene algorithm beomes non

deterministi. Several inferred types an be enumerated aording to the di�erent

types for the overloaded symbols. In the experimental results reported below,

only the �rst inferred type is onsidered.

3 Solving subtype inequalities

The hard part of the TCLP implementation is in the solving of subtype inequal-

ities. Only reently algorithms have been found for solving subtype relations

between symbols of di�erent arities, like list(�℄ � term, and their deidability

in type strutures more general than latties is still an open problem [7℄.

The solving of subtype inequalities is the following problem:

Input: a system of subtype relations

V

n

i=1

�

i

��

0

i

Output: does there exist a substitution � suh that

V

n

i=1

�

i

���

0

i

�? A better

output is to exhibit a minimal or maximal solution. A minimal (resp. maximal)

is a solution � suh that for any solution �

0

there exists a substitution �

00

suh

that 8� 2 V ���

00

� ��

0

(resp. 8� 2 V ���

00

� ��

0

).

3.1 TCLP types

TCLP deals with a struture of partially ordered terms, alled poterms, for rep-

resenting types with variables (parameters) and subtyping. For our purpose in

this paper, it is onvenient to make some hanges in the assumptions desribed

for TCLP in [6℄. Here it will be simpler to �rst onsider the solving of subtyp-

ing inequalities over in�nite (regular) types instead of �nite types. Proposition

3 below shows that in the ontext of TCLP type inferene the solving over �nite

types is equivalent to solving over in�nite types. Moreover we shall assume that

the set of types ordered by the subtyping relation is a lattie. On the other hand,

we shall relax the \arity dereasing" assumption made in [6℄.

Let K be a �nite set of type onstrutors ontaining the symbols ? and >.

With eah symbol K 2 K, an aritym � 0 is assoiated, the symbol with its arity

is noted K=m. Let U be a ountable set of type variables, also alled parameters,

denoted by �; �; :::. An in�nite type � is an in�nite term formed over K and U ,

i.e. a partial funtion from strings of integers to symbols, � : (N

+

)

�

! K [U ,

suh that i) dom(�) is non-empty and pre�x-losed, ii) if �(w) = K=n 2 K then

fw0; :::; wng � dom(�) iii) if �(w) = � 2 U then wi 62 dom(�) for any i 2 N

+

.

The subterm of � at w 2 dom(�) is the type �=w = �w

0

:�(ww

0

). An in�nite type

is regular if it ontains a �nite number of subterms. A �nite type is a type with

a �nite domain. We denote T the set of regular types over K and U .

5

The set of type variables in a type � is denoted by V (�). The set of ground

types G is the set of regular types ontaining no variable. A at type is a �nite

type of the formK(�

1

; : : : ; �

m

), whereK 2 K and the �

i

are distint parameters.

Now, an order �

K

is assumed on type onstrutors suh that (K;�

K

;?;>)

forms a lattie. Moreover, we assume that with eah pair K=m �

K

K

0

=m

0

, a

partial injetive mapping between arguments �

K;K

0

: f1; : : : ;mg ! f1; : : : ;m

0

g

is assoiated suh that �

K;K

00

= �

K;K

0

Æ �

K

0

;K

00

whenever K �

K

K

0

�

K

K

00

.

These assumptions mean that the arguments of omparable onstrutors are

mapped onsistently with �

K

. We also assume that if K

00

=n = glb(K;K

0

) then

dom(�

K

00

;K

) [dom(�

K

00

;K

0

) = [1; n℄, that is greatest lower bounds do not in-

trodue new parameters. Similarly, if K

00

=n = lub(K;K

0

) then range(�

K;K

00

) [

range(�

K

0

;K

00

) = [1; n℄. The order on type onstrutors is extended to a ovariant

subtyping order � on in�nite types. The order � is de�ned as the intersetion of

the following preorders:

{ �

0

= T � T ,

{ for any k 2 N , let � �

k+1

�

0

holds if and only if

� either �; �

0

2 U and � = �

0

� or �(�) �

K

�

0

(�) and 8i 2 dom(�(�(�); �

0

(�))) �=i �

k

�

0

=�(�(�); �

0

(�))(i)

{ �=

T

k2N

+

�

k

.

One an hek that � is an ordering relation and that on ground types, (G;�

;?;>) forms a lattie [15℄.

Contravariant type onstrutors, where the ordering relation for omparing

some of their arguments is reversed, are not onsidered in this paper. Therefore,

if int �

K

oat for some basi types int and oat then we have list(int) �

list(oat) and list(oat) 6� list(int). We also have list(oat) 6� list(�) as the

subtyping order does not inlude the instantiation preorder. Intuitively, a ground

type represents a set of expressions, and the subtyping order between ground

types orresponds to set inlusion. Parametri types do not diretly support this

interpretation, their parameters denote unknown types, like logial variables.

3.2 Solving subtype inequalities

We onsider systems of subtype inequalities between variables and at types,

that is types of the form � � �, K(�

1

; :::�

n

) � � or � � K(�

1

; :::�

n

). Non

at types an be represented in this form by introduing new variables and

inequalities between these variables and the type they represent.

Proposition 1. [1, 20℄ A system of subtype inequalities in a lattie of regular

(or in�nite) types is satis�able i� it is deomposable with the following rules:

Trans �; � � �; � � �! �; � � �; � � ; � �

if � � 62 � and � 6= .

Clash �; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

) �! false

if K 6�

K

K

0

.

De �; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

) �!

�; K(�

1

; :::; �

m

) � �; � � �; � � K

0

(�

0

1

; :::; �

0

n

); f�

i

� �

0

�(i)

g

i2dom(�)

if K �

K

K

0

, � = �

K;K

0

and f�

i

� �

0

�(i)

g

i2dom(�)

6� � [f� � �g.

6

Exhibiting minimal and maximal solutions neessitates some extra work. For

the sake of presentation, we assume that the initial system to be solved, �

0

over variables V

0

, is �rst ompleted by introduing new variables

S

and Æ

S

for

eah non empty subset S of V

0

, and by adding the inequalities

S

� � and

� � Æ

S

for all variables � 2 S. We also assume that the system is ompleted by

adding the inequality � � � for eah variable �. Given a system � and a set of

variables S we de�ne the variable (S;�) =

f�2V

0

j9�2S ���2�g

and similarly

Æ(S;�) = Æ

f�2V

0

j9�2S ���2�g

.

Proposition 2. [15℄ In a system of subtype inequalities simpli�ed with the ad-

ditional rules below, the identi�ation of all parameters to their lower bound

lb(�) (resp. upper bound ub(�)) provides a minimum solution (resp. maximum

solution).

(Glb) �; � � K(�

1

; :::; �

m

); � � �; � � K

0

(�

0

1

; :::; �

0

n

) �!

�; � � K

00

(�

00

1

; :::; �

00

l

); � � �; � � K

0

(�

0

1

; :::; �

0

n

); �

0

if K

00

6= K or �

0

6� � [f� � �g,

where K

00

= glb(K;K

0

), � = �

K

00

;K

; �

0

= �

K

00

;K

0

,

�

00

k

= (f�

�(k)

; �

0

�

0

(k)

g; � [f� � �g) for all 1 � k � l,

�

0

= f�

00

k

� �

�(k)

g

k2dom(�)

[f�

00

k

� �

0

�

0

(k)

g

k2dom(�

0

)

(Lub) �; K(�

1

; :::; �

m

) � �; � � �; K

0

(�

0

1

; :::; �

0

n

) � � �! : : :

�; K(�

1

; :::; �

m

) � �; � � �; K

00

(�

00

1

; :::; �

00

l

) � �; �

0

if K

00

6= K

0

or �

0

6� � [f� � �g,

where K

00

= lub(K;K

0

), � = �

K;K

00

; �

0

= �

K

0

;K

00

,

�

00

k

= Æ(f�

�

�1

(k)

; �

0

�

0�1

(k)

g; � [f� � �g) for all 1 � k � l,

�

0

= f�

i

� �

00

�(i)

g

i2dom(�)

[f�

0

j

� �

00

�

0

(j)

g

j2dom(�

0

)

A system of subtype inequalities � is ayli if there exists a ranking funtion

on type variables r : U ! N suh that if � � � 2 �, � 2 V (�) and � 2 V (�)

then r(�) < r(�). In [6℄ it is shown that the systems of subtype inequalities for

TCLP type heking and type inferene are ayli, moreover:

Proposition 3. [6℄ An ayli system of inequalities is satis�able over �nite

types if and only if it is satis�able over regular types.

The simpli�ation rules given in this setion are at the heart of TCLP al-

gorithms for type heking and type inferene. The next setion desribes their

implementation in the Constraint Handling Rules language CHR [8℄.

4 Implementation of TCLP in CHR

4.1 Representing the subtype lattie

The subtype lattie an be desribed with three prediates tlp le(T1,T2)

tlp glb(T1,T2,GLB) and tlp lub(T1,T2,LUB), for de�ning subtyping rela-

tions between type onstrutors, greatest lower bounds and lowest upper bounds

respetively. These prediates an use the onstraints :<,tlp vGLB and tlp vLUB

7

de�ned in the following setions for expressing subtyping onstraints on argu-

ments. The user enters high level desriptions of the order and the program

generates the dynami lauses for tlp le/2, tlp glb/3 and tlp lub/3,

orresponding to these delarations. For example, the following type delarations

with the (impliit) subtype relations:

:- type int.

:- type list(A).

:- order int < term.

:- order list(A) < term.

generates the following lauses (the lauses for tlp lub are symmetrial) :

tlp__le(list(_),term).

tlp__le(list(T1),list(T2)) :- T1 :< T2.

tlp__glb(int,term,int).

tlp__glb(term,list(T),list(T)).

tlp__glb(list(T1),list(T2),list(T3)) :- tlp__vGLB(T1,T2,T3).

4.2 Representing type variables

The set of simpli�ation rules given in setion 3 ould be translated quite diretly

in CHR. However, for eÆieny reasons, it is preferable to introdue for eah

type variable � a data struture tlp parameter(A,UB,USet,LSet,LB) whih

enapsulates its urrent upper and lower bounds ub(�), lb(�), and the list USet

(resp. LSet) of type variables in the right hand side (resp. left hand side) of an

inequality with � in the system. The tlp update (loset, hiset, lobound)

onstraints are used to trigger hanges in tlp parameter.

tlp__update_hibound(X,Hibound) ,

tlp__parameter(X, HiboundX, HisetX, LosetX, LoboundX)

<=> tlp__glb(HiboundX, Hibound, NewHibound),

tlp__parameter(X, NewHibound, HisetX, LosetX, LoboundX).

tlp__update_hiset(X, Hiset) ,

tlp__parameter(X, HiboundX, HisetX, LosetX, LoboundX)

<=> list_to_ord_set(HisetX, SHisetX),

ord_union(Hiset, SHisetX, NewHiset),

tlp__parameter(X, HiboundX, NewHiset, LosetX, LoboundX).

tlp__update_hiset_s([X|L℄,Hiset) :- tlp__update_hiset(X, Hiset),

tlp__update_hiset_s(L, Hiset).

4.3 Type inequalities

The onstraint X :< Y represents a subtyping onstraint between X and Y. The

prediates tlp transup and tlp transinf transform non at types into at

ones.

X :< Y <=> var(X),var(Y) | tlp__var_ineq(X,Y).

X :< Y <=> nonvar(X),var(Y) | tlp__transinf(X,XFlat) , tlp__lo(XFlat,Y).

X :< Y <=> var(X), nonvar(Y) | tlp__transup(Y,YFlat) , tlp__hi(X,YFlat).

tlp__var_ineq(X,X) <=> true.

8

tlp__parameter(X, HiboundX, HisetX, LosetX, LoboundX),

tlp__parameter(Y, HiboundY, HisetY, LosetY, LoboundY) \

tlp__var_ineq(X,Y) <=> true |

list_to_ord_set(HisetX,SHisetX),

(ord_member(Y,SHisetX) -> true ;

(list_to_ord_set(LosetX, SLosetX),

ord_add_element(SLosetX,X,Loset),

list_to_ord_set(HisetY,SHisetY),

ord_add_element(SHisetY,Y,Hiset),

tlp__update_hiset_s(Loset, Hiset),

tlp__update_loset_s(Hiset, Loset),

tlp__update_hibound_s(Loset, HiboundY),

tlp__update_lobound_s(Hiset, LoboundX),

tlp__le(LoboundX, HiboundY))).

tlp__parameter(X, HiboundX, HisetX, LosetX, LoboundX) \

tlp__hi(X,Hibound) <=> tlp__update_hibound_s([X | LosetX ℄, Hibound),

tlp__le(LoboundX,NewHiboundX).

There is also a rule to treat the ase where a type variable has two onstraints

tlp parameter, whih happens when one uni�es two type variables. The rule

is similar to the one for treating an inequality between two variables.

4.4 Computing GLBs and LUBs

The omputation of the GLB (resp. LUB) of two at types is done with de-

larations tlp glb (resp. tlp glb). Below we desribe the omputation of

greatest lower bounds of two type variables with the prediate tlp vGLB. The

tlp vLUB for least upper bounds is symmetrial.

To ompute the GLB of X and Y, we distinguish four ases aording to

whether X and Y are original or introdued type variables. Introdued variables

are reognized by the fat that they are introdued with a onstraint of the form

tlp original up(X,Origs), where Origs is the set of original variables above

introdued variable X.

tlp__original_up(X,OrigX), tlp__original_up(Y,OrigY) \ tlp__vGLB(X,Y,GLB)

<=> list_to_ord_set(OrigX,SOrigX), list_to_ord_set(OrigY,SOrigY),

ord_union(SOrigX,SOrigY,OrigGLB),

tlp__GLBVar(OrigGLB,GLB).

tlp__original_up(X,OrigX) \ tlp__vGLB(X,Y,GLB)

<=> list_to_ord_set(OrigX,SOrigX),

ord_add_element(SOrigX,Y,OrigGLB),

tlp__original_up(X,OrigX) \ tlp__vGLB(Y,X,GLB) <=> tlp__vGLB(X,Y,GLB).

tlp__vGLB(X,Y,GLB) <=> list_to_ord_set([X,Y℄,OrigGLB),

tlp__GLBVar(OrigGLB,GLB).

tlp__GLBVar(OrigGLB,GLB) :-

hr:findall_onstraints(tlp__original_up(_,_), AllOrigs),

(find_VAR(AllOrigs, OrigGLB, GLB) -> true;

(tlp__original_down(GLB,[℄),

tlp__original_up(GLB,OrigGLB),

9

tlp__parameter(GLB,term,[℄,[℄,bottom),

tlp__link_up(GLB,OrigGLB))).

The prediate tlp GLBVar(OrigGLB,GLB) is true when GLB is the type

variable introdued for the set of original variables OrigGLB. The prediate

find VAR(AllOrigs, Origs, Var), where AllOrigs is the list of all onstraints

of the form tlp original up and Origs is a set of original variables, looks up

Origs in AllOrigs and uni�es Var with the orresponding variable in the on-

straint tlp original up. Otherwise it fails, whih means that no type variable

was introdued for the set Origs. The prediate tlp link up(Var,List) puts

the onstraint Var :< X for all Xs in List.

4.5 Overloading

The algorithm of setion 2.2 for solving overloaded symbols is implemented in

CHR. Ourrenes of overloaded symbols are given an unknown type of the

form �

1

� ::: � �

n

!�, alled an abstrat type sheme, on whih type heking

onstraints are aumulated. The following rule redue basially implements the

�ltering step 1 of the algorithm, and may raise the failure rule or the instaniate

rule (step 2). The labeling rule (step 4) is not detailed.

redue � abstrat_type(Id, AbstratSheme) \

multi_type(Id,ConreteShemes), do_redue(N,Total)

<=> filter_shemes(AbstratSheme, ConreteShemes, NewConreteShemes),

multi_type(Id, NewConreteShemes),

(length(ConreteShemes, Length), length(NewConreteShemes, Length)

-> N1 is N+1, do_redue(N1,Total)

; do_redue(N,Total)).

failure � abstrat_type(Id, _), multi_type(Id,[℄) <=> fail.

instaniate � multi_type(Id,[ConreteSheme ℄),

abstrat_type(Id, AbstratSheme)

<=> apply_sheme(ConreteSheme, AbstratSheme).

labeling � label(Id), multi_type(Id, Types),

abstrat_type(Id, AbstratSheme, F/N, Loation)

<=> apply_one_sheme(AbstratSheme,Types),

redue_all(Remaining),

(Remaining=0 -> true; label_funtor).

5 TCLP types for ISO Prolog

5.1 Type struture

Figure 5.1 depits the TCLP type struture we propose for ISO Prolog. This

type struture is ompleted in a lattie by adding a bottom type ? below all

types. This type ? is an empty type and is thus onsidered as an error type in

TCLP [6℄.

10

directive

term

pred

clause

functor phrase goal float int

stream

stream_or_aliaspair(A,B)exception

byteatom

character

flag
close_option
write_option
read_option

stream_option
stream_property

io_mode

list(A)

Fig. 1. TCLP type struture for ISO Prolog.

Metaprogramming prediates in ISO prolog basially impose that every objet

an be deomposed as a term. This is treated in TCLP by subtyping with a type

term at the top of the lattie of types. Sine bytes are integers with a restrited

value, we have byte < int. However we do not have a subtype relation between

int 6< float. This hoie is motivated by the fat that, in ISO Prolog, there is

no impliit oerion from integers to oats, in partiular a uni�ation like 1=1.0

fails in ISO Prolog. Another subtype relation is introdued for allowing oerions

from haraters to atoms. The subtyping relations between stream, atom and

stream or alias are motivated by the fat that a stream an be replaed by

an alias, i.e. an atom. The type pred is the type of prediates, that is heads of

lauses as well as ourrenes in the body of a lause or in a diretive. For this

reason, prediates an be viewed both with the type lause (for lauses with an

empty body) and with type goal. This justi�es the relations pred < lause and

pred < goal.

Parametri types are introdued for lists, with type list(�), and for pairs, with

type pair (�; �). We thus have subtype relations list(�) < term and pair (�; �) <

term, i.e. subtype relations between type onstrutors of di�erent arities whih

is responsible for the diÆulty of subtype onstraint solving in TCLP.

5.2 Metaprogramming and subtyping

The type term is used for term manipulation prediates, and an be used to

deompose any objet, thanks to the subtype relation between any type and

term. Term manipulation prediates thus have the following types in TCLP:

funtor : term � atom � int ! pred, arg : int � term � term ! pred, =..

: term � list(term) ! pred, opy term : � � � ! pred. Note that, as term

is the top element of the type lattie, eah ourene of term in the type of

a prediate an be equivalently replaed by a fresh type variable, e.g. arg :

int� �� � ! pred.

The type lause provides the possibility to type hek dynami prediate

delarations using the following type delarations: lause : pred�goal ! pred,

asserta : lause ! pred, assertz : lause ! pred, retrat : lause ! pred,

11

abolish : funtor ! pred. One should kek however that the head ondition

(see setion2) is satis�ed in order to ensure the property of subjet redution

at run-time [6℄. The symbol : � for onstruting lauses is thus type heked in

TCLP with a speial rule that heks that its �rst argument is a Head not just

an Atom, aording to table 1.

The dynami types of objets an be tested with ISO Prolog prediates

var/1, atom/1, integer/1, float/1, atomi/1, ompound/1, nonvar/1 and

number/1. These prediates are typed in TCLP with type term ! pred, as

they are appliable to any ISO Prolog objet. This marks a fundamental dif-

ferene between a presriptive type system like TCLP and a desriptive type

system whih would instead type float : float! pred, as desriptive types are

in fat an approximation of the suess set.

5.3 Arithmeti and overloading

Typing arithmeti expressions involves a large amount of overloading, beause

of the interation between int and float. We thus have the following types for

arithmeti operations: +,-,* : int�int! int and +,-,*,/ : float�int! float,

int� float! float and float� float! float.

Note that the ordering of the rules is important as far as only the �rst inferred

type is onsidered as the result of the type inferene algorithm. Note also that

pairs in ISO Prolog are onstruted with the same symbol minus -/2. The type

- : �� � ! pair(�; �) is thus also added to the types of -/2.

The experimental results reported below show that, despite the ombinato-

rial nature of these overloaded type delarations, the handling of overloading

in TCLP does not produe a ombinatorial explosion and remains eÆient in

pratial programs.

5.4 Options

Many system prediates in ISO Prolog ome with a set of terms desribing

either properties or options, e.g. open/3 omes with read, write and append.

We hoose to assoiate a type to eah set of options, that gives preise typings,

e.g. open : atom � io mode � stream ! pred. We use subtyping when a set of

options is ompletely inluded in another set of options, e.g. stream option <

stream property, otherwise we use overloading.

Many options are atomi and are thus overloaded with type atom. In the

previous version of TCLP without overloading, a ommon subtype between op-

tions and the type atom was introdued, but sine these types have di�erent

uses, overloading is preferred.

6 TCLP types for CLP(R,Q,FD,B)

In TCLP, the onstraint domain of CLP(R) an be typed with the same type

oat as Prolog. Similarly the onstraint domain of CLP(FD) an be typed with

12

type int . The boolean domain of CLP(B) is a subset omposed of values 0 and 1

of the �nite domain FD omposed of values 0 and 1. A new domain type boolean

is thus introdued as a subtype of int , boolean < int . In CLP(Q) the onstraint

domain of rational numbers with in�nite preision is typed a speial type rat .

The inferred TCLP types for lassial CLP(FD) examples are the expeted

ones, like queens : int�list(int)!pred et. On the other hand, on many CLP(R)

examples, the �rst inferred type is int instead of oat , sine in these examples

the arithmeti expressions involve simple operations with integer onstants only.

7 Evaluation

Without overloading With overloading

File Type Cheking Type Inferene %exat Type Chek Type Inf. %exat

CAML CHR CAML CHR CHR CHR

arrays.pl 2.2 s 2.1 s 11.9 s 3.9 s 23% 2.5 s 3.2 s 68%

asso.pl 5.3 s 6.0 s 40.1 s 13.6 s 68% 5.2 s 13.5 s 91%

atts.pl 7.4 s 5.5 s 77.5 s 12.4 s 64% 6.4 s 15.8 s 91%

bdb.pl 23.6 s 20.2 s 41.1 s 17.4 s 64% 16.1 s 21.7 s 66%

harsio.pl 1.3 s 1.0 s 2.4 s 1.3 s 33% 0.8 s 3.8 s 74%

lpb.pl 24.3 s 22.7 s 1827.3 s 224.8 s n/a 18.4 s 204.9 s n/a

lpr.pl 304.45 s 445.1 s 3958.41 s 566 s n/a n/a n/a n/a

fastrw.pl 0.4 s 0.5 s 0.7 s 0.7 s 100% 0.4 s 0.6 s 100%

heaps.pl 3.5 s 4.2 s 43.3 s 17.4 s 71% 3.5 s 16.4 s 97%

jasper.pl 7.4 s 2.7 s 12.0 s 3.9 s 84% 2.3 s 3.0 s 84%

lists.pl 3.5 s 3.8 s 16.2 s 6.6 s 98% 3.5 s 7.6 s 98%

ordsets.pl 4.1 s 5.2 s 199.4 s 44.8 s 97% 4.1 s 49.2 s 97%

queues.pl 0.6 s 0.7 s 4.1 s 1.5 s 75% 0.6 s 1.3 s 96%

sokets.pl 6.8 s 3.9 s 15.4 s 5.3 s 68% 3.0 s 4.3 s 92%

random.pl 0.9 s 1.0 s 4.1 s 1.0 s 55% 0.9 s 0.9 s 58%

terms.pl 2.5 s 2.6 s 308.7 s 4.3 s 77% 2.5 s 4.4 s 77%

trees.pl 1.4 s 1.6 s 12.6 s 3.2 s 31% 1.4 s 3.0 s 75%

ugraphs.pl 48.2 s 25.3 s 274.2 s 353.5 s 67% 21.1 s 350.2 s 67%

lpfd.pl 24.3 s 34.8 s 59.6 s 154.0 s n/a 33.1 s 140.1 s n/a

Table 2. Performane on Sistus Prolog libraries.

We ompare the performanes of two versions of TCLP. The �rst one, oded

in Objetive Caml, uses the subtyping onstraint solving library Wallae [14℄ by

F.Pottier. The seond one, oded in Sistus Prolog, uses the CHR implementa-

tion subtyping onstraints desribed in setion 4. For the latter implementation,

we also ompare the typings with and without overloading.

The benhmarks are omposed of 20 Sistus Prolog libraries and of a Prolog

implementation of CLP(FD). The �rst olumn gives the CPU time for type

13

heking of both versions in CAML and CHR. The seond olumn gives the

CPU time for type inferene. The third olumn indiates the perentile of inferred

types whih are idential to the (authors') intended types. The last three olumns

display these results for the CHR implementation using a di�erent type struture

and type delarations with overloading. This allows us to estimate the impat of

overloading both in terms of runtime eÆieny and in terms of the performane

of the heuristis used for inferring types.

The signi�ant inrease of the perentile of exat types inferred with over-

loading an be explained by the more preise typings provided by overloaded

type delarations. In partiular for arithmeti, in the version of TCLP without

overloading, the typing with oat was always inferred, whereas in the version

of TCLP with overloading, the typing with

R

is inferred when possible. The

remaining di�erenes between the heuristially inferred types and the intended

types in some examples are mainly due, on the one hand, to the permissive typ-

ing of equality =/2 : � � � ! pred whih, when instaniated with type term,

does not provide ommuniation between the types of its arguments [6℄, and on

the other hand, to the fat that only the �rst inferred type is onsidered.

One an notie that the times for type heking (resp. type inferene) are

lose whenever they are done with or without overloading. On the other hand,

although the type heking times between CAML and CHR implementations

are lose, the CHR implementation runs signi�antly faster for type inferene.

The gain of eÆieny on the CHR version of TCLP is explained by the a-

pability of the CHR subtyping solver to unify type variables, while the CAML

implementation does not perform suh uni�ations. When two type variables

T1 and T2 have to be uni�ed, the CAML implementation adds the inequal-

ities T2 � T1; T1 � T2 to the store. In CHR, uni�ation is done by the

rule type ident � V::T1 V::T2 <=> T1=T2. Sine the omplexity of Tri-

fonov and Smith deomposition (rules in proposition 1) is O(n

3

), simpli�ation

by uni�ation of type variables permits a signi�ant speed-up on examples whih

ontain several ourrenes of a same type variable.

The benhmark results show also that the pratial ost of overloading is

low. This an be explained by the eÆieny of the Andorra and looking ahead

priniples in this ase and, for a smaller part, by the removal of some subtype

relations from the type struture used with overloading.

8 Conlusion

The TCLP type system with overloading is a pratial system for typing Prolog

and onstraint logi programs.We have shown that the addition of overloading to

subtyping and parametri polymorphism is neessary to properly type arithmeti

prediates, and to deal with some overloaded symbols like minus whih denotes

both subtration and pairs in Prolog.

Type heking and type inferene in TCLP involve the solving of omplex

subtype inequality onstraints. We have desribed an implementation of Pottier's

algorithm in CHR whih surprisingly outperformed the original implementation

14

in CAML, thanks to some simpli�ations by uni�ation of type variables whih

are natural to implement in CHR.

In the new implementation of TCLP in Prolog and CHR, overloading is

implemented by baktraking with the Andorra priniple. We have shown that

this simple strategy is very eÆient on large programs suh as the Sistus Prolog

implementation of CLP(R) for example. We have proposed TCLP types for ISO

Prolog and onstraint logi programs, and used these types for typing the Sistus

Prolog libraries and lassial onstraint logi programs.

As for future work, we plan to aquire more pratial experiene from the

users of TCLP [3℄ and extend TCLP to other languages. We plan also to use

the baktraking apabilities of the new Prolog-CHR implementation of type

onstraints to experiment the solving of subtype inequality onstraints in more

general strutures than latties (quasi-latties, partial orders) for whih the de-

idability of subtype onstraint satisfation is an open problem [7, 15℄.

Referenes

1. R.M. Amadio and L. Cardelli. Subtyping reursive types. ACM Transations on

Programming Languages and Systems, 15(4):575{631, 1993.

2. L. Cardelli. A semantis of multiple inheritane. Information and Computation,

76(2/3):138{164, 1988.

3. E. Coquery. Tlp: a generi type heker for onstraint logi programs, Otober

2000. http://pauilla.inria.fr/~oquery/tlp/.

4. V. Santos Costa, D.H.D. Warren, and R. Yang. The andorra-i preproessor: Sup-

porting full prolog on the basi andorra model. In Proeedings of the 8th Inter-

national Conferene on Logi Programming ICLP'91, pages 443{456. MIT Press,

1991.

5. B. Demoen, M. Garia de la Banda, and P.J. Stukey. Type onstraint solving

for parametri and ad-ho polymorphism. In Proeedings of the 22nd Australian

Computer Siene Conferene, pages 217{228, january 1999.

6. F. Fages and E. Coquery. Typing onstraint logi programs. Theory and Pratie

of Logi Programming, 1, November 2001.

7. A. Frey. Satisfying subtype inequalities in polynomial spae. In Proeedings of

the 4th International Stati Analysis Symposium SAS'97, number 1302 in LNCS,

1997.

8. T. Fr�uhwirth. Theory and pratie of onstraint handling rules. Journal of Logi

Programming, Speial Issue on Constraint Logi Programming, 37(1-3):95{138, O-

tober 1998.

9. Y.C. Fuh and P. Mishra. Type inferene with subtypes. In Pro. ESOP'88, number

300 in LNCS, pages 94{114, 1988.

10. P. Hill and J. Lloyd. The G�odel programming language. MIT Press, 1994.

11. T.K. Lakshman and U.S. Reddy. Typed Prolog: A semanti reonstrution of the

Myroft-O'Keefe type system. In V. Saraswat and K. Ueda, editors, Proeedings

of the 1991 International Symposium on Logi Programming, pages 202{217. MIT

Press, 1991.

12. J. Mithell. Coerion and type inferene. In Proeedings of the 11th Annual ACM

Symposium on Priniples of Programming Languages POPL'84, pages 175{185,

1984.

15

13. A. Myroft and R.A. O'Keefe. A polymorphi type system for prolog. Arti�ial

Intelligene, 23:295{307, 1984.

14. F. Pottier. Wallae: an eÆient implementation of type inferene with subtyping,

February 2000. http://pauilla.inria.fr/~fpottier/wallae/.

15. F. Pottier. Simplifying subtyping onstraints: a theory. To appear in Information

and Computation, 2002.

16. G. Smolka. Logi programming with polymorphially order-sorted types. In

Algebrai and Logi Programming ALP'88, number 343 in LNCS, pages 53{70.

J. Grabowski, P. Lesanne, W. Wehler, 1988.

17. Z. Somogyi, F. Henderson, and T. Conway. The exeution algorithm of Merury,

an eÆient purely delarative logi programming language. Journal of Logi Pro-

gramming, 29(1{3):17{64, 1996.

18. J. Tiuryn. Subtype inequalities. In Pro. 7th IEEE symposium on logi in omputer

siene LICS'92, pages 308{315, 1992.

19. J. Tiuryn and M. Wand. Type reonstrution with reursive types and atomi

subtyping. In Proeedings of the 22nd Australian Computer Siene Conferene,

pages 217{228, january 1999.

20. V. Trifonov and S. Smith. Subtyping onstrained types. In Proeedings of the 3rd

International Stati Analysis Symposium SAS'96, number 1145 in LNCS, pages

349{365, 1996.

16

