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Abstract

We introduce a formalism to represent and analyze protein-protein and
protein-DNA interaction networks. We illustrate the expressivity of this
language, by proposing a formal counterpart of Kohn’s compilation on the
mammalian cell cycle control. This effectively turns an otherwise static
knowledge into a discrete transition system incorporating a qualitative de-
scription of the dynamics. We then propose to use the Computation Tree
Logic CTL as a query language for querying the possible behaviours of the
system. We provide examples of biologically relevant queries expressed in
CTL about the mammalian cell cycle control and show the effectiveness
of symbolic model checking tools to evaluate CTL queries in this context.

1 Introduction

In recent years, molecular biology has engaged in a large-scale effort to eluci-
date cellular processes in terms of their biochemical basis at the molecular level.
Mass production of post genomic experimental results, such as mRNA expres-
sion data, protein expression or protein-protein interaction data, is following
and completing the initial piecemeal catalog of elementary components – genes
and proteins – of the sequencing and genomic analyses projects by progressively
painting a global picture of the complex interactions that take place in a cell.
Exploiting these experimental data to understand the underlying processes re-
quires much more than database integration and storage: it calls for a strong
parallel effort on the formal representation of biological processes.

Several formalisms have been proposed in recent years for the modeling of
metabolic pathways, extracellular and intracellular signaling pathways, or gene
regulatory networks: boolean networks [TT98], ordinary differential equations
[SEJGM02], and more recently hybrid Petri nets [MDNM00, HT98] and hy-
brid automata [ABI+01, GT01]. Formal concurrent languages were also con-
sidered, including hybrid concurrent constraint languages [BC02], or rewriting
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logics [EKL+02]. Regev and Shapiro [RSS01] were the first to propose the use
of the π-calculus [MPW92].

Most formal approaches mentioned above proceed by wholesale importation
of a language (e.g. Petri nets, the π-calculus) that emerged in answer to very spe-
cific design goals, some of which may be relevant to our present modeling task,
and some of which may not. While the expected benefit is direct inheritance of
preexisting methods and tools, this results in some contorted translations and
the existence of useless constructs, and somewhat defeats the explanatory pur-
pose of the formalization. We advocate a different approach: the ab initio design
of formal languages to represent a chosen subset of biological phenomenology,
along with adaptation or redesign of accompanying theoretical tools.1

This allows us greater freedom in coping with the essential tension always
present in the design of a modeling language between expressivity and analyzabil-
ity. The former is about how well the language can express a given phenomenon,
and the latter about how well the obtained models will lend themselves to fur-
ther investigations. If the model is too abstract, then none of what we learn
from it will be significant; if it is too rich and concrete, then there is nothing
which can be learnt beyond pure simulation. And what actually is learnt from
pure simulation is sometimes questionable, if only because the model is often
taught to behave as one expects in the first place.

It is the ambition of this paper to present a formalism that is both rich
enough to describe interesting systems and simple enough to support formal
methods. Its expressivity and simplicity are tested with examples drawn from
Kohn’s first molecular map of the cell cycle control [Koh99], so that we can be
reasonably confident in the language representational value (it is also particu-
larly legible so that the authors wish they had been taught molecular biology
this way). The second focus of the paper is on the issue of providing automated
methods for querying and validating models.

The current state-of-the-art in modeling is mostly based on simulation and
graphical display [ABI+01, BC02, MB01, MDNM00], with some attempts to-
wards stability and bifurcation analyses of dynamical behaviour on small sys-
tems [TT98, dJ01] described either by differential equations or by discretizations
thereof. Our approach is markedly different and promotes symbolic manipula-
tion and exploration of the model by means of computational logics which are
commonplace, in hardware verification for instance. Formal methods extend
the ways one can play with a given model and thus may second simulation and
even replace it when quantitative information is sparse or innacurate.

This idea of introducing formal methods was mentioned as a prime motiva-
tion by early efforts at formal modeling [RSS01], and the specific prospects of
using computational logics were clearly articulated in [EKL+02]. In the present
paper, we give substance to this idea by proposing the use of the Computation
Tree Logic CTL as a query language for biomolecular networks. We provide
concrete examples of relevant biological queries expressed in CTL about the
mammalian cell cycle control, and show the effectiveness of symbolic model
checking techniques on some preliminary benchmarks obtained from a proof-of-
concept implementation using the symbolic model-checker NuSMV [CCG+02].

1Process algebra specializing in the representation of protein-protein interactions [DL03a,
DL03b, DK03] and membrane interactions [RPS+03, Car03] are being investigated, but our
basic modeling language is somewhat simpler.
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2 A core modeling language

2.1 A case for simplicity

We introduce below a simple and biologically legible formalism meant to repre-
sent molecular biology networks at the protein interaction level.

The formalism is quite expressive: one of our aims is to demonstrate this
with a side-by-side comparison of standard biological subsystems described in
natural language with their precise and concise rendering in the formalism.
All our examples are taken from the cell cycle control reaction network after
Kohn [Koh99] and we were able to complete the formalization of Kohn’s first
map, resulting in about 600 reactions [CD02]. A few ambiguities in Kohn’s
description were resolved in the process.

The formal set of reactions obtained can be complemented by different breeds
of operational semantics: individual-level non-deterministic or stochastic dy-
namics, or population-level deterministic differential equation systems. One
advantage of having a core formalism is to stay agnostic regarding the opera-
tional semantics or dynamics one wants to equip it with, a point which has
gone largely unnoticed in the practice of biological modeling. Different oper-
ational semantics will probably support different analytic tools and be chosen
depending on the application.

Another advantage of singling out a simple formalism is to stimulate the find-
ing of better and/or richer ones. For instance, here, we choose not to represent
domains (functional sub-units of proteins involved in bindings), and we are a
fortiori not able to represent internal wirings in protein complexes. Some more
involved biological narratives do take place at the domain-level and to account
for these one needs domains in the language. We also choose to take complexes
to be multisets of proteins, and we are consequently unable to express situa-
tions where the order in which a given complex is constructed will bear upon its
interactive capabilities. Other choices made will be best commented with the
examples in hand. For now, suffices it to say that in our language, the abstrac-
tions made are clear from the notation. In contrast, Kohn’s formalism though
extremely useful in displaying information, is not formal enough to be equipped
with an operational semantics or to always allow unambiguous determination
of reaction paths.

2.2 The formalism

We assume an infinite set of protein names, written N , and ranged over by
symbols such as A, B, . . . and an arity function a(.) : N → N from protein
names to integers, mapping a protein name to an integer representing its number
of sites.

A formal protein, or simply a protein, is a pair (A,x), written A〈x〉, where
A ∈ N is a name and x ∈ {0, 1}a(A) is a vector of booleans representing the
occupancy state of A’s sites, or simply the state of A.

Protein-Protein Interaction. Proteins may be assembled into protein com-
plexes, or simply complexes ranged over by C, D, . . . and we write “·” for compo-
sition. Furthermore, composition is assumed to be associative and commutative.
In other words, the order of proteins inside the complexes is irrelevant. Here is
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an example, the following two expressions denote the same compound made of
A1, A2, and A3:

A1〈x1〉·A2〈x2〉·A3〈x3〉, A2〈x2〉·A1〈x1〉·A3〈x3〉
Biologically, a complex is a bundle of proteins connected together mostly by

low energy bonds. In the course of some interactions, members of the complex
may exchange smaller molecules such as phosphate groups or be modified oth-
erwise. This in turn induces different foldings in space and subsequent changes
in the complex interaction capabilities. Now, at the level of abstraction of our
formalism, all these interactions are grouped under the generic name of modifi-
cation and are represented as state transformation.

Protein-DNA Interaction. Complexes can also modulate the rate of syn-
thesis of proteins by binding to specific sites on DNA (small strings of DNA
upstream of genes) having there a positive or negative effect on the synthesis of
the protein(s) associated to the gene.

To express this, we use a map 2. : N → P (where P stands for the set of
regulatory binding sites) associating to each A ∈ N a binding site. We’ll keep
with the same notation when describing a binding between a complex and such
a binding site.

Solutions and Reactions. Solutions, ranged over by S, S′, . . . are multi-
sets of proteins and complexes. Reactions are defined by rewriting rules which
have the shape S −→ S′. Following the chemical metaphor further, we’ll call
complexes present in the left hand side of a given rule reactants and complexes
present in the right hand side products of the rule.

We consider five kinds of reactions:

(modification)

C〈x〉, D〈y〉 −→ C〈x′〉, D〈y′〉
(complexation)

C〈x〉, D〈y〉 −→ C〈x′〉·D〈y′〉
(decomplexation)

C〈x′〉·D〈y′〉 −→ C〈x〉, D〈y〉
(synthesis)

F 〈x〉·2A −→ F 〈x〉·2A, A〈y〉
(degradation)

F 〈x〉, C〈y〉 −→ F 〈x〉

Comments on the reactions. Modification and complexation were already
commented on, and decomplexation is just the reaction inverse to complexation.

The synthesis reaction expresses that F is a transcription factor which, when
bound to a regulatory binding site 2A, activates the synthesis of protein A.

In the synthesis and degradation reactions, the complex F , commonly known
as a transcription or degradation factor, can be absent (or empty for the math-
ematically minded).

The first three reaction types are linear in that they preserve the number of
components. The latter two are not, and even with this simple formal apparatus
we see that they offer a mechanism for the cell to revise its own programming
by renewing its stock of current “instructions”.
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Enzymatic notation. Many biochemical reactions require catalysis, that is,
the presence of a type of protein called an enzyme, which is not modified by the
reaction but enables it by lowering the free energy barrier and thus modifying
the kinetics. To express conveniently these cases, we will use the following
simplified “enzymatic” notations:

(modification)

C〈x〉[D〈y〉 −→ D〈y′〉]
(synthesis)

F 〈x〉·2A[−→ A〈y〉]
(degradation)

F 〈x〉[A〈y〉 −→]

Additionally, for synthesis, one may indicate the qualitative influence of F with
a + or − as in:

F 〈x〉·2A[→ A〈y〉]+.

Dynamics. Note that for the + and − signs to be endowed with other than
a purely descriptive meaning, a notion of reaction rate (discrete or continuous)
is required, together with its interpretation in the operational semantics.

In general, any set of reactions defined following the rule schema above
will generate a non-deterministic transition system on solutions in the obvious
way, namely by repeatingly applying rules in any order. If fed with enough
kinetic information, it is even possible to endow the same set of reactions with
a structure of probabilistic transition system. It is equally possible to derive a
classical differential system and this actually is the bulk of biological modeling
(see for instance [SEJGM02]). We believe, however, that interesting analyses
can already be led at the purely non-deterministic level. But one first needs
to verify that a pretty good approximation of molecular biology fits within the
formal picture.

3 Representing cell cycle regulation

The cell cycle is a central mechanism in the cell physiology which regulates cell
division. Control over this fundamental biological activity is exerted by a family
of interacting proteins known as the cyclins, or CYCs and the cyclin dependent
kinases, or CDKs.

The cell cycle in eukaryotes is divided into four phases. Between two cell
divisions, the cell is in a gap phase called G1, which may contain a quiescent
phase G0. The cell can stay in phase G0 for very long periods of time, without
further division, in which case this phase can be construed as a steady state The
synthesis phase S starts with the replication of the DNA. A second gap phase
G2 precedes the mitotic phase M during which the cell divides.

Each phase is characterized by the activity of two major types of proteins:
cyclins and cyclin-dependent kinases (CDK). Experiments show a correlation
between the phase and concentrations of cyclins of specific types. CDK activity
requires binding to a cyclin, and is controlled by specific inhibitors and by
stimulatory or inhibitory phosphorylations by several kinases or phosphatases
which in turn may produce positive feedback loops.
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At any particular phase a given CDK·CYC complex will be dominant and
busy verifying that some conditions are met and, if they are, will activate the
global shift of the cell to the next phase.

Apart from being arguably the most important biological process, the cell
cycle is extremely well documented at the molecular level. It is a significant
challenge to understand how the higher-level functions emerge from this vast
network of reactions. With the language introduced above, we are going to
provide a few formal glimpses of our current knowledge of this mechanism.

To facilitate reading, we’ll use an equivalent notation for complexes and write
A·B〈x;y〉 instead of A〈x〉·B〈y〉. Another convention we take for the examples is
that when a reaction occurs independently of the values of some internal states
of the partners, we replace these with boolean variables written x, y, z.

3.1 Cyclin·CDK bindings

Let’s first examine the formation of CDK·CYC complexes. CYCD can pair with
CDK4:2

CDK4〈x, y〉, CYCD〈z〉 −→ CDK4·CYCD〈x, y; z〉
CYCA and CYCE compete in binding with CDK2:

CDK2〈x, y〉, CYCA〈〉 −→ CDK2·CYCA〈x, y; 〉
CDK2〈x, y〉, CYCE〈z〉 −→ CDK2·CYCE〈x, y; z〉

Likewise, CYCA binds CDK1 in competition with CYCB. But here there is a
slight twist, namely that CDK1’s third phosphorylation site is required for the
formation of a stable complex with CYCA:

CDK1〈x, y, 1〉, CYCA〈〉 −→ CDK1·CYCA〈x, y, 1; 〉
CDK1〈x, y, z〉, CYCB〈〉 −→ CDK1·CYCB〈x, y, z; 〉

3.2 Cyclin·CDK inhibition

Then specific Cyclin·CDK inhibitors step in. P16 inhibits by binding CDK4/6
in competition with CYCD:

CDK4〈x, y〉, P16〈〉 −→ CDK4·P16〈x, y; 〉
whereas P21 binds the complex CDK4·CYCD and prevents its activity:

P21〈〉, CDK4·CYCD〈x, y; z〉 −→ P21·CDK4·CYCD〈;x, y; z〉
What do we mean formally by saying that P16 and P21 are inhibitors? We mean
that none of the reactions involve CDK4·P16 or CYCD·CDK4·P21; therefore,
once P16 (resp. P21) reacts with CDK4 (resp. CYCD·CDK4), CDK4 (resp.
CYCD·CDK4) becomes unavailable for any further reaction.

These are end-products. Take note that the formalism doesn’t allow any
distinction between not knowing that a reaction takes place and knowing that
it does not. One could remedy this easily by adding ‘non-reactions’ such as:

CDK4·P16〈x, y; 〉,CYCD〈z〉 6−→ CDK4·P16·CYCD〈x, y; z〉.
2. . . and CDK6 but these two are indistinguishable as for their interactive properties so

we don’t make any further mention of CDK6.
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3.3 Introducing MPF: CDK1·CYCB

The complex CDK1·CYCB, also known as MPF, is the one in charge of the
actual division of the cell or mitosis. It is born inactive and is activated by
other phosphatases (a protein taking a phosphate group) and kinases. All CDKs
(and in particular CDK1) are activated by a phosphorylation of some specific
amino-acid Thr160 (or Thr161), carried out by CYCH·CDK7 (also known as
CAK).

CDK7·CYCH〈0; 〉[CDK1〈x, y, 0〉 −→ CDK1〈x, y, 1〉]
CDK7·CYCH〈0; 〉[CDK1·CYCB〈x, y, 0; 〉 −→ CDK1·CYCB〈x, y, 1; 〉]

CDK1 can be inhibited by a phosphorylation on amino-acids Thr14 and/or
Tyr15 performed by WEE1 or MYT1. This phosphorylation is possible only
when CDK1 is already bound to CYCB (or CYCA).

WEE1〈0〉[CDK1·CYCB〈x, 0, y; 〉 −→ CDK1·CYCB〈x, 1, y; 〉]
MYT1〈〉[CDK1·CYCB〈0, x, y; 〉 −→ CDK1·CYCB〈1, x, y; 〉]

Then CDK1 inhibits its inhibitor:

CDK1.CYCB〈0, 0, 1; 〉[WEE1〈0〉 −→ WEE1〈1〉]

A positive feedback loop involves CDC25C and CDK1·CYCB. CDC25C is ac-
tivated in its N-terminal domain as follows:

CDK1·CYCB〈0, 0, 1; 〉[CDC25C〈0, x〉 −→ CDC25C〈1, x〉]

Once activated CDC25C dephosphorylates Thr14/Tyr15 of CDK1, which acti-
vates MPF, and the positive loop is closed (provided MPF third’s site was set
at 1 in a preceding interaction with CAK).

CDC25C〈1, x〉[CDK1·CYCB〈x, 1, y; 〉 −→ CDK1·CYCB〈x, 0, y; 〉]
CDC25C〈1, x〉[CDK1·CYCB〈1, x, y; 〉 −→ CDK1·CYCB〈0, x, y; 〉]

3.4 CYC·CDK vs. PRB

When a CYC·CDK complex becomes active it impacts indirectly on the synthe-
sis of other proteins. CYCD·CDK4 begins by phosphorylating PRB at its first
site:

CDK4·CYCD〈0, 1; x〉[PRB〈0, x〉 −→ PRB〈1, x〉]
then CYCE·CDK2 can act on semi-phosphorylated PRB generating fully phos-
phorylated PRB:

CDK2·CYCE〈0, 1;x〉[PRB〈1, 0〉 −→ PRB〈1, 1〉]

that cannot bind any longer to E2F1·DP.

PRB〈z, 0〉,E2F1·DP1〈x; y〉 −→ PRB·E2F1·DP1〈z, 0; x; y〉

PRB has a different behaviour in all its three possible states: when in state
〈0, 0〉 it binds and inhibits the transcription of some proteins downstream; and
when in the intermediate state 〈1, 0〉 it has a weaker inhibiting effect; when
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completely phosphorylated, i.e. in state 〈1, 1〉, it doesn’t bind to E2F1·DP1
at all, and faster synthesis of different products including, of course, cyclins
themselves happens.

We see that the formalism provides a straightforward representation of these
highly constrained sequences of reactions. Talking about transcription, we finish
our tour of protein interactions with an example, involving PRB again, of how
protein regulate protein synthesis.

3.5 Transcriptional regulation

This example shows a simple and typical narrrative of protein synthesis. First
protein JUN binds protein C-FOS:

JUN〈〉, C-FOS〈〉 −→ JUN·C-FOS〈; 〉

Then JUN·CFOS stimulates the synthesis of ERCC1 (a protein involved in DNA
repair):

JUN·CFOS〈; 〉,2ERCC1 −→ JUN·CFOS〈; 〉·2ERCC1
JUN·CFOS〈; 〉·2ERCC1[ −→ ERCC1〈〉]+

Unphosphorylated PRB binds JUN.

PRB〈0, 0〉, JUN〈〉 −→ PRB·JUN〈0, 0; 〉

This enhances the binding of the JUN family members to C-FOS (but we cannot
say this in the absence of a quantitative dynamics) and stimulates further —
hence the ++ below — transcriptional activation by the JUN·C-FOS complex.

We observe that there are many ways leading to the construction of the
tri-complex PRB·JUN·C-FOS formation and ultimately to its binding to the
ERCC1 binding site:

PRB〈0, 0〉, JUN·C-FOS〈〉 −→ PRB·JUN·C-FOS〈0, 0; ; 〉
PRB·JUN〈x, y; 〉, C-FOS〈〉 −→ PRB·JUN·C-FOS〈x, y; ; 〉
PRB·JUN·C-FOS〈x, y; ; 〉, 2ERCC1 −→ PRB·JUN·C-FOS〈x, y; ; 〉·2ERCC1
PRB·JUN·C-FOS〈x, y; ; 〉·2ERCC1[ −→ ERCC1〈〉]++

Again the language expresses this in a clear way. We also see that to do jus-
tice to transcription, it seems one needs a quantitative semantics, or at least
quantitative enough to express a few different rates of synthesis.

4 Temporal logic as query language

The use of formal languages to represent complex molecular networks is moti-
vated not only by an expected gain in descriptive and explanatory power, but
also by the promise of biologically relevant analyses of the dynamical behaviour
of these networks, both quantitative and qualitative. The latter type is espe-
cially important at this stage in the development of computational biology, for
at least two reasons:
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• regulatory, signaling and metabolic networks are very complex mecha-
nisms which are far from being understood on a global scale ; qualitative
analyses hold the promise of providing logical/computational interpreta-
tion of the role of biologically relevant subparts of these networks – ab-
stracting away from their detailed dynamics – which in turn may help
reverse-engineer through a modular approach;

• data on both the existence and the dynamics of molecular interactions
is rare and unreliable; dynamical models which are too sensitive to the
exact network structure or some parameter values (e.g. continuous ODE-
based representations) may not be the best suited to analyze and predict
behaviour in such settings.

In this part, we explore the use of automated methods for querying qualita-
tive models of biomolecular networks. First, we give a brief introduction to the
computation tree logic CTL which we propose to use to formulate queries about
the dynamic properties of the system of interest. Next, we show how the set
of reactions presented in the previous sections can be turned into an appropri-
ate structure for CTL queries, namely concurrent transition systems. Finally,
we discuss several examples of biologically relevant queries together with their
formalization in CTL.

4.1 Computation Tree Logic

The Computation Tree Logic CTL is a logic for describing properties of com-
putation trees and non-deterministic transition systems [CGP99]. CTL is a
temporal logic which abstracts from duration values and describes the occur-
rence of events in the two dimensions of the system: time and non-determinism.
CTL basically extends either propositional or first-order logic [Eme90] with two
path quantifiers for non-determinism: A, meaning “for all transition paths”,
and E, meaning “for some transition path”, and with several temporal opera-
tors: X meaning “next time”, F meaning “eventually in the future”, G meaning
“always”, U meaning “until”.

A “safety” property, specifying that some situation described by a formula
φ can never happen, is expressed by the CTL formula AG¬φ, i.e. on all paths
φ is always false. A “liveness” property, specifying that something good ψ will
eventually happen, is expressed by the formula AFψ. Note that by duality we
have EFφ = ¬AG¬φ and EGφ = ¬AF¬φ for any formula φ.

Formally, CTL formulas are divided into state formulas and path formulas.
Let AP be a set of atomic propositions, describing states. A state formula is
either an atomic proposition, or a path formula prefixed by a path quantifier, or
a logical combination of such formulas. The set of path formulas is the closure
of the set of state formula by the temporal operators and logical connectives.
This is summarized in the following grammar (ordinary boolean connectives are
not shown):

φ := α ∈ AP | Eψ | Aψ
ψ := φ | Xψ | Fψ | Gψ | ψUψ

Arbitrary state and path formulas are permitted in CTL∗ but not in CTL which
is defined as the syntactic fragment of CTL∗ where temporal operators G, F ,
X and U must be immediately prefixed by a path quantifier A or E. For
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instance, A(FGφ) and E(Fφ ∧ Gψ) are CTL∗ formula which are not in CTL.
Another well-known fragment is LTL where only formulas of the form Aφ where
φ contains no path quantifier are allowed. For example, AG(EFφ) is not an
LTL formula. Since the biological queries of interest, described in section 4.4,
can be expressed in CTL but not all in LTL, our proposal is to use CTL as a
query language for biochemical systems and we shall focus on this fragment in
this paper.

The semantics of CTL and transition systems are given by Kripke structures.
A Kripke structure K is a triple (S, R, L) where S is a set of states, R ⊆ S × S
is a total relation (i.e. for any state s ∈ S there exists a state s′ ∈ S such that
(s, s′) ∈ R), and L : S → 2AP is a function that associates to each state the
set of atomic propositions true in that state. A path in K from a state s0 is an
infinite sequence of states π = s0, s1, ... such that (si, si+1) ∈ R for all i ≥ 0.
We denote by πi the suffix of π starting at si. Now, given a Kripke structure
K, the inductive definition of the truth relation stating that a CTL formula φ
is true at state s, written s |= φ, or true along path π, written π |= φ, is as
follows (clauses for ordinary boolean connectives are omitted):

• s |= α iff α ∈ L(s),

• s |= Eψ iff there is a path π from s such that π |= ψ,

• s |= Aψ iff for every path π from s, π |= ψ,

• π |= φ iff s |= φ where s is the starting state of π,

• π |= Xψ iff π1 |= ψ,

• π |= Fψ iff there exists k ≥ 0 such that πk |= ψ,

• π |= Gψ iff for every k ≥ 0, πk |= ψ,

• π |= ψUψ′ iff there exists k ≥ 0 such that πk |= ψ′ and πj |= ψ for all
0 ≤ j < k.

Following [Eme90], assuming a Kripke structure K, it is convenient to iden-
tify a CTL formula φ to the set of states which satisfy it, i.e. {s ∈ S|s |= φ}. In
particular, we will write init ∈ φ (resp. Init ⊆ φ) to express that a CTL formula
φ holds in an initial state init (resp. in all initial states in the set Init).

4.2 Concurrent transition systems

Concurrent transition systems have been introduced in [Sha93] as a formal tool
to reason about concurrent programs. They offer a simple language of reaction
rules for modeling concurrent programs and specifying Kripke structures. We
will thus use them to formalize the Kripke semantics of our core modeling lan-
guage, and give a precise meaning to the idea of querying in CTL biochemical
models.

A concurrent transition system (CTS for short) is a triple (~x, I,R) where ~x
is a tuple of state variables, I is an initial state (defined by the initial values of
the state variables), and R is a set of condition-action rules. The rules have the
following syntax:

condition c action x′1 = e1, ..., x
′
n = en
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where c is a logical formula over state variables which denotes the condition
under which the rule can be applied, and the primed version of the variables
denotes the new values, given by expression ei, of the variables after the rule is
applied. By convention, the variables which are not modified in the right hand
side of the rule keep their value unchanged.

Clearly, a CTS defines a Kripke structure, where the set of states is the set
of all tuples of values for the state variables, and the transition relation is the
union3 (i.e. disjunction) of the relations between the states of all instances of
the condition-action rules.

Now the core modeling language described in the first part of this paper,
can be turned in a CTS by a simple transformation in order to comply with the
state variables format of CTSs. Indeed state patterns such as CDK4〈0, x〉 need
be fully instantiated with (ground) terms such as CDK4〈0, 0〉 in order to be
represented by state variables. The different internal states of a given protein
are thus viewed in the associated CTS as different macromolecules and each is
associated with a unique state variable.

State variables of the CTS can be chosen to take values in different domains
corresponding to different levels of abstraction. In the refined notion of state of
our core modeling language, the values of state variables are integers represent-
ing the multiplicity of each elementary component, protein or complexe in the
cell. In more abstract models, we can choose as well to valuate state variables
with real numbers representing concentrations, or with boolean values repre-
senting simply the presence or absence of the compounds in the cell. Whatever
choice is made, it is worth noticing that the temporal evolution of the system
is modeled in this setting by the transition steps4 and the different transition
paths model the non-deterministic behaviour of the system.

4.3 Example of the mammalian cell-cycle control

Now that we have developed enough of the logical aspect of affairs, we return
to our benchmark example of the mammalian cell-cycle control.

As written above, the state of experimentally-derived knowledge on the dy-
namics of the mammalian cell-cycle (e.g. reaction rates), shows that it is some-
what premature to attempt reasoning with quantities of proteins in mammalian
cells. Instead, it is more appropriate and interesting in this example to reason
qualitatively on all possible behaviours of the system. Sets of states could be
represented by partial information on the actual numerical values of state vari-
ables, using for instance intervals or constraints between variables. We shall
choose however a simpler route, that of the boolean abstraction of the model,
where state variables are boolean variables representing the presence/absence of
proteins. In this case, the set of states is finite and its cardinality is 2n where n
is the number of state variables. In our example, we have n = 532 corresponding
to the different forms of the 165 basic proteins and genes involved in the model.

3Concurrent transition systems are asynchronous in the sense that one rule is executed
at a time (interleaved semantics), hence the transition relation is the union of the relations
associated to the rules. On the other hand, synchronous programs, that are not considered in
this paper, have their transition relation defined by intersection.

4Hybrid dynamics combining discrete transition time with continuous time, can also be
handled in this setting by turning a hybrid system into a concurrent transition system using
Euler’s method for discretizing differential equations [CF03b].

11



We consider accordingly, the concurrent transition system over boolean state
variables defined by the following rule schemas:

1. Modification: A,B → C, B,
A is modified under the action of a catalyst B, and transformed into C,
a phosphorylated form of A for example. Obviously, other state changes
can be encoded in a similar manner.

2. Complexation: A,B → A.B,
A and B bind together to form a complex A.B;

3. Synthesis : A → A,B,
B is synthesized by the activated transcription factor A;

4. Degradation : A,B → A,
B is degraded by the degradation factor A.

In the complexation rule schema, A.B stands for a propositional variable denot-
ing the complex which results from the binding of the molecules denoted by A
and B. An instance of this schema is the rule:

CDK7, CYCH −→ CDK7·CYCH

where CYCH, CDK7 and CYCH.CDK7 are three boolean variables representing
respectively, CYCH, CDK7 and the dimer CYCH.CDK7 each in a given internal
state.

Likewise, one can introduce a variable named CDK1(pThr14).CYCB, to rep-
resent a phosphorylated form of the dimer CDK1.CYCB at site Thr14 of CDK1.
The phosphorylation of this dimer by MYT1 is modeled by the modification rule:

CDK1·CYCB, MYT1 −→ CDK1(pThr14)·CYCB·MYT1

These boolean rules denote condition action rules with the following conven-
tions. The left hand side of a rule is just its condition. The right hand side is
a formula which expresses which variables are made true or false in the action,
with the convention that the variables which denote components with varying
quantities (not promoters) and which appear in the left hand side and not in
the right hand side of the schema, may take arbitrary values.

This is necessary to define a correct boolean abstraction that is an over-
approximation of the set of all possible behaviours of the system, ignoring nu-
merical quantities and reaction rates. For instance, the rule of complexation is
a shorthand for the four condition-action rules:

condition A ∧B action (A.B)′ = true, A′ = true,B′ = true
condition A ∧B action (A.B)′ = true, A′ = false, B′ = true
condition A ∧B action (A.B)′ = true, A′ = true,B′ = false
condition A ∧B action (A.B)′ = true, A′ = false, B′ = false

The condition-action rules make explicit the possible disappearance of molecules
A or B by complexation, and their combination guarantees the correctness of the
boolean abstraction w.r.t. all possible behaviours of the system. This method is
implemented in the system BIOCHAM currently under development [CF03a].
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4.4 Biological queries

The biological queries one can consider about a boolean model of the cell cycle
control are of different kinds. Below we enumerate a list of biological queries of
interest and discuss their expression in CTL. Most of these queries are relative
to an initial state or a set of initial states described by a logical formula.

About reachability :

1 Given an initial state init, is there a series of reactions that will
produce some compound P?
This query translates into the formula init ∈ EF(P ) where P is the
boolean variable representing the product P .

2 Which are the states from which a set of products P1,. . . , Pn can be
produced simultaneously?
The query translates into the formula EF(P1 ∧ . . . ∧ Pn). Indeed,
CTL formulas can be identified to the set of states which satisfy
them, and the model checking tools described in the next section
actually provide facilities for showing the set of states satisfied by a
CTL formula.

About pathways :

3 Given an initial state init, can the cell reach a state s while passing
by another state s2?
init ∈ EF(s2 ∧EFs).

4 Is state s2 a necessary checkpoint for reaching state s?
init ∈ ¬E((¬s2) U s). We express here the contrapositive of the
query, that is there does not exist a path reaching s without passing
by s2.

5 Is it possible to produce P without creating nor using some Q?
init ∈ E(¬Q U P ).

6 More generally, one can ask whether a state s is reachable under a
certain constraint c from a set of initial states Init:
Init ⊆ E(c U s).

About stability properties :

7 Is a certain (partially described) state s of the system a stable state?
s ∈ AG(s) or s ⊆ AG(s) where s is a set of states described by a
logical formula noted also s by abuse of notation.
A stable state in the strong sense is indeed a state in which the system
stays indefinitely with no possibility of escaping; a steady state, in
which the system might stay indefinitely but might also not, can be
modeled by s ⊆ EG(s),

8 Can the system reach a given stable state s from the initial state
init?
init ∈ EF(AG(s)). It is worth noticing that this query is not ex-
pressible in LTL.
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9 Must the system reach a given stable state s from the initial state
init?
init ∈ AF(AG(s)).

10 What are the stable states?
The set of stable states of the system cannot be represented by a CTL
query. In CTL, it is only possible to check whether a given (partially
described) state is a stable state. One approach to computing the set
of stable states (or checkpoints, etc.) of a biochemical network would
be to combine model checking methods with search methods. This
is an interesting open problem that has been recently investigated in
other contexts for the design of CTL query languages [Cha00, HS02,
GCD03].

11 Can the system exhibit a cyclic behaviour w.r.t. the presence of a
product P?
init ∈ EG((P ⇒ EF ¬P ) ∧ (¬P ⇒ EF P ))
This formula is not expressible in LTL. It expresses that there exists
a path where at all time points whenever P is present it becomes
eventually absent, and whenever it is absent it becomes eventually
present.

About durations :

12 How long does it take for a molecule to become activated?
13 In a given time, how many Cyclins A can be accumulated?
14 What is the duration of a given cell cycle’s phase?

Time in temporal logic CTL is a purely qualitative notion, based on a
single precedence relation. Reasoning about durations is thus not ex-
pressible with the temporal operators of CTL. Nevertheless, if the state
description logic underlying CTL is not propositional but first-order logic,
it is to model time intervals by adding to all atomic propositions ex-
tra numerical arguments representing their starting time and duration.
Constraint-based model checking presented in section 5.3 provides an au-
tomatic method for evaluating such queries. On the other hand, symbolic
model checking techniques have also been extended to incorporate specif-
ically duration data [LMS02].

About the correctness of the model :

15 Can one see the inaccuracies of the model, and correct them?

When an intended property is not verified, the pathways leading to a
counterexample help the user to refine the model. Similarly, when an
unintended property is satisfied, the pathway leading to a witness helps
the user to refine his model by enforcing extra conditions in rules, or,
if the property is not known to be biologically true or false, the witness
may suggest biological experiments in order to validate or invalidate that
property of the model. In biology (as in any natural science as opposed
to computer science), the standard loop between modeling and model-
validation becomes a threefold loop between modeling, querying the model
and doing biological experiments.

14



It is worth noticing also that the boolean abstraction of the model in-
troduces inaccuracies which would correspond to inaccurate quantities or
inaccurate reaction rates in a quantitative model. The explored combina-
torics of the underlying quantitative models may thus correspond to non
standard situations which are biologically relevant. These inaccuracies
can nevertheless be corrected by adding boolean conditions in the rules.

5 Automated query evaluation

5.1 Symbolic model checking

Model checking is an algorithm for computing, in a given Kripke structure K,
the set of states which satisfy a given CTL formula φ, i.e. the set {s ∈ S | s |= φ}.
For the sake of simplicity, we consider only the CTL fragment of CTL?, and
use the fact that (by duality) any CTL formula can be expressed in terms of
¬, ∨, EX, EU and EG.

When K has a finite set of states, the model checking algorithm, in its
simplest form, works with an explicit representation of K as a transition graph,
and labels each state with the set of subformulas of φ which are true in that
state. First, the states are labeled with the atomic propositions of φ which are
true in those states. Labeling with more complex formulas is done iteratively,
following the syntax of the subformulas of φ. Formulas of the form ¬φ label
those states which are not labeled by φ. Formulas of the form φ ∨ ψ are added
to the labels of the states labeled by φ or ψ. Formulas EXφ are added to the
labels of the immediate predecessor states of the states labeled by φ. Formulas
E(φUψ) are added to the hereditary predecessor states of ψ while they satisfy φ.
Formulas EGφ involve the computation of the strongly connected components
of the subgraph of transitions restricted to the states satisfying φ. The states
labeled by EGφ are the states in this subgraph for which there exists a path
leading to a state in a non trivial strongly connected component. The complexity
of this algorithm is O(|φ| ∗ (|S|+ |R|)) where |φ| is the size of the formula, |S|
is the number of states, and |R| is the number of transitions [CGP99].

Symbolic model checking is a more efficient algorithm that uses a symbolic
representation of finite Kripke structures with boolean formulas. In particu-
lar, the whole transition relation is encoded as a single (disjunctive) boolean
formula, sets of states are encoded by boolean formulas, and ordered binary de-
cision diagrams (OBDDs) are used as canonical forms for the boolean formulas.
The symbolic model checking algorithm computes an OBDD representing the
set of states satisfying a given CTL formula. The computation involves the iter-
ative computation of the least fixed point (for EF ) and the greatest fixed point
(for EG) of simple predicate transformers associated to the temporal connec-
tives [CGP99]. In our experiments reported below, we used the state-of-the-art
symbolic model checker NuSMV [CCG+02].

5.2 Computational results

Table 1 presents some performance figures concerning the evaluation of CTL
queries in the boolean abstraction of the mammalian cell cycle control model
desbribed in section 4.3.
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The boolean model used in these experiments comprises 732 reaction rules
over 165 proteins and genes, and 532 variables taking into account the different
compounds of the system. The queries concern the pathways leading to the
mitosis of the cell described in section 3.3 on the complex MPF, and on the
cyclic presence of CYCA. The initial state corresponds to the gap phase G2
prior to the mitosis of the cell. The two first columns indicate the query and
its type. The third column indicates the CPU time taken by NuSMV to answer
the query. The fourth column indicates the CPU time taken for explaining the
answer, that is for showing a pathway or a witness (the negation of the query
is asked for no answers). The CPU times are given in seconds and have been
measured on a processor Intel Pentium 3 at 600 Mhz under Linux.

Query Query NuSMV NuSMV
type answer time show time

number in seconds in seconds
compiling 47.5 -

2 EF SL1(p) 29 124
2 EF CYCE 2 22
2 EF CYCD 1.9 11.5
2 EF PCNA.CYCD 1.7 48.7
4 ¬E(¬ CDC25C(Nterm) 2.2 49.22

U CDK1-CYCB(Thr161))
11 EG (CYCA ⇒ EF¬ CYCA 31.8 -

∧¬ CYCA ⇒ EF CYCA)

Table 1: Evaluation of CTL queries in the mammalian cell cycle control model
with NuSMV.

When compared to a simpler Prolog based implementation of model check-
ing, the timings obtained with the NuSMV model checker show the efficiency
of the symbolic representation of states by Binary Decision Diagrams BDDs
[CF03b]. These timings are however somewhat slower than what is usual in
the program verification community for a model of only a few hundreds of
rules and variables. One fundamental reason is the overall structure of transi-
tion graphs modeling biochemical networks. Such transition systems are indeed
highly non-deterministic due to the “soup” aspect of molecular interactions and
thus differ significantly in this respect from the transition graphs obtained from
circuits or programs. It would be worth investigating further whether specific
optimizations of model-checking algorithms are possible in this context, espe-
cially concerning the ordering of variables for the internal BDD representation
of states [WCZK01].

5.3 Quantitative models and constraint-based model check-
ing

As mentioned in previous sections, CTL queries can in principle be applied to
quantitative models of molecular interactions. In particular, we have seen that
the multiset rewriting core modeling of the cell-cyle control given in the first
part of this paper, can be translated in a concurrent transition system over
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integer variables denoting the multiplicity of molecules in the cell.
Concurrent transition systems with variables ranging over unbounded or

continuous numerical domains define however Kripke structures with an infinite
set of states which cannot be handled by the symbolic model checking algorithm.
On the other hand, constraint-based model checking applies to infinite state
systems. In this approach, a constrained state is a finite representation using
constraints, of a finite or infinite set of states. In the scheme of Delzanno and
Podelski [DP99], infinite state Kripke structures are represented by constraint
logic programs, and the CTL formulas, that are based on a fragment of first-
order logic, are identified to the least fixed point and greatest fixed point of
constraint logic programs.

Constraint-based model checking over integers (using constraint logic pro-
grams over finite domains technology) could thus be used to evaluate quan-
titative queries about the cell-cycle control. This has not been done in the
mammalian cell-cycle example by lack of numerical data, but has been shown
in [CF03b] on a simple quantitative model of gene expression using constraint
based model checking over reals.

6 Conclusion

We have designed a simple language that has proven to be rich enough to de-
scribe biomolecular networks at the level of protein interactions. In particular,
the combinatorics of complexation, activation, synthesis and degradation are
easily expressed, as we have shown using Kohn’s description of the mammalian
cell-cycle control as our expressiveness benchmark.

We have also shown how symbolic model checking techniques could be ap-
plied to the querying and validation of boolean abstractions of networks of
molecular interactions. First, we have shown that the temporal logic CTL is
expressive enough to formalize a wide variety of biological queries of interest
about a molecular network: ranging from pure reachability queries on the pos-
sibility of synthesizing a particular protein under pathway constraints, to the
existence of checkpoints, and to the analysis of steady states and cyclic be-
haviours. Second, CTL querying applies to highly non-deterministic systems,
by investigating all possible behaviours of the system, in situations where simu-
lation can be ill-defined or unfeasible. Third, symbolic methods make it possible
to group large sets of states into small state expressions which provide formal
proofs of reachability, pathway, checkpoint and stability properties.

For all these reasons, we believe that, beyond simulation, verification tools
such as model checking will become indispensable for querying and validating
complex models in systems biology.
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