Symbolic Model Checking of Biochemical
Networks

Nathalie Chabrier, Francois Fages*

Projet Contraintes, INRIA-Rocquencourt,
BP105, 78153 Le Chesnay Cedex, France,

Nathalie.Chabrier@inria.fr, Francois.Fages@inria.fr

Abstract. Model checking is an automatic method for deciding if a cir-
cuit or a program, expressed as a concurrent transition system, satisfies
a set of properties expressed in a temporal logic such as CTL. In this pa-
per we argue that symbolic model checking is feasible in systems biology
and that it shows some advantages over simulation for querying and val-
idating formal models of biological processes. We report our experiments
on using the symbolic model checker NuSMV and the constraint-based
model checker DMC, for the modeling and querying of two biological
processes: a qualitative model of the mammalian cell cycle control after
Kohn’s diagrams, and a quantitative model of gene expression regulation.

1 Introduction

In recent years, Biology has clearly engaged an elucidation work of high-level
biological processes in terms of their biochemical basis at the molecular level.
The mass production of post genomic data, such as ARN expression, protein
production and protein-protein interaction, raises the need of a strong parallel
effort on the formal representation of biological processes. Metabolism networks,
extracellular and intracellular signaling pathways, and gene expression regula-
tion networks, are very complex dynamical systems. Annotating data bases with
qualitative and quantitative information about the dynamics of biological sys-
tems, will not be sufficient to integrate and efficiently use the current knowledge
about these systems. The design of formal tools for modeling biomolecular pro-
cesses and for reasoning about their dynamics seems to be a mandatory research
path to which the field of formal verification in computer science may contribute
a lot.

Several formalisms have been proposed in recent years for the modeling of
biochemical networks. Regev and Shapiro [22] were the first to propose the use
of a formal concurrent language, namely Milner’s 7-calculus, for the modeling
of a biochemical processes such as the RTK/MAPK pathway. The bio-calculus
of [21] introduces a more biology-oriented syntax for a similar calculus. More

* This work has been done in the framework of the INRIA Cooperative Re-
search Action “Process Calculi and Biology of Molecular Networks”, ARC CPBIO,

http://contraintes.inria.fr/cpbio

recently, quantitative modelings of biochemical processes have been developed
with hybrid Petri nets [19, 16], hybrid concurrent constraint languages [4], and
hybrid automata [1,14].

In this paper we propose to go beyond simulation and to focus on the issue
of providing automated methods for querying and validating formal models in
systems biology. More specifically, we propose,

— first, the use of the temporal logics CTL as a query language for models of
biological processes,

— second, the use of concurrent transition systems for the modeling of biological
processes.

— and third, the use of symbolic model checking techniques for automatically
evaluating CTL queries in both qualitative and quantitative models,

Our approach will be illustrated by two examples: a qualitative model of the
mammalian cell cycle control after Kohn’s diagrams [6,17], and a quantitative
model of gene expression.

1.1 Example 1: The Mammalian Cell Cycle Control

In this example, the main actors are genes, proteins with their phosphoryla-
tion sites, multimolecular complexes, and membranes. The molecules interact
together to produce new proteins (synthesis), form multimolecular complexes
(complexation), modify proteins (phosphorylation and dephosphorylation) de-
grade or transport molecules.

The cell cycle in eukaryotes is divided into four phases. Between two cell
divisions, the cell is in a gap phase called G1. The synthesis phase S starts with
the replication of the nucleus. A second gap phase G5 precedes the fourth phase:
the mitose phase M during which the cell divides into two cells. The gap phase
(i1 is mainly responsible for the duration of the cell cycle, it is in fact a growing
phase of the cell and may contain a quiescent phase Gy in which the cell can stay
for long period of time or forever (stable state) without further division. Each
phase is characterized by the activity of two major types of proteins: cyclins and
cyclin-dependent kinases (Cdk). Cdk activity requires binding to a cyclin, and
is controlled by specific inhibitors and by stimulatory or inhibitory phosphory-
lations by several kinases or phosphatases which in turn may produce positive
feedback loops.

A state of the cell is defined by the values of the actors: either the presence
or absence of molecules, or their number, or their concentration in each part of
the cell, and by general data like the pH and the temperature. Note that a set
of states can be just represented by partial information on the actual values of
state variables, like for instance intervals or constraints between variables.

The biological queries one can consider about the cell cycle control are of
different kinds:

About reachability :

1 Given an initial state init, is there a pathway for synthesizing a protein
P?
2 Which are the initial states from which another set of proteins S can be
produced ?
About pathways :
3 Can the cell reach a state s while passing by another state s5?
4 Ts state so a necessary checkpoint for reaching state s?
5 Can the cell reach a state s without violating certain constraints ¢?
6 From an initial state init, is it possible to synthesize a protein P without
creating nor using protein @ ?
About stable states :
7 Is a certain (partially described) state s of the cell a stable state ?
8 Can the cell reach a given stable state s from the initial state init?
9 Must the cell reach a given stable state s from the initial state init?
10 What are the stable states?
About durations :
11 How long does it take for a molecule to become activated?
12 In a given time, how many Cyclins A can be accumulated?
13 What is the duration of a given cell cycle’s phase?
About the correctness of the model :
14 Can one see the inaccuracies of the model, and correct them?

1.2 Example 2: Regulation of Gene Expression

As noted in [24,9], the dynamics of gene regulatory networks can be modeled
by a system of differential equations of the form

&; = fi(x) —gi(x) * 23, 2; >0, 1 <i<mn,

where x is a vector of exogenous variables and cellular concentrations of gene
products (proteins and mRNAs), g;(x) is the rate of degradation of protein x;,
and f; is a highly non-linear function which expresses the effect of the other
variables on the synthesis of z;. Exogenous variables are defined by setting 4; =
0. The other variables may participate to complex positive or negative feedback
loops.

We are interested in answering the following types of queries:

About activation :
15 Can protein x reach a concentration greater than a given value 77
16 Which states may produce a concentration for = greater than some value
T?
About invariants :

17 Is a given relationship ¢ between concentrations always satisfied?

1.3 Plan of the paper

The next section presents the temporal logic CTL that we propose to use as
a query language for biochemical systems. This approach is illustrated by the
formalization of the biological queries given above in the two case studies of this
paper. Some limits of CTL are discussed w.r.t. biological queries which do not
translate directly in CTL.

In Section 3, we focus on the simple formalism of concurrent transition sys-
tems for the rule-based modeling of biochemical networks. This is illustrated
with a transition system over boolean variables for the cyclin box of the mam-
malian cell cycle control, and with a transition system over real numbers and
linear constraints for a simple example of gene interaction.

Section 4 presents the basic model checking algorithm and the symbolic and
constraint-based variants of model checking used in our experiments for querying
our biological models in CTL. This section provides some performance figures
that show the feasibility of the approach.

Section 5 provides some extra information and references to related work.
The last section presents our conclusion.

2 The Temporal Logic CTL as a Query Language for
Biochemical Models

2.1 Preliminaries on CTL

The Computation Tree Logic CTL is a logic for describing properties of computa-
tion trees and (non-deterministic) transition systems [8]. CTL is a temporal logic
which abstracts from duration values and describes the occurrence of events in
the two dimensions of the system: time and non-determinism. CTL basically ex-
tends either propositional or first-order (FO) logic [13], with two path quantifiers
for non-determinism: A, meaning “for all transition paths”, and F, meaning “for
some transition path”, and with several temporal operators: X meaning “next
time”, F meaning “eventually in the future”, G meaning “always”, U meaning
“until”.

A “safety” property, specifying that some situation described by a formula
¢ can never happen, is expressed by the CTL formula AG-¢, i.e. on all paths
¢ is always false. A “liveness” property, specifying that something good v will
eventually happen, is expressed by the formula AF. Note that by duality we
have EF ¢ = -“AG¢p and EG¢p = ~AF ¢ for any formula ¢.

Formally, CTL formulas are divided into state formulas and path formulas.
Let AP be a set of atomic propositions, describing states. A state formula is
either an atomic proposition, or a path formula prefixed by a path quantifier, or
a logical combination of such formulas. The set of path formulas is the closure
of the set of state formula by the temporal operators and logical connectives.
Arbitrary state and path formulas form CTL* formula. CTL logic is a syntactic
fragment of CTL* in which the temporal operators must be immediately prefixed
by a path quantifier. For example, A(FG¢) and E(F¢ A G) are CTL* formula

which are not expressible in CTL. In this paper we shall only be concerned with
the fragment of CTL formulas.

The semantics of CTLis given by Kripke structures. A Kripke structure K is
a triple (S, R, L) where S is a set of states, R C S x S is a (transition) relation
and L : S — 24F is a function that associates to each state the set of atomic
propositions true in that state. A path in K from a state sq is an infinite sequence
of states m = sg, 51, ... such that (s;,s;11) € R for all i > 0. We denote by 7
the suffix of 7 starting at s;. Now the inductive definition of the truth relation
stating that a CTL formula ¢ is true in K at state s, noted K, s = ¢, or true in
K along path 7, noted K, n |= ¢, is the following (the standard rules for logical
connectives are omitted):

K,s|= ¢ iff s | ¢, if ¢ is a state formula,

— K, s |E= E¢ iff there is a path 7 from s such that K, 7 = ¢,

K,s |= A¢ iff for every path 7 from s, K, 7 = ¢,

— K,7 = ¢ iff s |= ¢ where s is the starting state of 7, if ¢ is a state formula,
K7 Xo it K, E 6,

— K, 7 | F¢ iff there exists k > 0 such that K, 7% & ¢,

K,n = G¢ iff for every k > 0, K, 7% |= ¢,

— K, 7 |= ¢U4 iff there exists k > 0 such that K, 7% |= ¢ and K, 7/ = ¢ for
all0<j < k.

Following [13], assuming a Kripke strucutre K, we shall identify a CTL for-
mula ¢ to the set of states which satisfy it, i.e. {s € S|K, s = ¢}. Thus, by abuse
of notation, we will write s € ¢ if ¢ is true in state s in K.

2.2 Example 1: The Mammalian Cell Cycle Control

The examples of biological questions listed in the previous section translate into
CTL as follows.

About reachability :

1 init € EF(P),

2 EF(S), the CTL formula is indeed a representation of all states satisfying
it, model checking tools provide facilities for enumerating explicitly these
states.

About pathways :

3 EF(s2 A EF's),

4 2E((=s2) U s),

5 E(cU s),

6 init € E(-Q U P),

About stable states :

7 s € AG(s), a stable state in the strong sense is a state in which the cell
stays indefinitely with no possibility of escaping; a state in which the cell
can stay indefinitely but can escape from, can be modeled by s € EG(s),

8 init € EF(AGSs),

9 init € AF(AGs).

10 The set of stable states of the system cannot be represented by a CTL
query. In CTL, it is only possible to check whether a given (partially
described) state is a stable state. One approach to computing the set
of stable states (or checkpoints, etc.) of a biochemical network would
be to combine model checking methods with search methods, that is an

interesting open problem.
About durations :

Time in temporal logic CTL is a purely qualitative notion, based on a sin-
gle precedence relation. Reasoning about durations is thus not expressible
with the temporal operators of CTL. Nevertheless, if the state description
logic underlying CTL is not propositional but first-order, it is always pos-
sible in FO to model time intervals by adding to all atomic propositions
extra numerical arguments representing their starting time and duration.
Constraint-based model checking presented in section 4.1 provides an auto-
matic method for evaluating such queries.

About the correctness of the model : When an intended property is not
verified, the pathways leading to a counterexample help the user to refine
the model. Similarly, when an unintended property is satisfied, the pathway
leading to a witness helps the user to refine his model by enforcing extra
conditions in rules, or, if the property is not known to be biologically true
or false, the witness may suggest to do biological experiments in order to
validate or invalidate that property of the model. In biology, the standard
loop between modeling and model-validation is in fact a three fold loop
between modeling, querying the model and doing biological experiments.

2.3 Example 2: Regulation of Gene Expression

The second series of questions for the example of gene regulation can be trans-
lated in CTL as follows. It is worth noting that in this second series of examples,
the setting of first-order logic is useful to express the constraints in CTL queries
[10,13].
About activation :

15 init € EF(z > 7),

16 EF(z > 1),
About invariants :

17 init € AG(c).
The same remark as above about the tools for correcting the model or suggesting
biological experiments, applies as well.

3 Modeling Biochemical Networks with Concurrent
Transition Systems

Concurrent transition systems have been introduced in the scheme of [23] for
reasoning about concurrent programs. Concurrent transition systems offer a di-
rect way of specifying a Kripke structure by reaction rules and we shall use them
for this reason for the modeling of biochemicals networks.

A concurent transition system is a Kripke structure presented as a triple
(z,I,R) where x is a tuple of (data and control) variables, I is a formula on @
expressing the initial condition as a set of values for all variables, and R is a set
of condition-action rules. The rules have the following syntax:

condition ¢(x) action ' = p(x)

where ¢(x) denotes the condition under which the rule can be applied, and the
primed version of the variables denotes the new values p(x) of the variables after
the rule is applied. By convention, the variables which are not modified in the
right hand side of the rule keep their value unchanged.

Clearly, a concurrent transition system defines a Kripke structure, where the
set, of states is the set of all tuples of values for the variables, the initial state is
the tuple of values satisfying the initial condition, and the transition relation is
the union! (i.e. disjunction) of the relations between the states of all instances
of the condition-action rules.

In the following, we shall associate a data variable to each molecule (protein
or gene). The value of a variable will be either a numerical value expressing
the concentration of the molecule, or a boolean value expressing simply the
presence or absence of the molecule. The temporal evolution of the system will
be modeled by the transition steps. The different transition paths will model the
non-deterministic behavior of the system.

3.1 Example 1 : The Mammalian Cell Cycle Control

In [17], Kohn provided an annotated diagrammatic representation of the molecu-
lar interaction map of the mammalian cell cycle control and DNA repair systems.
The part concerning the cell cycle control, and with more details the Cyclin box
and the E2F box, have been modeled in the ARC CPBIO by M. Chiaverini and
V. Danos [6], as a set of 732 reaction rules over 165 molecules, and 532 variables
taking into account the different forms of a molecule. The beauty of this model
is that each rule is an instance of one of the following five rule schemas:

1. Complexation : AN B — AB,
two molecules A and B bind together to form a multimolecular complex AB;
2. Phosphorylation : AA B — Ap A B,
molecule A is modified under the action of a catalyst B, A is transformed in
a phosphorylated form Ap,
3. Dephosphorylation : ApA B — AA B,
the phosphorylated molecule Ap is dephosphorylated by catalyst B;
4. Synthesis : A - A A B,
molecule B is synthesized by the gene with the activated promotor A;

! Concurrent transition systems are asynchronous in the sense that one rule is executed
at a time (interleaved semantics), hence the transition relation is the union of the
relations associated to the rules. On the other hand, synchronous programs, that are
not considered in this paper, have their transition relation defined by intersection.

5. Degradation : AANB — A,
molecule B is degraded by molecule A.

In this model, each type of molecule is modeled by a variable. By lack of
quantitative data, the variables associated to molecules are all boolean. They
simply express the presence or absence of the molecule in the cell. This model
of the mammalian cell cycle control is thus a purely logical model. For example,
CycH, Cdk7 and CycH-Cdk7 are three variables representing respectively, Cyclin
H, Cdk 7 and the dimer Cyclin H-Cdk 7. In the complexation rule schema, AB
stands for a propositional variable denoting the multimolecular complex which
results from the binding of the molecules denoted by A and B. An instance of
this schema is the rule CycH A Cdk7 — CycH-Cdk7. Trimers, tetramers and
more generally polymers can be formed by applying the complexation schema to
dimers, etc. Note that it is possible to distinguish between the complexes (AB)C
and A(BC) if there are biological reasons to make this distinction.

Similarly, one can introduce a variable named Cdk1(phosphorylated at Thr14)-
cyclinB, to represent a phosphorylated form of the dimer Cdk1-Cyclin B at site
Thr 14 of Cdk 1. The phosphorylation of this dimer by Mytosine 1 is modeled by
the rule instance: Cdk1-CycB A Mytl — Cdk1(phosphorylated at Thr14)-CycB
A Mytl. An instance of the dephosphorylation rule is: Cdk1(phosphorylated at
Thr14 and Tyrl5)-CycB A Cdc25C(phosphorylated in N-terminal domain) —
Cdkl-cyclinB A Cdc25C(phosphorylated in N-terminal domain).

For the sake of conciseness, we have used the following convention in the rule
schemas for denoting condition-action rules. The left hand side of a rule is just
its condition. The right hand side is a formula which expresses which variables
are made true in the action, with the convention that the variables which do
not appear in the schema remain unchanged, and the variables which appear
in the left hand side and not in the right hand side of the schema may take
arbitrary values. The rule schema of complexation is thus a short-hand for the
four condition-action rules:

condition AN B action AB' = true, A’ = true, B’ = true

condition AN B action AB' = true, A" = false, B' = true

condition AN B action AB' = true, A’ = true, B' = false

condition AN B action AB' = true, A’ = false, B' = false
The condition-action rules make explicit the possible disappearance of molecules
A and B by complexation.

3.2 Example 2 : Regulation of Gene Expression

Following Euler’s method for solving differential equations numerically, one can
associate a discrete, yet infinite state, transition system to a system of differential
equations.

We shall use the following pedagogical example of interaction between two
genes taken from [4]:

v =0.01 %2z,

£ =0.01-0.02x%z if y < 0.08,

= -0.02xz if y > 0.08.
Gene z activates gene y, but above a certain threshold, gene y inhibits expression
of gene z.

A discretization by one time unit dt (e.g. dt = 1) leads to the following simple
transition system:

condition y < 0.8 action ' =+ (0.01 —0.02xz) xdt, vy =y +0.01 xz = dt

condition y > 0.8 action £’ =2 —0.02xx*xdt, y =y + 0.0l xz x dt
The transition system in this example is deterministic but it is worth noting that
this is not required by the scheme. Note that the derivatives can be added to
the states of the system in order to reason or express queries about them. Dy-
namic discretizations are possible by adding the time step dt as a state variable,
similarly to multirate simulation in hybrid systems.

4 Model Checking for Systems Biology

4.1 Preliminaries on Model Checking

Model checking is an algorithm for computing, in a given Kripke structure K, the
set of states which satisfy a given CTL formula ¢, i.e. the set {s € S|K,s = ¢}.
For the sake of simplicity, we consider only the CTL fragment of CTL, and
use the fact that (by duality) any CTL formula can be expressed in terms of
-, V, EX, EU and EG.

When K has a finite set of states, the model checking algorithm, in its sim-
plest form, works with an explicit representation of K as a transition graph,
and labels each state with the set of subformula of ¢ which are true in that
state. First, the states are labeled with the atomic propositions of ¢ which are
true in those states. The labeling of more complex formula is done iteratively,
following the syntax of the subformula of ¢. Formulas of the form —¢ label those
states which are not labeled by ¢. Formulas of the form ¢ V ¢ are added to the
labels of the states labeled by ¢ or ¥. Formulas EX ¢ are added to the labels of
the predecessor states of the states labeled by ¢. Formulas E(¢U) are added
to the predecessor states of i while they satisfy ¢. Formulas EG¢ involve the
computation of the strongly connected components of the subgraph of transi-
tions restricted to the states satisfying ¢. The states labeled by EG¢ are the
states in this subgraph for which there exists a path leading to a state in a
non trivial strongly connected component. The complexity of this algorithm is
O(|g|*(|S]|+|R]|)) where |¢| is the size of the formula, |\S] is the number of states,
and |R| is the number transitions [8].

Symbolic model checking is a more efficient algorithm that uses a symbolic
representation of finite Kripke structures with boolean formulas. In particular,
the whole transition relation is encoded as a single (disjunctive) boolean formula,
sets of states are encoded by boolean formulas, and ordered binary decision
diagrams (OBDDs) are used as canonical forms for the boolean formulas. The
symbolic model checking algorithm computes an OBDD representing the set of
states satisfying a given CTL formula. The computation involves the iterative

computation of the least fixed point (for EF') and the greatest fixed point (for
EQG) of simple predicate transformers associated to the temporal connectives [8].

In our experiments reported below, we used the state-of-the-art symbolic model
checker NuSMV [7].

Constraint-based model checking applies to infinite state Kripke structures,
such as Kripke structures with variables ranging over unbounded or contin-
uous numerical domains. A constrained state is a finite representation using
constraints, of a finite or infinite set of states. In the scheme of Delzanno and
Podelski [10], infinite state Kripke structures are represented by constraint logic
programs, and the CTL formulas, that are based on a fragment of first-order
logic, are identified to the least fixed point and greatest fixed point of such pro-
grams. In our experiments reported below about the quantitative model of gene
expression regulation, we used the implementation in Sicstus Prolog with con-
straints over finite domains and real numbers (simplex algorithm) of the model
checker DMC [11].

4.2 Symbolic Model Checking of Logical Models

Type Query Pathway| Number of [DMC time|NuSMYV time
length |[DMC states|in seconds| in seconds

compiling - - - 47.5
2 EF(cycE) 6 279 1320 16.5
2 EF(SL1-1) 10 2107 29970 57.8
2 EF(cycA) 6 1072 23161 16.8
2 EF(PCNA) 6 245 2524 23.7
4 |=E((=(Cdc25-active)) - - - 112

U Cdk1-CycB-active)
Table 1. Evaluation of CTL queries in the mammalian cell cycle control model with

DMC and NuSMV.

The Table 1 provides some performance figures about the evaluation of CTL
queries in the mammalian cell cycle control model. The two first columns indicate
the query and its type . The third column indicates the length of the pathway
leading to a counterexample or to a witness. The fourth column indicates the
number of state expressions computed by DMC. The two last columns indicate
the CPU time in seconds measured on a Pentium 4 at 660 Mhz for DMC and
NuSMV. The NuSMV timings (which include the reconstruction of a pathway)
show the efficiency of the OBDD representation of states compared to the simple
representation of states in Prolog (without boolean constraints) used in DMC.

10

4.3 Constraint-based Model Checking of Quantitative Models

Constraint-based model checking of quantitative models must be contrasted with
symbolic model checking techniques which use finite domain abstraction tech-
niques to deal with quantitative models [25]. The constraint-based model checker
DMC [11] performs a backward reachability analysis, starting from a constrained
state expressing the CTL property to prove, up to the computation of a state ex-
pression containing the initial state. Safety (resp. liveness) properties involve the
computation of the least (resp. greatest) fixpoint of a constraint logic program.

It is worth noting that this kind of reasoning mixes symbolic computation
on set of states described by numerical constraints, with a form of reasoning
by induction. In the simple example of gene regulation, the query EF(z > 0.5)
immediately evaluates to false, as any predecessor state of a state described by
the constraint z > 0.5 again satisfies that constraint and is thus subsumed.

The table below show some performance figures in the Prolog implementa-
tion of DMC. Better performance results could be obtained by using other dis-
cretizations of the problem, other translations involving Runge-Kutta method,
and other implementations of the constraints.

Type| Request |Pathway|Number|Computing
length |of states| time (sec)
16 | EF(x>0.5) 0 1 0.02
16 | EF(x>0.2) 28 29 3.65
16 | EF(x>0.45) | 116 117 59
16 | EF(y>0.8) 212 213 256
16 |EF(x+y>1.3)| 178 179 173
16 |EF(x+y>1.2)| 194 195 206
17 | AG(x>0.5) 1 2 0.03
17 | AG(x<0.1) | 14 127 8
17 | AG(y<0.8) | 211 421 7

Table 2. Examples of CTL queries in the example of gene interaction.

5 Discussion and Related Work

The experiments reported in this paper should be read as a proof-of-concept
rather than as providing an already usable accurate modeling of biological sys-
tems. Some errors or ambiguities were corrected with the biologists of the ARC
CPBIO, but more work with biologists is needed to validate further the formal
modeling of Kohn’s diagram as a concurrent transition system, and incorporate
more knowledge in the model.

The pathway logic of S. Eker et al. [12] is tightly related to our approach.
The modeling of biochemical networks with concurrent transition systems is of

11

a somewhat lower level than with pathway logic. Pathway logic is indeed more
expressive as it can express algebraic properties of the components, such as the
commutativity and associativity of complexation. This capability can be used to
infer the possible reactions of molecules from their logical structure. It is worth
considering however, that the interaction capabilities of a protein are often not
related to the ones of its components, as they depend on the 3D structure of the
proteins which is obviously impractical to take into account in a global modeling
[3]-

One limitation to the modeling of biological systems with concurrent tran-
sition systems is the necessity to encode all the parameters of the system in a
finite vector of data and control variables. In order to get rid of this difficulty,
we are currently investigating the use of other model checkers based on linear
logic or multiset rewriting, that dont’t have this restriction and make it possible
to reason about systems within an arbitrary context [5].

Another obvious limitation in the experiments reported here is the absence
of stochastic data. There are however stochastic model checking methods [18,
20] which can be investigated to circumvent this limitation.

The performances of our model checker can be improved in many ways as
we have already shown with the use of DMC and NuSMYV for the logical model
of the mammalian cell cycle control. Similar improvements will be necessary to
show the scalability of this approach for quantitative models. In this respect,
constraint-based model checking is thightly related to hybrid systems methods
and to hybrid verification tools such as for example Hytech [15] or d/dt [2].
Approximation techniques coming from hybrid automata can be imported in
constraint-based model checking with the framework of abstract interpretation.
On the other hand, constraint-based model checking provides a method for gen-
eralizing hybrid verification tools, going from pure reachability analysis towards
more general CTL query evaluation.

6 Conclusion

We have applied symbolic model checking techniques to the querying and vali-
dation of both quantitative and qualitative models of biomolecular systems. Our
first experiments show some advantages over simulation. Constraint reasoning
makes it possible to group large or infinite sets of states into small constrained
state expressions which provide formal proofs of reachability, pathway, check-
point and stability properties. In some cases the properties can be checked by
computing a fewer number of states than by simulation. It is also possible to rea-
son with infinite sets of initial states finitely represented by constraints. Moreover
the proof method applies to non-deterministic systems, for which simulations
may be unfeasible.

We have also shown that constraint-based model checking can be applied in
quantitative models described by differential equations. In our experiments we
used a symbolic variant of Euler’s method, but the use of the more accurate

12

Runge-Kutta method, of non-linear constraint solving by interval propagation,
and the use of abstraction techniques open many ways for improvement.

For all these reasons, we believe that, beyond simulation, verification tools
such as model checking will become indispensable for querying and validating
complex models in systems biology.

Acknowledgement : We gratefully acknowledge the interactions we had with our
colleagues of the ARC CPBIO, especially with Magali Roux-Rouquié, Julien Renner
and Grégory Sautejeau from Institut Pasteur, for interesting discussions on Systems
Biology and relevant bits of Biomolecular Biology, Vincent Danos and Marc Chiaverini
from CNRS PPS Lab. for their beautiful transcription of Kohn's diagrams in their
core modeling language, Vincent Schéchter at Genoscope Evry, for his insights on the
validation of biological models, Alexander Bockmayr, Arnaud Courtois and Damien
Eveillard from the ModBio group at LORIA Nancy, for fruitful discussions on quanti-
tative models.

References

1. R. Alur, C. Belta, F. Ivancic, V. Kumar, M. Mintz, G. J. Pappas, H. Rubin, and
J. Schug. Hybrid modeling and simulation of biomolecular networks. In Springer,
editor, Hybrid Systems: Computation and Control, LNCS 2034, pages 19-32, Rome,
Ttaly, 2001.

2. E. Asarin, T. Dang, and O. Maler. d/dt: A verification tool for hybrid systems. In
Invited session “New Developments inVerification Tools for Hybrid Systems”, in
Proceedings of the Conference on Decision and Control, Florida, USA, July 2001.

3. R. Backofen, S. Will, and E. Bornberg-Bauer. Application of constraint program-
ming techniques for structure prediction of lattice proteins with extended alpha-
bets. Bioinformatics, 3(15):234-242, 1999.

4. A. Bockmayr and A. Courtois. Using hybrid concurrent constraint programming
to model dynamic biological systems. In Springer, editor, 18th International Con-
ference on Logic Programming, pages 85—99, Copenhagen, 2002.

5. M. Bozzano, G. Delzanno, and M. Martelli. Model checking linear logic specifica-
tions. Technical report, Technical report,University di Genova, March 2002.

6. M. Chiaverini and V. Danos. A core modeling language for the working molecular
biologist. Technical report, CNRS, PPS, Paris 7, November 2002.

7. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In In Proceeding of International Conference on Computer-Aided Veri-
fication, CAV’2002, Copenhagen, Danmark, July 2002.

8. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

9. H. de Jong. Modeling and simulation of genetic regulatory systems: A literature
review. Journal of Computational Biology, 9(1):69-105, 2001.

10. G. Delzanno and A. Podelski. Model checking in clp. In Proceedings of the 5th
International Conference on Tools and Algorithms for Construction and Analysis
of Systems TACAS’99, volume 1579 of LNCS, pages 223-239. Springer-Verlag,
January 1999.

11. G. Delzanno and A. Podelski. DMC user guide, 2000.

13

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, and K. Sonmez. Path-
way logic: Symbolic analysis of biological signaling. In the Pacific Symposium on
Biocomputing, pages 400412, January 2002.

E.A. Emerson. Temporal and Modal Logic, pages 995-1072. J. van Leeuwen Ed.,
North-Holland Pub. Co./MIT Press, 1990.

R. Ghosh and C. Tomlin. Lateral inhibition through delta-notch signaling: A
piecewise affine hybrid model. In Springer, editor, Hybrid Systems: Computation
and Control, LNCS 2034, pages 232-246, Rome, Italy, 2001.

T. Henzinger, J. Preusig, and H.-Wong-Toi. Some lessons from the hytech experi-
ence. In Proceedings of the J0th Annual IEEE Conference on Decision and Control,
CDC’2001, 2001.

R. Hofestddt and S. Thelen. Quantitative modeling of biochemical networks. In
In Silico Biology, volume 1, pages 39-53. 1998.

K.W. Kohn. Molecular interaction map of the mammalian cell cycle control and
dna repair systems. Molecular Biology of Cell, 10(8):703—2734, August 1999.

S. Laplante, R. Lassaigne, and F. Magniez. Probabilistic model checking: an ap-
proach based on property testing. In Proc. of the 7th annual IEEE symposium on
Logic in Computer Science LICS’ 02, Copenhagen, 2002.

H. Matsuno, A. Doi, M. Nagasaki, and S. Miyano. Hybrid petri net representation
of gene regulatory network. In Pacific Symposium on Biocomputing (5), pages
338-349, 2000.

D. Monniaux. The analysis of probabilistic programs by abstract interpretation.
PhD thesis, Ecole Normale Supérieure, Paris, France, 2001.

M. Nagasaki, S. Onami, S. Miyano, and H. Kitano. Bio-calculus: Its concept, and
an application for molecular interaction. In Currents in Computational Molecular
Biology., volume 30 of Frontiers Science Series. 2000.

A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. In Proceedings of the
Pacific Symposium of Biocomputing, pages 6:459-470, 2001.

U. A. Shankar. An introduction to assertionnal reasoning for concurrent systems.
ACM Computing Surveys, 3(25):225-262, 1993.

R. Thomas and d’Ari. Biological feedback. CRC press, 1990.

A. Tiwari and P. Lincoln. Automated technique for stability analysis of delta-notch
lateral inhibition mechanism. Technical report, SRI, Stanford USA, 2002.

14

