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Biology is still mainly a collection of facts
Large amount of data but still few principles and processes really
understood:
• Darwin’s principle of evolution and natural selection in 1859
• Jakob and Monod’s elucidation of transcription and translation in 1961
• Multistability in gene networks explaining cell differentiation, cell

reprogramming
• Oscillations in gene or protein networks explaining cellular circadian

clock, cell cycle, homeostasis, morphogenesis,…
• Signaling networks (e.g. MAPK) performing Analog-Digital signal 

conversion, noise filtering, ultrasensitivity and signal amplification

Need of formal methods to master the complexity of large interaction 
networks…

From	Biological	Facts…
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Alan Turing created Computer Science in 1936 in the perspective of artificial
intelligence:

« The behavior of a human doing calculations is at each instant 
determined by the symbols he observes and by his internal mental 
state »

Church-Turing Thesis states that there is one single notion of computation 
and one notion of universal machine. Indeed
• Turing machines, Church’s lambda calculus, Gödel’s first-order logic
• Random Access Memory machines
• Fortran, C, Java, CAML, Python etc. programming languages
all have the same computational power.

According to this Thesis, any form of computation is thus necessarily
representable by a program

From	Computer	Science	Methods…
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The behavior of a living cell is at each instant determined by the signals it
observes and by its internal state.

By applying Church-Turing Thesis to biology, cell compute;
In the computational metaphor, a cell, a tissue, continuously compute.

The paradigm of « Cells as Machines » opens up the methods of Computer 
Science developped in the last decades for mastering the complexity of
• Circuits of trillions of transistors, programs of millions of instructions, 
• World wide web of tenths of millions of web sites

to tackle the complexity of 
• tenths of thousands of genes and proteins in a cell
• millions of cells.

… to	Cell	Processes	as	Computation

MPCE	2018 4



MPCE 2018 5

Overview	of	the	Course

1. Rule-based modeling of biochemical reaction systems
– Syntax: Biocham notations (SBML compatible)
– Semantics: Differential, Stochastic and Boolean interpretations of reactions
– Examples of cell cycle control, circadian clock, gene expression

2. Temporal Logic based formalization of biological properties
– Quantitative properties in Linear Time Logic LTL(R) 
– Parameter search in high dimension w.r.t. LTL(R) specifications
– Robustness and sensitivity analyses w.r.t. LTL(R) specifications

3. Coupled model of the cell cycle and circadian clock
– chronotherapy optimization
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Computational	Systems	Biology	

“Systems Biology aims at systems-level understanding which
requires a set of principles and methodologies that links the
behaviors of molecules to systems characteristics and functions.”

H. Kitano, ICSB 2000
• Follow-up of the human genome project of the 90’s
• Analyze post-genomic data produced with high-throughput technologies and 

made available in public databases like GO, KEGG, BioCyc, etc.;
• Integrate heterogeneous data about a specific problem;
• Predict the behavior of large networks of genes and proteins;
• Multi-scale models of cell processes, tissues, organisms, ecosystems…
à Systems Biology Markup Language (SBML): model exchange format 
à SBML model repositories: e.g. biomodels.net thousands of models



1) Models for representing knowledge : the more detailed the better
2) Models for answering questions : the more abstract the better

Mammalian cell cycle control interaction map [Kohn 1999]        Simplified yeast cell cycle model  [Tyson 1991]

Biochemical	reaction	models
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Biochemical	reactions

• Binding, complexation:  																																							𝐴 + 𝐵	→ 	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                         𝐴	→ 		𝐵 + 𝐶

+                      ↔
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Biochemical	reactions

• Binding, complexation:                           								𝐴 + 𝐵	→ 	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                         𝐴	→ 		𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴	→ 	𝐵 (𝐴 + 𝐾	→ 	𝐶 →𝐵 + 𝐾)
𝑐𝑑𝑘1𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

→

MPCE	2018 François	Fages



Biochemical	reactions

• Binding, complexation:                           								𝐴 + 𝐵	→ 	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                         𝐴	→ 		𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴	→ 	𝐵 (𝐴 + 𝐾	→ 	𝐶 →𝐵 + 𝐾)
𝑐𝑑𝑘1𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis:           																	𝐴	→ 	𝐴 + 𝐵		
𝐸2𝐹𝑎	→ 	𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

MPCE	2018 François	Fages



Biochemical	reactions

• Binding, complexation:                          								𝐴 + 𝐵	→ 	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                         𝐴	→ 		𝐵 + 𝐶

• Transformation, phosphorylation, transport: 𝐴	→ 	𝐵 (𝐴 + 𝐾	→ 	𝐶 →𝐵 + 𝐾)
𝑐𝑑𝑘1𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝
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Biochemical	reaction	rates

• Binding, complexation:                            																		𝐴 + 𝐵	
7.9.:

	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                                  𝐴	
7.9
		𝐵 + 𝐶

• Transformation, phosphorylation, transport:          𝐴	
;.9/(7>9)

	𝐵
𝑐𝑑𝑘1𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis:           																											𝐴	
;.9?/(7>9?)

	𝐴 + 𝐵		
𝐸2𝐹𝑎→ 	𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation:                                                           𝐴	
7.9
		_	

MPCE	2018 François	Fages



Biochemical	reaction	rates

• Binding, complexation:                            																		𝐴 + 𝐵	
7.9.:

	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                                  𝐴	
7.9
		𝐵 + 𝐶

• Transformation, phosphorylation, transport:          𝐴	
;.9/(7>9)

	𝐵
𝑐𝑑𝑘1𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis:           																											𝐴	
;.9?/(7>9?)

	𝐴 + 𝐵		
𝐸2𝐹𝑎→ 	𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation:                                                           𝐴	
7.9
		_	

MPCE	2018 François	Fages



Biochemical	reaction	rates

• Binding, complexation:                            																		𝐴 + 𝐵	
7.9.:

	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                                  𝐴	
7.9
		𝐵 + 𝐶

• Transformation, phosphorylation, transport:          𝐴	
;.9/(7>9)

	𝐵 (𝐴 + 𝐾	→ 	𝐶 →𝐵 + 𝐾)

𝑐𝑑𝑘1𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis:           																											𝐴	
;.9?/(7>9?)

	𝐴 + 𝐵		
𝐸2𝐹𝑎→ 	𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation:                                                           𝐴	
7.9
		_	

MPCE	2018 François	Fages



Biochemical	reaction	rates

• Binding, complexation:                            																		𝐴 + 𝐵	
7.9.:

	𝐶
𝑐𝑑𝑘1 + 𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵

• Unbinding, decomplexation:                                  𝐴	
7.9
		𝐵 + 𝐶

• Transformation, phosphorylation, transport:          𝐴	
;.9/(7>9)

	𝐵
𝑐𝑑𝑘1𝑐𝑦𝑐𝐵	→ 	𝑐𝑑𝑘1𝑐𝑦𝑐𝐵𝑝

• Gene expression, synthesis:           																											𝐴	
;.9?/(7>9?)

	𝐴 + 𝐵		
𝐸2𝐹𝑎→ 	𝐸2𝐹𝑎 + 𝑅𝑁𝐴𝑐𝑦𝑐𝐴

• Degradation:                                                           𝐴	
7.9
		_	

MPCE	2018 François	Fages



Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          @9
@A
= −𝑘. 𝐴. 𝐵		 @:

@A
= −𝑘. 𝐴. 𝐵		 @D

@A
= 𝑘. 𝐴. 𝐵	

Semantics	of	Reaction	Programs			A + B
G.H.I

C
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Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)    A	,	B
L MN ,	O(MN) C++,	A--,	B--
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Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          @9
@A
= −𝑘. 𝐴. 𝐵		 @:

@A
= −𝑘. 𝐴. 𝐵		 @D

@A
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)    A	,	B
L MN ,	O(MN) C++,	A--,	B--

Multi-agent simulation: numbers of molecules, space, diffusion speed, affinity

Random walk (ex. Hsim simulator [Amar 04])

Semantics	of	Reaction	Programs			A + B
G.H.I

C
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Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          @9
@A
= −𝑘. 𝐴. 𝐵		 @:

@A
= −𝑘. 𝐴. 𝐵		 @D

@A
= 𝑘. 𝐴. 𝐵

Stochastic semantics: numbers of molecules, probability and time of transition

Continuous Time Markov Chain (CTMC)                   A	,	B
L MN ,	O(MN) C++,	A--,	B--

Petri net semantics: numbers of molecules              A	,	B	→ C++,	A--,	B--
Multiset rewriting
CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

P-systems [Paun 98]

Semantics	of	Reaction	Programs			A + B
G.H.I

C
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Continuous semantics: concentrations, continuous time evolution 

Ordinary differential equations (ODE)          @9
@A
= −𝑘. 𝐴. 𝐵		 @:
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Continuous Time Markov Chain (CTMC)                   A	,	B
L MN ,	O(MN) C++,	A--,	B--

Petri net semantics: numbers of molecules    A	,	B	→ C++,	A--,	B--
Multiset rewriting
CHAM [Berry Boudol 90] [Banatre Le Metayer 86]

Boolean semantics: presence/absence                    A	Ù B	→ C	Ù ¬A	Ù ¬B
Asynchronous transition system                                 A	Ù B	→ C	Ù A	Ù ¬B

A	Ù B	→ C	Ù ¬A	Ù B
A	Ù B	→ C	Ù A	Ù B

Semantics	of	Reaction	Programs			A + B
G.H.I

C
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Hierarchy of	Semantics:	Abstractions

Stochastic traces

Petri net traces

abstract

concrete

Boolean traces

Theory of abstract Interpretation
Abstractions as Galois connections

[Cousot Cousot POPL’77]

Thm. Galois connections between the 
syntactical, stochastic, Petri Net and 
Boolean semantics  

[FF Soliman CMSB’06,TCS’08]

Reactions

ODE traces
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Hierarchy of	Semantics:	Approximations

Stochastic traces

ODE traces

Petri net traces

abstract

concrete

Boolean traces

Thm. Under large number conditions 
the ODE semantics approximates 
the mean stochastic behavior                                                                                                                     
[Gillespie 71]

Reactions

MPCE	2018 22
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Minimal	Mitotic	Oscillator	[Goldbeter 91	PNAS]

Cyclin is synthesized at constant rate
Cyclin triggers the activation of Cdc2 kinase M (by dephosphorylation)
Cdc2 activates a protease X (by phosphorylation) that degrades the Cyclin
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Demo	Biocham Notebook

http://lifeware.inria.fr:8888/notebooks/examples/

Open MPCE file
Load oscillator.ipynb
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Single	Enzymatic	Reaction

An enzyme E binds to a substrate S to catalyze the formation of product P:
E+S àk1 C àk2 E+P
E+S ßkm1 C

Mass action law kinetics ODE:
dE/dt = -k1ES+(k2+km1)C

dS/dt = -k1ES+km1C
dC/dt = k1ES-(k2+km1)C

dP/dt = k2C
with two conservation laws: E+C=constant,  S+C+P=constant,

Assuming C0=P0=0, we get E=E0-C and S0=S+C+P
dS/dt = -k1(E0-C)S+km1C            

dC/dt = k1(E0-C)S-(k2+km1)C



When E<<S, k1 >>k2 we have dC/dt~0~dE/dt

C = E0S/(Km+S) where Km=(k2+km1)/k1 

dP/dt = -dS/dt = VmS / (Km+S) where Vm= k2E0 Leonor Michaelis Maud Menten 1913

Michaelis-Menten kinetics: VmS /(Km+S) for S => P

Model reduction: the variables E and C are eliminated, 
E is supposed constant and acting on only one substrate
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Quasi-Steady	State	Approximation



When E<<S, k1 >>k2 we have dC/dt~0~dE/dt

C = E0S/(Km+S) where Km=(k2+km1)/k1 

Km substrate concentration with half maximum velocity

dP/dt = -dS/dt = VmS / (Km+S) where Vm= k2E0 Leonor Michaelis Maud Menten 1913

Vm maximum velocity at saturing substrate concentration

Michaelis-Menten kinetics: VmS /(Km+S) for S => P

Model reduction: the variables E and C are eliminated, 
E is supposed constant and acting on only one substrate
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Quasi-Steady	State	Approximation
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Cell	Division	Cycle

G1: CdK4-CycD             S:   Cdk2-CycA             G2,M: Cdk1-CycA
Cdk6-CycD                                                              Cdk1-CycB (MPF)
Cdk2-CycE                                                             

Sir Paul Nurse
Nobel prize 2001
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Cell	Division	Cycle	Control
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Mammalian	Cell	Cycle	Control	Map	[Kohn	99]



Cell Cycle	Model	[Qu McMillan Weiss	03]

• Focus on G2/M transition
• 10 molecular species
• 31 kinetic parameters

Variation	of	the	cell cycle	free	period
by	kdie degradation rate	constant
(important	in	growing G1	phase)
MPCE	2018 31
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Demo	Biocham Notebook

http://lifeware.inria.fr:8888/notebooks/examples/

Open MPCE file
Load Qu.ipynb



Control	of	the	Cell	Cycle	by	the	Circadian	CLock

MPCE	2018 François	Fages

• Time gating for mitosis by effects of clock genes on cell cycle genes 
inhibition of Wee1 synthesis by Clock-Bmal1 [Matsuo et al 2003]

• Model-based predictions on conditions of entrainment [Calzone Soliman 2006] and 
period doubling (24h, 48h) phenomena [Gerard Goldbeter 2012]
(also repression of c-Myc by Clock-Bmal1 and inhibition of p21 by Reverb-𝛼)

(sunny Paris)

Mormont	MC,	Levi	F.
Cancer	chronotherapy:	principles,	
applications,	and	perspectives.
Cancer,	2003.



– 19 species, 70 parameters
– 4 genes: Per, Cry, Rev-erb α, Bmal1
– 2 negative feedback loops:

• Per-Cry
• Rev-erb α

Circadian	Clock	Model	[Leloup Goldbeter 03]	

MPCE	2018 François	Fages
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Demo	Biocham Notebook

http://lifeware.inria.fr:8888/notebooks/examples/

Open MPCE file
Load clock.ipynb
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Coupled	Model:	time	gating	for	mitosis



Conditions	of	Entrainment

• Conditions of entrainment on Bmal1-Wee1 and MPF activation parameters

• Period doubling (24h, 48h) phenomena 
[Gerard Goldbeter PLOS 2012]

MPCE	2018 François	Fages

d[preMPF ]
dt

= ksmpf + kimpf · [Wee1] · [MPF ] − kampf · [C25P ] · [preMPF ]

−kdmpf · [APC] · [preMPF ] − kdmpfp · [preMPF ]
d[MPF ]

dt
= kampf · [C25P ] · [preMPF ] − kimpf · [Wee1] · [MPF ]

−kdmpf · [APC] · [MPF ] − kdmpfp · [MPF ]
d[C25]

dt
=

V ic · [C25P ]
Kic25 + [C25P ]

+ ks25 − kd25 · [C25] − V apc + V ac · [MPF ] · [C25]
Kac25 + [C25]

d[C25P ]
dt

=
V apc + V ac · [MPF ] · [C25]

Kac25 + [C25]
− kd25 · [C25P ] − V ic · [C25P ]

Kic25 + [C25P ]
d[Wee1]

dt
=

V iw · [Wee1P ]
Kiw + [Wee1P ]

+ kswee · [Wee1m]

−kdwee · [Wee1]− V apw + V aw · [MPF ] · [Wee1]
Kaw + [Wee1]

d[Wee1P ]
dt

=
V apw + V aw · [MPF ] · [Wee1]

Kaw + [Wee1]
− kdwee · [Wee1P ]− V iw · [Wee1P ]

Kiw + [Wee1P ]
d[APC]

dt
=

kaapcp + kaapc · [X ] · [APCi]
Kapc + [APCi]

− kiapc · [APC]
Kapc + [APC]

d[X ]
dt

= ksx · [MPF ] − kdx · [X ]

d[Wee1m]
dt

=
ksweemp + ksweem · [BN ]
Kweem + kwpcn · [PCN ]

− kdweem · [Wee1m]

d[APCi]
dt

=
kiapc · [APC]
Kapc + [APC]

− kaapcp + kaapc · [X ] · [APCi]
Kapc + [APCi]

kampf = 2.44832 · kimpf + 2.0071
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Cell cycle entrainment to 48 h is illustrated in Fig. 5B, which
corresponds to point B in Fig. 4A. It shows the time evolution of
cyclin B/Cdk1 before (t,120 h) or upon (t.120 h) entrainment
by the circadian clock through the kinase Wee1. As soon as
coupling is established in t = 120 h, the period of the cell cycle
passes from 38 h to 48 h: a peak in cyclin B/Cdk1 is observed
every second peak in BMAL1. Entrainment to 24 h is shown in
Fig. 5A, which corresponds to point A in Fig. 4A: the coupling
strength is the same as in Fig. 5B but the autonomous period here
is equal to 16 h. If the coupling strength is not nil (as in Fig. 2) but
too weak, entrainment fails to occur, as shown in Fig. 5C, which
corresponds to point C in Fig. 4A: the autonomous period here
also equals 16 h, but the coupling strength, measured by the
maximum rate vsw of Wee1 mRNA synthesis controlled by the
circadian clock, is reduced by a factor of 20 as compared to the
case in Fig. 5A.

What happens when the cell cycle is coupled to the circadian
clock but fails to be entrained by it? We illustrate the different
modes of dynamic behavior which can then be encountered by
considering four points, marked D-G, surrounding the domain of
entrainment to 24 h in Fig. 4A. The effect of the coupling on the
time evolution of cyclin B/Cdk1 and cyclin E/Cdk2 in these
points is shown in Fig. 6 A–D, respectively. In (A), the autonomous
period of the cell cycle is equal to 4 h. Complex periodic
oscillations occur as a result of coupling the cell cycle to the
circadian clock: two peaks of cyclin B/Cdk1 and cyclin E/Cdk2
appear per 24 h (Fig. 6A for t.120 h), with a large interval
separating the groups of twin peaks in Cdk1. The autonomous
period is too small to allow entrainment with one peak of cyclin B/
Cdk1 per 24 h. In (B), the autonomous period of the cell cycle is
equal to 30 h. In the presence of coupling to the circadian clock
(for t.120 h), per 24 h two peaks of cyclin E/Cdk2 appear for
each peak of cyclin B/Cdk1. Such behavior could correspond to
tetraploidy. In (C), the autonomous period of the cell cycle is equal
to 16 h but the strength of the coupling to the circadian clock is
not large enough to entrain the cell cycle to 24 h: here, in contrast
to Fig. 5A where entrainment occurs for the same autonomous
period of the cell cycle but with stronger coupling to the circadian
clock, the coupling via Wee1 results in complex, irregular
oscillations corresponding to chaotic behavior. Finally, in (D),
the autonomous period of the cell cycle is also equal to 16 h, but
the strength of the coupling to the circadian clock is too large for
entrainment to occur. Let us recall that we define circadian
entrainment of the cell cycle as the occurrence of one large-
amplitude peak in both Cdk1 and Cdk2 with a periodicity of 24 h
or 48 h; deciding whether the peak in Cdk1 has a large amplitude
or not is made easy by the presence of bistability in the Cdk1
module, because of which the amplitude of the peak of cyclin B/
Cdk1 in the course of oscillations is either minute or very large
[14]. In Fig. 6D, the elevated level of kinase Wee1 causes the
continuous inhibition of cyclin B/Cdk1 and, to a lesser degree, of
cyclin A/Cdk2 and cyclin E/Cdk2. In this case, the model predicts
that only the kinase Cdk2 will be entrained to oscillate at 24 h with
large amplitude, whereas Cdk1 undergoes sustained oscillations of
only minute amplitude. This behavior corresponds to repetitive
cycles of DNA replication without mitosis, a phenomenon known
as endoreplication [24]. Endoreplication can also occur in the
model in autonomous conditions, i.e. in the absence of coupling to
the circadian clock [14,25]. Altogether the diagram in Fig. 4A
indicates that over a sizeable range of autonomous period of the
cell cycle, entrainment to 24 h, and also 48 h, can occur in a range
of intermediate strength of coupling between the cell cycle and the
circadian clock.

The results presented above indicate that the coupling of the cell
cycle to the circadian clock can give rise to various modes of
oscillatory behavior, from entrainment to entrainment failure
accompanied by complex periodic or aperiodic oscillations. It is
probable that not all of these modes of dynamical behavior are
physiologically relevant, and some are likely to occur more
frequently than others in vivo. It is nevertheless useful to bring to
light the full repertoire of possible dynamic behavior, since some of
the more exotic modes of oscillations could well result from
alterations of the coupling between the two cellular rhythms. The
prediction that endoreplication and/or tetraploidy may occur if
the coupling strength between the cell cycle and the circadian
clock is too high (see Fig. 4A and Figs. 6B and D), could be tested
experimentally by enhancing the circadian expression of the kinase
Wee1.

That coupling to the circadian clock might sometimes lead to
highly complex or even chaotic oscillations in the cell cycle might

Figure 4. Domains of entrainment of the cell cycle by the
circadian clock via circadian control of the kinase Wee1. The
domains are determined as a function of the autonomous period of the
cell cycle prior to coupling and of the strength of coupling (see text and
Methods). We consider that the cell cycle is entrained when Cdk2 and
Cdk1 both exhibit one large-amplitude peak per 24 h or 48 h.
Entrainment of the cell cycle to 24 h occurs for autonomous periods
smaller or larger than 24 h. The domains of entrainment are determined
in the presence (A) or absence (B) of a basal rate of synthesis, vswee1, of
the kinase Wee1, which is equal to 0.06 mM h21 or 0, respectively. The
size of the domains of entrainment of the cell cycle by the circadian
clock increases as the basal rate of synthesis of Wee1 diminishes. Points
A–I refer to situations illustrated in Figs. 5–7. The results are obtained as
described in the legend to Fig. 2, for vcb = 0.05 mM h21. Other
parameters values are the same as in Fig. 2.
doi:10.1371/journal.pcbi.1002516.g004

Cell Cycle Entrainment by the Circadian Clock
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Irinotecan	Exposure	Chronotherapy	Model
Coupled cycle-clock-p53Mdm2-Irinotecan model

Optimal control of drug exposure [De Maria et al TCS 2011]
• Max pulses satisfying always DNAdam<1
• with DNA damage>1 on phase shifted cells

Whole body PK/PD drug injection model [Ballesta et al PlosCB 2011]
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Cell cycle Circadian clock

p53/Mdm2 Irinotecan Injection control

S-phase:

Top1cc

DNAdam

Bmal1Wee1

Bmal1

Top1

DNA damage

p53

p21

CycECycA

Figure 6: Global schema of the coupled model.

The link between the cell cycle and circadian clock models comes from
the experiments of [33] and is reflected through a direct influence of CLOCK-
BMAL1 (Bmal1) on the synthesis of Wee1, a kinase that delays or prevents
entry into mitosis by phosphorylation of the Cdk1/CyclinB complex. This
link uses the same structure as [9] since the Circadian clock model is the
same. [45] relied on a slightly di↵erent coupling that also modified, for unclear
reasons, the reaction of CyclinB synthesis, whereas the aim here is to search
for a coupling as simple as possible and satisfying the specification. Note
that experimental results direct at a G2/M-transition focussed coupling but
that for these experiments the cell-cycle model considered, even if it displays
the four di↵erent phases, is centered around the restriction point following
G1/S.

Bmal1 is also involved in the transcription of Top1 [44]: this provides a
link between the circadian clock and irinotecan models.

In order to link the p53/Mdm2 and cell cycle models, we inserted in the
p53/Mdm2 model a rule which fixes that p53 activates p21, and two further
rules imposing that p21 inhibits CycA and CycE, respectively. It is worth
noting that we also investigated the possibility to abstract the previous ex-
panded rules by letting p53 directly inhibit CycA and CycE. In the following,
we will refer to this last version of the link as to the contracted one.
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Figure 10: Maximum exposure preserving DNA damage under threshold 1.

phase shift, which can be attained for unsynchronized cells, DNA damage
attains 1.7, that is a 70 percent increase compared to synchronized cells.

The next specification regards the DNA repairing power of the cell.
F7: After an exposure to irinotecan is performed, DNA damage is able to
go under the threshold of 0.1 before the next exposure.
LTL(R) : G(([CPT11] > d) _ (([CPT11]  d)U([DNAdam] < 0.1))).,
where d depends on the dose of irinotecan.
Before testing the property, we decided to parameterize the lapse of time
between consecutive irinotecan exposures. Then we took advantage of the
procedure learn parameters to find the minimum k such that, if one 10-
units-exposure is performed every k hours, then property F7 is true.
Results: we found out that the minimum k multiple of 12 which makes F7
true is 36. Thus, one exposure every 36 hours should be performed in order
to allow DNA damage to be recovered before the next exposure. Then we
tried to see what it happens if, at each exposure, we double the irinotecan
dose, that is, we expose to 20 units. In this case, one exposure every 48 hours
should be done.

The last property requires the oscillating trend of proteins p53 and Mdm2
to stop before a new exposure.
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Figure 11: DNA damage produced on phase-shifted cells with the same exposure law as

in Figure 10.
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Specification of	Temporal	Behaviors

• Linear Time Temporal logic (LTL) extends classical logic with time operators 
X: next, F: finally, G: globally, U: until

• FO-LTL(Rlin), can express quantitative properties :
– Stability Gφ
– Reachability Fφ , thresholds F([A]>0.1), 
– Peaks of concentration F( [A]<V Ù X( [A]=V Ù X( [A]<V ) ) 
– Amplitude
– Periods and phases as distance between peaks
– …

• More flexible than curve fitting, can abstract from uncertain imprecise data

• Verification of reachability constraints w.r.t. qualitative observations
• Constraints for parameter search w.r.t. quantitative observations

– Good fit à model-based predictions, control
– No good fit à revisit structure à model-based contribution to biology

MPCE	2018 François	Fages
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Naïve	Parameter	Scanning	Algorithm

Input: an ODE model M(p) with n parameters p in range [pmin,pmax], 
an LTL(R) specification f

Output: parameter values v such that M(v) |= f
or fail if no such values

1. Scan the parameter value space [pmin,pmax]^n with a fixed step
2. Test whether M(v) |= f by trace-based model checking
3. Return the first value set v which satisfies f

Exponential complexity in O(sn) where n is the number of parameters and 
s is the number of discrete values to try for each parameter
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Parameter	Scanning	w.r.t.	LTL(R)	Specification

biocham: search_parameters([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3),150).

First values found :
parameter(k3,10).
parameter(k4,70).
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Parameter	Scanning	w.r.t.	LTL(R)	Specification

biocham: search_parameters([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3) & F([Cdc2-Cyclin~{p1}]>0.15), 150).

First values found :
parameter(k3,10).
parameter(k4,120).
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Parameter	Scanning	w.r.t.	LTL(R)	Specification

biocham:	search_parameters([k3,k4],[(0,200),(0,200)],20,
oscil(Cdc2-Cyclin~{p1},3)	&	F([Cdc2-Cyclin~{p1}]>0.15),	150).

First	values	found	:
parameter(k3,10).
parameter(k4,120).
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Parameter	Scanning	w.r.t.	LTL(R)	Specification

biocham:	search_parameters([k3,k4],[(0,200),(0,200)],20,
period(Cdc2-Cyclin~{p1},35),	150).

First	values	found	:
parameter(k3,10).
parameter(k4,180).
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Parameter	Optimization	Evolutionary	Algorithm

• Objective function: continuous satisfaction degree of LTL(R) formulae
• Covariance Matrix Adaptive Evolution Strategy (CMA-ES) [Hansen 01]
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Landscape	for	Oscillation	Amplitude	Constraint



Time series data in individual mice fibroblasts [Feillet Delaunay 2012]
Fluorescent markers of the cell cycle and the circadian clock (RevErb𝛼)
Medium with various concentrations of serum (FBS) 
• FBS modulates the cell cycle frequency
• No observed time gating for mitosis
• But observed acceleration of the circadian clock

in fastly dividing cells ! and not in confluent cells (24h)
FBS 10% à Cell cycle 22h à Circadian clock 22h, phase 7h
FBS 15% à Cell cycle 19h à Circadian clock 18h, phase 7h

Statistical model phase locking [Feillet et al Delaunay Rand PNAS 2014]

Unexpected Behavior of	NIH3T3	Fibroblasts:
Acceleration of	the	Clock at	high	FBS	!	
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Reverse	Effect	Cell	Cycle	à Clock

Mechanistic model for this reverse effect ? 
Hypothesis 1: Uniform inhibition of gene transcription during mitosis
• Entrainment in period
• No parameter values for correct entrainment in phase 
Hypothesis 2: Selective regulation of clock genes during mitosis 
• Entrainment in period and phase fitted to experimental data
• Prediction of reverb up-regulation during mitosis (or Bmal1 down)

[Traynard, Feillet, Soliman, Delaunay, F., Biosystems 2016]
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Relogio-Herzel	Model	of	the	Circadian	Clock (2011)

MPCE	2018 François	Fages

• 20 species, 71 parameters
• 60 parameters fitted to liver cell data 

– amplitude, period and phase data
• Per, Cry, Reverb, Ror, Bmal genes
Relógio,	A.,	Westermark,	P.	O.,	Wallach,	T.,	Schellenberg,	K.,	Kramer,	A.,	&	
Herzel,	H.	(2011).	Tuning the	mammalian circadian clock:	robust synergy of	two
loops.	PLoS Computational Biology.



Hypothesis 1:	Uniform	Inhibition	of	Transcription	
during Mitosis [Kang	et	al.	2008]

• Correct acceleration of both the cell cycle and the circadian clock
• But impossible to fit experimental phase shift 

between cell division time and RevErb peak
– Experimental phase: 7h
– Model phase: 18h

MPCE	2018 François	Fages
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Hypothesis 2:	Selective Regulation of	Clock Genes
during Mitosis

• Correct fit to period and phase experimental data 
(playing with only coupling strength regulation parameters) 

• Two sets of parameter values fit the data:

either down-regulation of Bmal1
or up-regulation of RevErb𝛼
during mitosis

MPCE	2018 François	Fages
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Results:																																																										or

Prediction: different behaviors for	a	slow	cell cycle	(5%	FBS)

Hypothesis 2:	Predictions
Inhibition	of	Bmal1 Activation	of	RevErb

Faster cell cycle

Stronger
control	of	
the	clock by	
the	divisions

Score	for	the	
property:
The	cell	cycle	and	the	
circadian	clock	have	
the	same	period
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Complex	Behaviors	with	High	Variability	
observed	after	Treatment	by	Dexamethasone

• Dexamethasone synchronize cellular clocks, but complex dynamics observed

Interpreted as 5:4 and 1:1 locking modes for 10% FBS and 3:2 and 1:1 for 15%
[C. Feillet et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle., PNAS 2014]

• In our model, Dex pulse modeled by induction of high level of Per.
Clock perturbation varies according to the time T of the pulse
Stabilization of the clock may occur after 70h beyond observed data…

peak-peak distance in
[18.8, 22.7] with T=162h
[20.9, 21.7] with T=170h

MPCE	2018 François	Fages

period and a fast cell cycle, with an overall ratio close to 3:2 between the clock

and cell cycle, explaining the three-peaks distribution of the circadian phase at

division, as already observed by Nagoshi et al.[7] ten years before. It has to be

noted that the 20% FBS dexamethasone-synchronized experiment was repeated

with similar results available in the Supplementary Information of [14], although

the distribution of the period ratios for the second group is wider in the interval

ranging from 1.2 to 2.

Medium Clock period Division period Mean delay

FBS 10% 24.2 h ± 0.5 h 20.1 h ± 0.94 h 10.7 h
FBS 20% 21.25 h ±0.36 h 19.5 h ±0.42 h 8.3 h

29 h±1.05 h 16.05 h±0.48 h 6h/12h/22h

Table 2: Estimated periods of the circadian molecular clock and the cell division cycle mea-

sured in [14] in fibroblast cells after treatment by dexamethasone, for two concentrations of

FBS. The time delay is between the cell division and the next peak of RevErb-↵ protein. The

experiment done with 20% FBS have been clustered by the authors of [14] in two groups with

di↵erent periods.

In [14], the authors suggest that these observations might be interpreted

by the existence of distinct oscillatory stable states coexisting in the cell pop-

ulations, in particular with 5:4 and 1:1 phase-locking modes for the condition

10% FBS, and 3:2 and 1:1 phase-locking modes for the condition 20% FBS, and

that the dexamethasone could knock the state out of the 1:1 mode toward other

attractors.

2.3. Formal Specification of Oscillation Properties in Quantitative Temporal
Logic

For the analysis of the dynamical behavior of this complex system, we shall

make use of a temporal logic language which allows us to express the relevant

system’s oscillatory properties to fit, instead of over-specifying them by provid-

ing a precise curve to fit. This allows us to combine qualitative properties of

oscillations and quantitative properties on the shapes of the traces such as dis-

tances between peaks or peak amplitudes. This is useful to capture the periods

on either experimental and simulated traces, even when the traces are irregular

and noisy. We use formal constraints on the amplitudes and regularity of the

7

RevErb-↵ in the cytoplasm and in the nucleus. Notably, the other clock genes

and proteins targeted by Bmal1 exhibit a phase delay when the synthesis of

RevErb-↵ is activated during mitosis.

The prediction is thus that in dividing cells, the phases between the clock

proteins slightly but significantly di↵er from the phases in quiescent cells.

4.5. Comparison to Experimental Data after Treatment by Dexamethasone

In order to take into account the experiments with dexamethasone, the model

can be extended with an event, lasting for two hours, and inducing Per mRNA

while inhibiting the other clock genes.

Fig. 10 shows that in our models, regardless of the growth factors in the

medium (i.e. of the value of kdie), the Dex pulse results in a perturbation of the

clock and then returns to the observed entrainment.
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Figure 10: E↵ect of a dexamethasone pulse on the entrainment resulting from the periodic

activation of RevErb-↵ synthesis by the cell cycle. The pulse alters the clock before returning

to the previously observed entrainment regime. In the left panel the pulse is from time 162

to 164 while on the right it is from 170 to 172. The left panel’s peak-to-peak distance is in

the [18.8; 22.7] interval, while the right one remains in the [20.9; 21.7] interval. This might

correspond to the two groups observed in [14]. The time to recover normal entrainment varies

but is often larger than 72 hours.

These simulations point us to the possibility that the noisy data reported in

Table 1 after the Dex pulse might simply be due to the various cellular states

in which the pulse happened and to the time necessary for the cells to recover

their clock entrainment, rather than to two di↵erent oscillatory attractors of

the system. A pulse at time 170h disrupted only slightly our clock, leading to

mostly remaining in mode-locking 1 : 1, whereas advancing that same pulse by

8 hours (corresponding to giving the pulse to a cell in a di↵erent state) leads
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Wrap-up
• Bi-directional coupling of cell cycle and circadian clock through

1. Regulation of cell cycle genes (Wee1, p21, Myc) by clock genes (Bmal1,Per,Rev)
2. Regulation of clock genes by cell cycle (up regulation of Rev-Erb𝛼 during mitosis)

• Modeling of molecular interaction networks by formal reaction systems
– Differential (ODE), stochastic (CTMC), Petri Net (PN) , Boolean semantics
– Before simulation, static analysis and model-checking methods

• Modeling of temporal behaviors
– quantitative temporal logic language FO-LTL
– Sensitivity&robustness measures, parameter search w.r.t. FO-LTL specification

• BIOCHAM free software for modeling 
– reaction and influence systems (SBML compatible)
– analysis and synthesis

• Same parameter search methods can be used for model-based control
– Drug exposure optimization
– External control of cell processes
– Cell reprogramming
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