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Abstract

Beyond numerical simulation, the possibility of performing symbolic computation on bio-
molecular interaction networks opens the way to the design of new automated reasoning tools
for biologists/modelers. The Biochemical Abstract machine BIOCHAM provides a precise
semantics to biomolecular interaction maps as concurrent transition systems. Based on this
formal semantics, BIOCHAM offers a compositional rule-based language for modeling biochem-
ical systems, and an original query language based on temporal logic for expressing biological
queries, such as reachability, checkpoints, oscillations or stability.
Turning the temporal logic query language into a specification language for expressing the
observed behavior of the system (in wild-life and mutated organisms) makes it possible to
use machine learning techniques for completing or correcting biological models in BIOCHAM.
Machine learning from temporal logic formulae is quite new however, both from the machine
learning perspective and from the Systems Biology perspective. In this paper, we report on the
machine learning system of BIOCHAM which allows to discover, on the one hand, interaction
rules from a partial model with constraints on the system behavior expressed in temporal
logic, and on the other hand, kinetic parameter values from a temporal logic specification with
constraints on numerical concentrations.
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Introduction

The mass production of post-genomic data, such as
ARN expression, protein production and protein-protein
interaction, raises the need for a strong effort on the for-
mal representation of biological systems. Knowledge on
gene interactions and pathways is currently gathered in
databases such as KEGG, BioCyc, etc. in the form of
annotated diagrams. Tools such as BioSpice, Copasi,
GON, E-cell, etc. have been developed for making sim-
ulations based on these databases when numerical data
are present.

Beyond numerical simulation however, the possi-
bility of performing symbolic computation on bio-
molecular interaction networks opens the way to the
design of a new kind of automated reasoning tools for
biologists/modelers. Our project with the Biochem-
ical Abstract Machine (Fages et al., 2004) (http://
contraintes.inria.r/BIOCHAM/), started in 2002, is
one attempt in this direction. BIOCHAM provides a
precise semantics to qualitative biomolecular interac-
tion maps as concurrent transition systems (Chabrier-
Rivier et al., 2004b). Based on this formal semantics,
BIOCHAM offers:

- a compositional rule-based language for modeling

biochemical systems, allowing patterns, and kinetic ex-
pressions when numerical data are available;

- a non-deterministic boolean simulator and a numer-
ical simulator;

- an original query language based on temporal logic
CTL (Clarke et al., 1999) for boolean models and LTL
with constraints for numerical models for expressing bi-
ological queries such as reachability, checkpoints, oscilla-
tions or stability (Chabrier and Fages, 2003; Eker et al.,
2002);

- a machine learning system to infer interaction rules
and kinetic parameters from observed temporal proper-
ties.

Our first experimental results of temporal logic
querying have been reported on a qualitative model of
the mammalian cell cycle control developed after Kohn’s
map (Kohn, 1999) involving about 500 variables and
2700 reaction rules (Chabrier-Rivier et al., 2004a).

Now, turning the temporal logic query language into
a specification language for expressing the observed be-
havior of the system (in wild-life and mutated organ-
isms) makes it possible to use machine learning tech-
niques for completing or correcting BIOCHAM models.

http://contraintes.inria.r/BIOCHAM/
http://contraintes.inria.r/BIOCHAM/


There has been work on the use of machine learning
techniques, such as inductive logic programming (Mug-
gleton, 1995) or genetic programming, to infer gene func-
tions (Bryant et al., 2001), metabolic pathway descrip-
tions (Angelopoulos and Muggleton, 2002; ?; ?) or gene
interactions (Bernot et al., 2004). Our work can also be
related to the whole domain of qualitative and numeri-
cal scientific discovery (?) and to the theories modified
in theory revision (??). However structural learning of
bio-molecular interactions from temporal properties is
quite new, both from the machine learning perspective
and from the Systems Biology perspective.

The machine learning system in BIOCHAM allows to
discover interaction rules from a partial model and con-
straints on the system behavior (Calzone et al., 2005).
These constraints are expressed in temporal logic with
positive formulae (expected properties) and negated for-
mulae (properties to forbid). The learning process can
be guided by the user by providing patterns for limit-
ing the types of sought reactions, such as complexation,
phosphorylation, etc. The machine learning system sup-
ports similarly the learning of kinetic parameter values
from a specification in temporal logic with constraints
on numerical quantities.

In this paper, we describe the BIOCHAM machine
learning system from temporal logic formulae. We
present an example of rule and parameter learning and
show the interactive use of the learning system to refine
the specification and the patterns until a biologically
satisfactory solution is obtained.

Preliminaries on BIOCHAM

BIOCHAM manipulates formal objects which represent
not only chemical or biochemical compounds, ranging
from ions, to small molecules, macromolecules and genes
but also control variables and abstract biological pro-
cesses. BIOCHAM reaction rules primarily represent
biochemical reactions but can also be used to represent
state transitions involving control variables or abstract
processes.

Syntax

molecule = name | molecule∼{name,...,name}
| molecule-molecule | ( molecule )

reaction = kinetics for solution => solution
solution = | molecule | solution + solution

The following abbreviations can be used for reaction
rules: A <=> B for the two symmetrical rules, A =[C]=>

B for the rule A+C => B+C with catalyst molecule C. For
instance, Yp + E1 => Yp-E1 is a complexation rule. Yp

=[Zp]=> Yp~{i} is a phosphorylation rule with catalyst
Zp. A default kinetic expression is provided for rules
where no such expression is given.

BIOCHAM has also a rich pattern language with
constraints which is used to specify molecules and sets of
reaction rules in a concise manner. Patterns also provide

a guideline on the shape of rules to be considered during
the learning process, as explained in a later section.

Semantics

The semantics of BIOCHAM is defined at two levels of
abstraction: the molecule concentration semantics and
the boolean semantics which only deals with the pres-
ence or absence of molecules. The boolean semantics
reflects the capability of drawing inferences about all
possible behaviors of the system with unknown concen-
tration values and unknown kinetic parameters. In the
boolean semantics, the reaction rules are interpreted as a
concurrent (asynchronous) transition system. A rule like
A+B=>C+D defines four possible transitions taking into
account the possible consumption or not of the reactants
A and B. In the next state, molecules C and D are present,
while molecules A and B can be non-deterministically
consumed or present.

The molecule concentration semantics supposes that
each reaction rule is given a kinetic expression (such
as mass action law, Michaelis-Mentens, Hill kinetics,
etc.). In that case the rules can be compiled in a system
of (highly non-linear) ordinary differential equations.
Given a set of initial concentrations for each molecule,
the evolution of the system becomes fully deterministic.

The most original feature of BIOCHAM is the use
of temporal logic (Clarke et al., 1999) as a query lan-
guage for the biological properties of the models. The
Computation Tree Logic CTL is used for the boolean
semantics as it is non-deterministic. This logic basically
extends propositional logic used for describing states,
with operators for reasoning on time (state transitions)
and non-determinism. Several temporal operators are
introduced in CTL: Xφ meaning φ is true at next tran-
sition, Gφ meaning φ is always true, Fφ meaning finally
true, and φUψ meaning φ is always true until ψ becomes
true. Two path quantifiers are introduced for reasoning
about non-determinism: Aφ meaning φ is true on all
paths, and Eφ meaning φ is true on some path. In
CTL, a temporal operator has to be immediately pre-
ceded by a path quantifier. As shown in Chabrier and
Fages (2003) CTL is expressive enough to express a wide
range of biological queries:

About reachability. Is there a pathway for pro-
ducing (i.e. synthesizing, activating, etc.) a proteinXp?
This query is formalized by the CTL formula EF (Xp).
It can be abbreviated as reachable(Xp) in BIOCHAM.

About pathway. Is state Y p a neces-
sary checkpoint for reaching state Xp ∼ {i}?
!(E((!(Y p)UXp∼ {i}). This formula is abbreviated as
checkpoint(Yp,Xp~{i}).

About stability and oscillations. Is a certain
(partially described) state s of the cell a steady state?
s ⇒ EG(s). Can the system exhibit a cyclic behav-
ior w.r.t. the presence of a product Xp? This query
can be formalized by the CTL formula EG((Xp ⇒
EF ¬Xp) ∧ (¬Xp ⇒ EF Xp)). It will be abbreviated
as loop(Xp,!Xp).



The CTL query language for boolean models is im-
plemented in BIOCHAM with an interface to the state-
of-the-art symbolic model checker NuSMV of Cimatti
et al. (2002).

Linear Time Logic LTL with arithmetic constraints
is used for the molecule concentration semantics, in a
way similar to Antoniotti et al. (2003). LTL is a tempo-
ral logic without path quantifier and is suitable to rea-
son about deterministic systems, such as kinetic mod-
els. The same biological properties as above can be ex-
pressed in LTL except that:

- only one path is considered at a time. Practically,
it is a time series describing the values of the different
concentrations of each compound (and their derivatives)
that will provide a model for an LTL query.

- the basic formulae on which LTL queries are built
are made with arithmetic constraints about the concen-
trations or their derivatives (like [Yp] > [Yp~{i}] or
d([Xp])/dt < 0).

Thus, reachability queries are formalized as F ([Y p] >
[Y p ∼ {i}]) and oscillation queries can be formalized
as checking whether the derivative of the molecule con-
centration alternates between positive and negative a
certain number of times n (e.g. F ((d[Xp]/dt > 0) ∧
F ((d[Xp]/dt < 0) ∧ F ((d[Xp]/dt > 0) . . ., abbreviated
as oscil(Xp,n)).

Machine Learning Interaction Rules from CTL
Formulae

Systems biologists build models of bio-molecular inter-
actions from experiments in wild-life and mutated or-
ganisms. These experiments inform on the properties
that the model has to check in order to reproduce the
behavior of the system under various conditions.

In our approach, the biological properties of the sys-
tem can be formalized in CTL. The intended behavior of
the model can thus be described through a set of CTL
properties providing a specification, with positive and
negative examples. This leads us to develop machine
learning techniques to automatically propose rules to
be added to, or removed from the model in order to
fulfill the specification. A rule pattern (the bias) de-
scribing the plausible rules to add to the system is given
to guide the search of new rules, eliminating in advance
rules having no biological meaning.

After unfruitful experiments with state-of-the-art In-
ductive Logic Programming tools related to the com-
plexity of temporal properties computation, we devel-
oped an ad-hoc exhaustive enumeration method: all
the ground instances of the rule pattern are generated,
and tried sequentially by adding them to the model and
checking the CTL specification with the model-checker.
Those rules which check all the specifications (positive
examples and no negative examples) are returned as an-
swers and proposed to the user.

This algorithm is somewhat limited, since it handles
only the addition of a single rule to the model. However

the following sections show that it already provides in-
teresting results. Moreover, the use of theory revision
(Shapiro, 1983) techniques allow a more efficient search
and the search for more than one rule, as explained in
Calzone et al. (2005).

Machine Learning Kinetic Parameters from Con-
straint LTL Formulae

In the same spirit as what is done for learning boolean
rules from CTL properties, one can use an LTL speci-
fication with arithmetic constraints to learn parameters
of a kinetic model. Once again an enumerative method
is used, and the search space is explored with a preci-
sion specified by the modeler. For each set of parameters
tried, a simulation is run, and the resulting time series
is used as a Linear Time Logic model on which the spec-
ification is checked.

For instance, the command trace get([ka1,kr1],
[(400,4000),(100,1000)], 20, oscil(Xp,4), 40)
searches for two parameters (ka1 and kr1) in the
respective intervals of possible values [400, 4000] and
[100, 1000], with only 20 different values tried for each,
and such that before time 40, Xp oscillates 4 times.
It is also possible to start with very wide intervals
and a quite loose specification, like [1, 10000] for the
parameters above, and oscil(Xp,2). Then, once one
gets an answer, the specification can be made more
precise, and the intervals smaller if necessary.

In a sense, the machine learning process actually
replicates what most modelers do by hand, i.e. trying
different values for parameters, guided by ideas about
the plausible interval of values to try and the shape that
the simulation should produce. The machine learning
algorithm allows us to test parameter sets much faster
once the formalization effort of that shape into an LTL
specification is done.

Negative Feedback Example

The learning methods are illustrated in this section on a
toy model of a negative feedback loop. Both methods for
learning rules and kinetic parameters are coupled to get
a kinetic model that fits the experimental behavior of the
system: with the appropriate kinetics and parameters,
this kind of models is expected to oscillate.

A simple network composed of three components
is chosen. The three proteins involved appear in two
forms, active (Xp, Yp and Zp) and inactive (Xp~{i}, . . . ).
The known interactions are that Xp (resp. Zp, Yp) pro-
motes the inactivation of Zp (resp. Yp, Xp). An initial
BIOCHAM model is written in the simplest way, using
the law of mass action with some arbitrary parameter
values:

rule1 : kax*[Xp~{i}] for Xp~{i} => Xp.

rule2 : kix*[Xp]*[Yp] for Xp=[Yp]=> Xp~{i}.

rule3 : kay*[Yp~{i}] for Yp~{i} => Yp.

rule4 : kiy*[Yp]*[Zp] for Yp=[Zp]=> Yp~{i}.



rule5 : kaz*[Zp~{i}] for Zp~{i} => Zp.

rule6 : kiz*[Zp]*[Xp] for Zp=[Xp]=> Zp~{i}.

parameter(kax,0.1). parameter(kix,1.5).

parameter(kay,0.4). parameter(kiy,1).

parameter(kaz,0.2). parameter(kiz,1).

% Initial conditions

present(Xp,1). present(Yp,1). present(Zp,1).

absent(Xp~{i}). absent(Yp~{i}). absent(Zp~{i}).

% CTL specifications

add_specs({

Ei(reachable(Xp)), Ei(reachable(Yp)),...

Ei(reachable(Xp~{i})), Ei(reachable(Yp~{i})),...

Ai(loop(Xp,Xp~{i})), Ai(loop(Yp,Yp~{i})),...

Ai(checkpoint(Yp,Xp~{i})),

Ai(checkpoint(Zp,Yp~{i})),

Ai(checkpoint(Xp,Zp~{i}))}).

To simulate the BIOCHAM model, a set of initial
conditions and a list of CTL specifications that account
for experimental results are provided with the model.
The model is considered to be “correct” when all the
specifications are satisfied. In this toy example, the CTL
specifications indicate, for instance, that Xp is reachable,
that Xp~{i} and Xp alternate, and that Yp is a check-
point for the inactivation of Xp.

With these specifications, the boolean model com-
plies with the expected behavior, but the kinetic model
does not show the wanted oscillations. After a search
of the parameter space, no parameter values are found
that exhibit oscillations. These results might suggest
that the rules need to be modified.

We choose to introduce some kind of non-linearity to
the model by adding an intermediary step in the inacti-
vation of one of the variables, for instance, Yp.

The rule we intend to replace (rule 4) is deleted:
delete rules(Yp=[Zp]=>Yp~{i}). The model is no
longer correct as two of the specifications are now false
(reachable(Yp~{i}) and loop(Yp,Yp~{i})).

Then, a rule involving a new enzyme, E1, is added
to the model: Yp associates with E1 to form a com-
plex Yp+E1 =>Yp-E1. We force the formation of the
complex to be a necessary step to get Yp inactivated,
which is translated into the following specification:
checkpoint(Yp-E1,Yp~{i}).

BIOCHAM is asked to find a rule that could
satisfy the model’s specifications with the command
learn one rule(elementary interaction rules).
Out of 1066 rules tested, only one rule is proposed
by BIOCHAM: Yp-E1=[Zp]=>Yp~{i}+E1. This rule is
added to the current list of rules and the specifications
are now verified by the boolean model.

The same reasoning is done for the reverse re-
action. The rule Yp~{i}=>Yp is deleted and the
rule Yp~{i}+E2 =>Yp~{i}-E2 added. BIOCHAM pro-
poses Yp~{i}-E2 =>Yp to satisfy the specification
checkpoint(Yp~{i}-E2,Yp).

The next step is to test parameter values to get an
oscillatory behavior. The form of the two-step reaction

vaguely resembles Michaelis Menten kinetics. As a first
approximation, the modeler may choose parameter val-
ues for ka1, ka2, kr1 and kr2 accordingly.

parameter(ka1,5e6). parameter(kr1,1000).

parameter(ka2,5e6). parameter(kr2,1000).

present(E1,0.001). absent(Yp-E1).

present(E2,0.001). absent(Yp~{i}-E2).

With these values, the system does not oscillate. The
function trace get enables the modeler to search for
several parameter values at the same time. We vary two
parameters ka2 and kr2 with ka1 and kr1 fixed. Their
respective domains are explored and values are searched
such that Yp oscillates three times on an interval of 40
units of time and that Yp concentration gets close to 0
at some point.

trace_get([ka2,kr2],[(1000000,10000000),(0,1000)],

10,(oscil(Yp,3)&F([Yp]<0.001)),40).

Search time: 8.92 s

Found parameters that make oscil(Yp,3)&F([Yp]<0.001)

true:

parameter(ka2,1000000). parameter(kr2,300).

For these parameters, the system oscillates according
to the specification. Note that the user can further refine
the LTL specification to get a different or more accurate
shape of the curves.

The use of both learning methods helped the mod-
eler find the best rules and parameters that exhibit the
appropriate behavior. The modeler, though, remains
active in the process of finding rules and parameters.

Conclusion

With the advent of formal languages for describing sys-
tems of bio-molecular interactions as well as their bio-
logical properties, machine learning techniques can be
used to curate models and integrate semi-automatically
new data coming from biological experiments.

We have shown that in the Biochemical Abstract Ma-
chine BIOCHAM, the rule-based language for modeling
bio-molecular interactions, and the temporal logics used
for formalizing biological properties of the system, can
be combined in a machine learning process for discov-
ering new reaction rules and estimating kinetic param-
eters.

Obviously, the experiments reported in this paper
were chosen for sake of simplicity, however the machine
learning algorithm scales up linearly with the number of
candidates (rules or parameters) and we plan to use it
on a large scale for the development of models for cancer
therapies.
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